
Realtime visualization of monocular data for 3D reconstruction

Adam Rachmielowski, Martin Jägersand, Dana Cobzaş
CS, University of Alberta, Canada

Abstract

Methods for reconstructing photorealistic 3D graphics
models from images or video are appealing applications of
computer vision. Such methods rely on good input image
data, but the lack of user feedback during image acquisition
often leads to incomplete or poorly sampled reconstruction
results. We describe a video-based system that constructs
and visualizes a coarse graphics model in real-time and au-
tomatically saves a set of images appropriate for later off-
line dense reconstruction. Visualization of the model during
image acquisition allows the operator to interactively verify
that an adequate set of input images has been collected for
the modeling task, while automatic image selection keeps
storage requirements to a minimum. Our implementation
uses real-time monocular SLAM to compute and continu-
ously keep extending a 3D model, augments this with key-
frame selection for storage, surface modelling, and on-line
rendering of the current structure textured from a selection
of key-frames. This rendering gives an immediate and intu-
itive view of both the geometry and if suitable viewpoints of
texture images have already been captured.

1. Introduction

Image-based modelling and rendering techniques aim to
create more photorealistic graphics models with less user
labour and hardware requirements compared to alternative
methods such as manual 3D modelling (in a CAD or mod-
elling software) or laser-scanning. There exist many image-
based techniques such as those that are suitable only for ob-
jects (e.g. shape-from-silhouettes), those that require cali-
brated or structured light, techniques that are purely image-
based and encode no surface geometry, or those that require
multiple calibrated cameras for stereo measurements. How-
ever, in this paper we are concerned with methods that take
input from an internally calibrated monocular video camera
of a static scene to automatically reconstruct surface geom-
etry and appearance.

While turntable-based systems for automatically creat-
ing graphics models of objects have already moved from

research to the commercial domain [1, 3, 2], scene mod-
elling systems are slower to make this transition. One prob-
lem with such systems is the input data: the images/video
for the reconstruction must adequately sample the plenop-
tic function of the scene. Systems such as KU-Leuven’s
ARC 3D [20], which allows users to upload a set of im-
ages and produce a scene reconstruction, wisely guide users
to avoid taking images with only panning motion, motion
only in the direction of the scene, or images of mostly pla-
nar or homogeneous objects. Experts in this field know that
such degenerate image sets lead to failed reconstructions
because of poorly conditioned SFM estimation or poor fea-
ture correspondences. Nevertheless, even experts are faced
with inadequate reconstructions when relying on the cur-
rent paradigm: go to the site, collect the data (images), then
return to the lab to perform the reconstruction. Reconstruc-
tions may be inadequate because important surfaces were
sampled poorly or not at all, requiring a return to the site to
collect more data. Also, lack of connecting keyframes may
lead to multiple reconstructed pieces that must later be hand
registered. We believe providing user feedback during cap-
ture and automatically storing useful images is an effective
way to solve these problems.

The system described herein maintains a real-time esti-
mate of the camera position as the user moves around the
scene. To minimize data storage requirements a subset of
the images from the video are saved to disk. A coarse sur-
face model is estimated and textured with the saved images
to give the user immediate feedback on their progress.

In the remainder of this paper, we first review monoc-
ular scene modeling and probabilistic camera tracking and
structure estimation (section 2). Next, the two main system
components (tracking and visualization) are described (sec-
tion 3). Finally, experimental results from an indoor scene
capture are provided (section 4).

2 Related Work

2.1 Monocular Scene Modelling

A typical automatic monocular scene modelling system
works as follows. First, in a 2D image processing stage fea-



Figure 1. User interface. On top: 3D recon-
struction with current camera estimate, tra-
jectory and indication of saved frames. Bot-
tom: live video with tracking markup.

tures are detected and matched between images resulting in
2D correspondences,x. Then in a 2D to 3D stage cam-
era matrices,P , and 3D scene structure,X , are estimated.
This estimation is performed for two (using fundamental
matrix), three (trifocal tensor) or more (simultaneous fac-
torization methods) frames. Additional frames are bound
to the reconstruction either by resectioning new cameras
and triangulating new points, or by estimating a separate
but overlapping reconstruction and then registering the dif-
ferent 3D reconstructions. In a post processing step, both
cameras and 3D structure are refined by bundle adjustment.
If necessary, projective estimates are upgraded to Euclidean
by self-calibration. A dense surface model is estimated by
multi-view stereo. Finally, surface appearance is modelled
by simple or view-dependent texturing or by a reflectance
function. For an overview of these techniques see [19].

