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Abstract. We introduce a novel discrete optimization method for non-
rigid image registration based on the random walker algorithm. We dis-
cretize the space of deformations and formulate registration using a
Gaussian MRF where continuous labels correspond to the probability
of a point having a certain discrete deformation. The interaction (regu-
larization) term of the corresponding MRF energy is convex and image
dependent, thus being able to accommodate different types of tissue elas-
ticity. This formulation results in a fast algorithm that can easily accom-
modate a large number of displacement labels, has provable robustness
to noise and a close to global solution. We experimentally demonstrate
the validity of our formulation on synthetic and real medical data.

1 Introduction

Image registration is a fundamental problem in medical imaging, central for
many clinically relevant applications like statistical studies on a population of
patients, analysis of disease progress and multi-modality fusion for better diag-
nosis and treatment. The registration problem can be formalized as finding the
optimal transformation that aligns a source with a target image, based on a sim-
ilarity score. Depending on the type of transformation, registration methods can
be classified into global (rigid, affine) and local (non-linear, non-rigid). Global
registration methods involve few parameters to be optimized and are thus well-
posed, being constrained in the parameter space. Non-rigid registration methods
estimate a dense deformation field that defines, for every location, a vector that
locally aligns the two images. This is an inherently ill-posed problem due to the
high dimensionality of the parameter space and therefore relies on regularization.

Several ways of imposing regularization have been proposed in the litera-
ture [1]. The popular free form deformation model (FFD) [2] restricts the pa-
rameter space to a set of control points that define a smooth interpolation field
for the rest of the image. Alternative methods explicitly add a regularization
term (e.g. fluid, elastic) in the registration energy, that is either optimized to-
gether with the data matching term [3,4], or applied as a separate smoothing
process (demon’s [5]). One other way of imposing regularization is to restrict
the space of deformations to a Sobolev space [6]. Some effort has been made
to adapt the regularization of deformations to local image content [7,8]. This is
particularly important considering that different tissue deform differently and
parts of the image might contain an abnormality that does not match the atlas.

Nonlinear registration is traditionally formulated in a continuous domain and
the optimal transformation is recovered using gradient descent. This estimation



is often slow and suboptimal due to non-convexity of the energy functional that
is optimized. Recently, few works have formulated deformable registration as a
discrete labeling problem [9,10]. The space of deformations is discretized and the
registration energy is formulated as a Markov random field (MRF) optimization.
If the interaction energy is submodular, a graph cut method guarantees a good
quality solution [11,10]. For more complex interaction terms, Glocker et al. [9]
proposed a linear programming method that uses the primal dual principle.

In this paper we proposed an alternative discrete formulation of the registra-
tion problem based on the random walker algorithm [12,13]. The random walker
algorithm was previously used in the context of stereo matching [14], but this
is the first work that formulates discrete registration using the random walker
framework. Our formulation is equivalent to a Gaussian MRF with an interac-
tion (regularization) term that is convex and image dependent, thus being able
to accommodate different types of tissue elasticity. Following the formulation
from [13], we incorporate data similarity terms as ’priors’ for the displacement
labels. Unlike the graph cuts [10] or the primal dual method [9] that would
only guarantee a good quality solution for the discrete registration, the random
walker method finds a unique global minimum. Probabilities of a particular dis-
placement label are calculated by solving a combinatorial Laplace equation. The
random walker formulation of the registration problem results in a fast algo-
rithm that can easily accommodate a large number of displacement labels and
has provable robustness to noise [12].