The early work of Beardsley et al. [4] uses Harris corners
as well as lines for features, image triples (for strong con-
straints on matches) in the initial structure and motion esti-
mation, and robust RANSAC computations for all estima-
tion (fundamental matrix, trifocal tensor, resection, triangu-
lation). The system of Pollefeys [13] is designed specifi-
cally for video, uses image pairs (for longer feature tracks),
incorporates a simple measure of inter-frame distance (by
model selection), and adds the step of dense surface mod-
elling to the process. More recent systems build on this
same approach while for example: handling larger input
sets [17], automatically fitting scene planes and polygonal
primitives [21], or incorporating different surface appear-
ance models [12].

This work aims to be a useful addition to any of the above
systems, as well as existing sequential/incremental structure
and motion estimation methods [6, 5, 7, 15], which provide
visualization of the reconstructed scene model only in the
form of point clouds. Our approach is similar in spirit to the
system of Rusinkiewicz et al. [18], which acquires dense 3D
geometry-only surface models in real-time with feedback.
However, their system requires structured light from a pro-
jector and works only for diffuse objects. Another system
by Fudono et al. [10], provides visualization and feedback
for turntable-based object modelling systems and collectsa
set of images suitable for a shape-from-silhouettes recon-
struction. Here we instead focus on scene capture with a
single moving camera, and aim to provide a useful on-line
visual feedback depicting both cameras and structure, as
well as textured renderings of the current model.

2.2 Real-time camera tracking

To enable real-time camera tracking and coarse structure
estimation in our system, we use monocular simultaneous
localisation and mapping (monoSLAM) methods.

In SLAM, a mobile robot’s pose is estimated and simul-
taneously a map is built of the environment it is navigat-
ing. The problem is formulated in a Bayesian framework
where noisy measurements are integrated over time to cre-
ate a probability distribution of the state / process (landmark
positions and pose / motion parameters). In general, SLAM
may rely on various sensors for making measurements in-
cluding lasers, sonar, stereo vision, GPS (global position-
ing system), IMU (inertial measurement unit), and odom-
etry. By contrast, monocular SLAM tackles the problem
with only a single camera (typically hand-held) as a sensor.

One of the first systems [8] to implemented real-time
monoSLAM uses an Extended Kalman Filter (EKF) to
propagate estimates and uncertainty over time. Maintain-
ing a complete covariance matrix in the EKF, which in-
cludes correlations between feature positions, permits a
small number of measurements to update the entire state,



leading to a stable system with few measurements and en-
abling implicit loop-closing. However, the multi-variate
Gaussian distributions used in the EKF lack resilience to
the type of erratic camera motions common in hand-held
systems. Moreover, the cost of filter updates is quadratic in
the size of the state (number of camera and feature param-
eters), resulting in poor scaling as the number of mapped
features increases.

To provide resilience to erratic motion, a particle-filter-
based system was proposed [14], in which the camera and
each feature has a set of particles representing its distribu-
tion. This approach models multi-modal distributions, al-
lowing implicit multiple hypotheses of the state estimate
resulting not only in resilience to erratic motion, but im-
proved handling of occlusions. Although the complexity
of filter updates is linear, in practice a very large number
of particles are required to ensure convergence and current
real-time systems are limited to a small number of features.

To provide good scaling without relying on submapping
or postponement methods, the popular FastSLAM 2.0 al-
gorithm was applied to the monocular SLAM problem [9].
Complexity is reduced fromO(N2) to O(MlogN), by
modelling the camera distribution by a set ofM particles
and each feature with an independent EKF. This approach
provides the most scalable system; experiments have shown
hundreds of features mapped in real-time. Although they
provide advantages over the EKF approach, these particle
filter approaches do not propagate correlation between fea-
tures. Only measured features are updated, so loop closing
must be handled explicitly.