2 Methods

2.1 An energy formulation of deformable registration

Let I and J respectively be the reference (target) and the floating (source) d-
dimensional images I, J : Ω → R, Ω ⊂ R

d . Image registration seek an optimal
transformation T : Ω → Ω that aligns the two images based on a similarity
measure. In deformable registration, T is usually expressed in terms of a dis-
placement field u as T = Id + u, with the identity operator Id. u is found as the
minimum of an energy functional:

u∗ = argminuED(I, J ◦ T ) + αER(u) (1)

where ED is a data term that measures the similarity between the two images
and ER is the regularization energy term. Expanding the two energy terms, and
denoting the similarity measure with Φ and an image-dependent (adaptable)
regularization function with Ψ we get:

u∗ = argminu

∫

x∈Ω

Φ (I(x), J(x + u(x))) dx + α

∫

x∈Ω

Ψ(∇J(x),∇u(x))dx (2)

2.2 Discrete formulation for the random walker algorithm

Regarding I and J as discrete representations for the target and source image,
we next formulate registration as a discrete optimization. We consider a discrete



set of labels L = {u1, u2, ..., uK} corresponding to a quantized version of the
deformation space ui ∈ D = {d1,d2, ...,dK}. The registration problem becomes
a labeling problem that seeks to assign an optimal label for each image location.
A common model for representing such problems are MRFs. The pixel locations
of the image are mapped on a graph G = (N , E), where N represents the set of
nodes (image locations) and E represents a neighboring system of the image grid
(typically 4 or 8 in 2D). The labeling problem is then solved by minimizing:

E(u) =
∑

i∈N

Φi(ui) + α
∑

(i,j)∈E

Ψij(ui, uj) (3)

where ui ∈ L denotes the displacement label for location i, Φi(.) is the unary
potentials representing the data term and Ψij(., .) are the pairwise potentials rep-
resenting the interaction (smoothing) term. Due to the independence assumption
of the unary data potentials Φi, we require a point-wise similarity score. This
constraint was relaxed in [9] by approximating a local score (e.g. mutual infor-
mation) in neighborhoods defined by control points. There are few formulations
of the traditional MRF for solving the discrete registration problem. When the
smoothing term Ψij is a metric, the MRF energy can efficiently be optimized
using graph cuts [10,8]. For more complex interaction terms, Glocker et al. [9]
use a linear programming method (based on the primal-dual principle).

We make few modifications to the traditional MRF from Equation 3 to be
able to map the registration problem to a random walker with priors [13]. First,
we relax the labeling system to continuous variables uk

i that represent the prob-
ability of node i having the label uk. Next, we consider a Gaussian MRF, where
the interaction term has the form Ψij(u

k
i , uk

j ) = wij(u
k
i − uk

j )2, with wij be-

ing an image dependent edge weight (e.g. wij = exp(−β(Ji − Jj)
2) where Ji

represents the image intensity for location i). Last, for defining the data term
Φi(u

k
i ), we consider a set of real-valued nodewise priors λk

i that represents the
probability density that the displacement vector at location i has the value dk,
λk

i = exp(−γ(Ii − Ji+dk)2). By Ji+dk we denoted the intensity of image J at
location i displaced with dk.

With these three modifications, following [13], we can define the registration
energy corresponding to the label uk as the continuous-valued Gaussian MRF:

Ek(uk) =
∑

i∈N





K
∑

l=1,l 6=k

λl
i(u

k
i )2 + λk

i (1 − uk
i )2



+ α
∑

(i,j)∈E

wij(u
k
i − uk

j )2 (4)

While space does not allow a rigorous interpretation of the above equation (de-
tails in [13]), intuitively, we see that when λk

i is large (meaning that the dis-
placement dk matches the similarity score at location i) the data energy term
encourages high probability values for label uk and small probability values for
all other labels ul, l 6= k. Compacting notations, we denote L, the combinatorial



Algorithm 1 Random walker nonlinear registration

1: generate multi-resolution images I1(= I), I2, I3 and J3, with a factor r(= 2)
2: for i=3:1 do

3: define a set of discrete labels {d1, . . . ,dK}
4: setup the image graph, compute Laplacian L and priors Λ

5: solve for deformations labels u
k for every k (Eq. 7)

6: assign ui = d
k where k = argmax(u1

i , . . . , u
K

i )
7: if i > 1 then

8: compute source at next level Ji−1 = warp(upsample(Ji), interp(rui))
9: end if

10: end for

11: registered image = warp(J1, u1)