Any of these approaches would be suitable as the ba-
sis for our tracking sub-system, so long as it returns cam-
era pose estimates and a coarse structure in real-time. We
use Davison’s EKF monoSLAM [8], extended with oriented
patches [11], and fast corners [16]. In EKF monoSLAM
individual measurements propagate changes to the entire
structure, making it more suitable for a natural exploration
of the scene than the scalable fastSLAM alternative.

3 System Description

Our system consists of two main parts: tracking and vi-
sualization (Fig. 2). The tracking part inputs a video stream.
It uses SLAM to compute a 3D structure and camera pose.
Then keyframe selection picks suitable images to be stored
for use in visualization. In the second part, a surface is mod-
elled by triangulating the 3D structure points, and a live ren-
dered view is synthesized based on a desired camera pose,
and a set of nearby textures. The camera pose can be either
the current tracked pose, or another pose selected by the
user. The quality and completeness of this rendered view
helps guide the user as to which additional viewpoints to
capture.

Video

SLAM

keyframe 
selection

3D structure

camera 
pose

keyframes
Rendering

modeling
Surface

Tracking Visualization

Novel View

Figure 2. Overview of the system.

The system can input any standard IEEE1394
videostream. In the experiments we use a 30 Hz, 800x600
RGB hand-held camera with a wide angle (approx.90◦

FOV) lens and performs tracking on the luminance channel
only. Camera tracking is handled by one thread, while
other operations run on a separate thread with minimal
synchronization (shared data is locked while copying).
On a multiprocessor machine this means selecting/storing
images and visualization do not affect the performance of
camera tracking.

3.1 Camera tracking

As in Davison’s original work [8], our system maintains
an estimate of the current camera pose/motion parameters
and 3D scene points. Their respective means arexv, yi,
and a covariance matrix,P, encodes Gaussian uncertainty
as well as correlation between measurements and camera
parameters. The system is initialized with a set of four
known points. Image patches are used as feature descrip-
tors and measurements are made by performing normalized
cross correlation between a template image patch and the
current image in a search window around the predicted fea-
ture position. When no features are present in part of the
current image, new features are added at positions that have
a high response to the corner detector.

To improve feature measurements over large changes in
viewing configuration, we have incorporated Molton’s lo-
cally planar patch features [11], where each feature is as-
sumed to be planar and it’s template is prewarped based
on an estimated normal. Prewarping patches significantly
improves the range of poses over which a template can be
matched, even when the normal estimate is a coarse esti-
mate (pointing directly toward the camera when the fea-
ture is initialized). Experimentally, we have found the cost
of updating the normal estimate by image-alignment and
Kalman-filtering to be too costly to justify for the slight
further improvement in tracking. Therefore we don’t up-
date the initial normal estimates. To improve performance,
instead of performing cross correlation at every position
within the search window, we have limited the measurement
search to detected fast corners [16]. In experiments, the use
of these corners reduces the number of correlations by ap-
proximately85%, at a cost of12% fewer matches, and a
mean measurement error increase of only0.1 pixels.



3.2 Keyframe selection and storage

The system deals with a large amount of raw image data
from the video stream, so memory management becomes
an issue. Images are stored in three types of memory (tex-
ture, main, and disk memory). As images are acquired by
the camera they are loaded into main memory. When they
are requested for texture mapping they are loaded into tex-
ture memory and if they are determined to be novel they are
written to disk. When storage exceeds a predefined quota
for main or texture memory, images are unloaded based on
their distance from the current virtual view. A frame is con-
sidered novel if it has a sufficiently different position or ori-
entation from the closest saved frames. The score we use
for novelty incorporates the distance between frames rela-
tive to the mean distance to the scene and the angular differ-
ence between the principle viewing rays of the new frame
and nearby saved frames.

First we compute the Euclidean distance between the
new camera centre,ccnew, and each of the saved camera
centres,cci, weighted by the inverse mean depth to the
scene points,Xj (wherej ∈ [1, m]), relative to the new
camera.

di =
dist(ccnew, cci)∑

j (depthccnew
(Xj)) /m)

If the minimum of this distance evaluated for all saved cam-
eras,mini(di), is above a threshold,α, we consider the
frame novel (in our experimentsα = 0.1 resulting in im-
ages approximately10cm apart when the mean depth of the
scene is1m). If the minimum distance is belowα then for
each saved camera withdi < α we compute the angular
distance from it’s principle viewing ray to that of the new
frame. If the maximum angular distance is above a second
threshold,β, then we also consider the frame novel (in our
experimentsβ = π/4 resulting in images approximately
45◦ apart).

Camera pose parameters,xv, from the tracking system
are stored along with each saved image. Since SLAM only
updates an estimate of the current camera pose, over time
old camera estimates provided by the tracking system may
become invalid. As a result we intermittently improve esti-
mates by resectioning saved cameras using all available 3D
points and their 2D measurements.

3.3 Surface modelling and visualization

To rapidly model the surface for visualization we create a
basic mesh and project a subset of saved images onto it. The
number of images used,nv, depends on the multi-texturing
capabilities of the graphics hardware (for our experiments
we usenv = 4). The geometry is formed as follows. The
currently visible 3D points are projected into the saved im-
ages closest to the virtual view, measured by the distance

between the intersections of principle viewing rays and the
plane at mean distance to the scene. A Delaunay triangula-
tion is computed on these 2D points and then back-projected
onto the 3D scene.

To texture map the surface, the closest frames are
blended on graphics hardware. Camera intrinsic parame-
ters and a radial distortion parameter are passed to a shader
program which undistorts and forward warps the raw saved
images onto the surface geometry.

The user interface displays a 3D view of the scene as
well as the 2D input video (Fig. 1). The 3D view shows
the textured surface from a virtual camera, the current posi-
tion of the real camera, the estimated camera trajectory and
saved camera poses. The user can move the virtual cam-
era to an arbitrary viewpoint to inspect the reconstruction.
Parts of the scene that have been explored are textured with
the saved images, while areas that have been inadvertently
overlooked appear as holes in the reconstruction. Surfaces
that have only been imaged from a distance reveal their low
resolution and surfaces imaged from oblique angles appear
with warped textures. A summary of the system algorithms
follows.

Tracking:(Section 3.1)
New image arrives from camera
Detect fast corners
SLAM update

Estimate current camera pose
Update 3D point structure

If pose is novel save image as keyframe(Section 3.2)
Visualization:(Section 3.3)

New virtual pose is specified by user
Compute closest views
Triangulate surface
Project images from closes views onto surface

4 Experimental Results

The system was tested with a hand held camera in a com-
puter lab environment. Figure 3 shows the progress dur-
ing this 30 second sequence performed at frame rate on a
dual core AMD 1.8Ghz Opteron. A total of 60 features
are mapped, with an average of 15 measurements made per
frame. Of the 900 input video frames, 43 are saved. Pro-
cessing time for camera tracking approaches the full budget
of 33ms per frame by the end of the sequence. Process-
ing time for image selection and visualization never exceeds
10ms and does not affect tracking as it is performed in par-
allel.

As the camera explores the scene the reconstruction
grows, showing which surfaces have been mapped. Near
the end of the sequence (frame 660) the virtual camera is
moved to view the desk from overhead. The visualization
reveals that the desk surface just below the current camera



position (visible at the bottom right corner of the 3D display
for frame 660) is missing image data. Panning the camera
down stores an additional image of the surface and updates
the visualization.

Figure 4 shows two novel views from the visualization.
On the left is a part of the scene (corner of the room) sam-
pled from a distance, on the right a surface (the desktop)
sampled from an oblique angle. The early reconstructions
in the top row indicate a need to further explore these ar-
eas. After visiting them with the camera, some geometric
distortion and blending artifacts remain, but the areas are
understandable and well sampled.

5 Future Work

We have described an auxiliary system which improves
data collection for monocular 3D reconstruction systems.
Our system provides valuable feedback for users collect-
ing images of a scene to be reconstructed. Disk storage is
minimized by saving only views that are novel relative to
those already stored. Also, estimated structure and camera
parameters stored by our system can be used as a starting
point for further reconstruction.

Two topics are slated for future work. We will investi-
gate improving the visualization sub-system by computing
a consistent triangulation and refining it over time. Sec-
ond, we will consider more explicit ways to advise the user
where to position the camera.

References

[1] 3DSOM. http://www.3dsom.com.
[2] D-VW D Sculptor. http://www.d-vw.com.
[3] Uzr imodeller. http://www.imodeller.com.
[4] P. A. Beardsley, P. H. S. Torr, and A. Zisserman. 3d model

acquisition from extended image sequences. InECCV ’96:
Vol. II, pages 683–695, 1996.

[5] P. A. Beardsley, A. Zisserman, and D. W. Murray. Sequen-
tial updating of projective and affine structure from motion.
IJCV, 23(3):235–259, 1997.

[6] T. Broida, S. Chandrashekhar, and R. Chellappa. Recursive
3-d motion estimation from a monocular image sequence.
IEEE Transactions on Aerospace and Electronic Systems,
26(4):639–656, 1990.

[7] A. Chiuso, P. Favaro, H. Jin, and S. Soatto. 3-d motion and
structure from 2-d motion causally integrated over time: Im-
plementation. InECCV ’00: Part II, pages 734–750, 2000.

[8] A. Davison. Real-time simultaneous localisation and map-
ping with a single camera. InProc. International Conference
on Computer Vision, Nice, Oct. 2003.

[9] E. Eade and T. Drummond. Scalable monocular slam. In
CVPR, pages 469–476, 2006.

[10] K. Fudono, T. Sato, and N. Yokoya.Interactive 3-D Model-
ing System Using a Hand-Held Video Camera. 2005.

[11] N. D. Molton, A. J. Davison, and I. D. Reid. Locally planar
patch features for real-time structure from motion. InProc.
British Machine Vision Conference. BMVC, Sept. 2004. (To
appear).

[12] M. Pollefeys, L. V. Gool, M. Vergauwen, F. Verbiest, K. Cor-
nelis, J. Tops, and R. Koch. Visual modeling with a hand-
held camera. InInternational Journal of Computer Vision
59(3), pages 207–232, 2004.

[13] M. Pollyfeys. Tutorial on 3D Modeling from Images. Lec-
ture Notes, Dublin, Ireland (in conjunction with ECCV
2000), 2000.

[14] M. Pupilli and A. Calway. Real-time visual slam with re-
silience to erratic motion. InIEEE Computer Vision and
Pattern Recognition, 2006.

[15] A. Rachmielowski, D. Cobzas, and M. Jagersand. Ro-
bust ssd tracking with incremental 3d structure estimation.
In Canadian Conference on Computer and Robot Vision
(CRV). 1.12, pages 1–8, 2006.

[16] E. Rosten and T. Drummond. Machine learning for high-
speed corner detection. InEuropean Conference on Com-
puter Vision, volume 1, pages 430–443, May 2006.

[17] T. Sato, M. Kanbara, N. Yokoya, and H. Takemura. Dense
3-d reconstruction of an outdoor scene by hundreds-baseline
stereo using a hand-held video camera. InInternational
Journal of Computer Vision, pages 119, 129, 2002.

[18] M. L. Szymon Rusinkiewicz, Olaf Hall-Holt. Real-time 3d
model acquisition. pages 438–446, 2002.

[19] T.Werner, T.Pajdla, and M.Urban. Practice of 3d recon-
struction from multiple uncalibrated unorganized images.In
Czech Pattern Recognition Workshop, 2000.

[20] M. Vergauwen and L. V. Gool. Web-based 3d reconstruction
service.Mach. Vision Appl., 17(6):411–426, 2006.

[21] T. Werner and A. Zisserman. New techniques for automated
architectural reconstruction from photographs. InECCV,
pages 541–555, 2002.



frame 90 frame 150 frame 210 frame 270

frame 330 frame 360 frame 660 frame 690

Figure 3. Eight Frames from a typical sequence. The top view f or each frame shows the reconstruc-
tion so far, from a fixed virtual view a few metres behind the tr ue camera position. As the camera
explores the scene, the visualization surface incremental ly grows. At frame 660 the user inspects
the desktop from above by repositioning the virtual camera, revealing missing data just below the
current camera position. Panning the camera down fills the su rface.



Figure 4. Two novel views from the coarse visualization show n at two different times. Left column:
a distant corner of the room. Right column: a nearby surface. Top row: after collecting only a few
frames, bottom row: after collecting more data.