Laplacian matrix of the graph:

Lij =







di =
∑

k wik degree of i if i = j

−wij if (i, j) ∈ E
0 otherwise

(5)

and by Λk = diag(λk), the matrix having the values of λk on the diagonal.
Equation 4 can be written as:

Ek(uk) =

K
∑

l=1,l 6=k

ukT Λluk + (1 − uk)T Λk(1 − uk) + αukT Luk (6)

where uk collects all nodes probabilities for label k in a vector. The minimum
of this energy is obtained when uk is the solution of this equation:

(

αL +

K
∑

l=1

Λl

)

uk = λk (7)

which is a combinatorial Laplace equation of a graph augmented with a node for
each label uksuch that the weights on the new edges (k, i) have value λk

i . The
combined matrix on the left side of the equation is guaranteed to be positive
definite and therefore the equation has a unique global solution that gives the
nodes probabilities for the displacement labels uk.

2.3 Multi-resolution framework and implementation details

The random walker algorithm is computationally expensive as well as memory
expensive. The number of equation systems to be solved is the same as the
number of displacement labels, and each of these equations has the number of
variables equal to the number of pixels in the image. As the number of displace-
ment labels can be quite large, especially in 3D, not only the solution of the
linear systems is time-consuming, but also their assembly. We obtained an effi-
cient approximation of the solution using a multi-resolution framework. Due to
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Fig. 1. Comparative results of recovered deformations for checkerboard image.
From left to right, the top row shows the target image, the deformed image and
the SSD error of the registered images with demon’s and RW methods. Bottom
row shows the angle and magnitude color coding convention, the ground truth
deformations and the recovered deformations using demon’s and RW methods.

this multiresolution approach, even though the RW solution is optimal at each
resolution level, the composite solution is no longer guaranteed to be optimal.

The multi-resolution images were obtained by downsampling the original
images based on nearest neighbor interpolation. We defined deformations in an
incremental way propagating deformations obtained at a lower resolution to the
next higher resolution level. This approximation is carried out by an interpo-
lation based on Delaunay triangulation after scaling the low resolution field by
the multi-resolution scale factor. At each resolution we compute the remaining
deformations by solving the sparse linear equation system 7 for each discrete la-
bel (in practice only K −1 times as we impose sum of unity for the probabilities
∑

k uk
i = 1). At each level the magnitude and number of expected deformations

encoded as discrete labels {d1,d2, ...,dK} decreases. The final displacements ui

are taken as the ones with maximum probability among all labels ui = dk where
k = argmax(u1

i , . . . , u
K
i ). The algorithm is summarized in Algorithm 1.

3 Experiments

We present results of our experiments on real and synthetic data. We compared
the performance of the proposed RW registration with a traditional demon’s
implementation [15]. The base of our RW implementation is the Fast RW open-
source code [16]. The set of parameters are optimized to achieve best SSD scores
(ex. α = 100, Gaussian weights wij with β = 0.005, priors λk

i with γ = 1 for
real data). For all experiments we used 3 levels of resolution generated by a



Deformation field err SSD err Dice coef
ang. magn.

D RW D RW D RW D RW

checkerboard 1.58 ± 1.20 0.45 ± 0.97 1.12 ± 1.54 1.65 ± 2.89 10.88 5.01 - -
brain MRI - - - - 8.82 3.38 WM: 0.82 0.84

GM: 0.79 0.81
CSF: 0.83 0.84

abdominal CT - - - - 15.46 9.64 muscle: 0.62 0.79

Table 1. Comparative numerical results for the three datasets.

scale factor of 0.5 and 0.25. The number of displacement labels at each level is
dependent on the initial image size (ex. low-high resolution : 60, 40, 30 for an ini-
tial 256 × 256 image, corresponding to a displacement range of about [−15, 15],
[−10, 10], [−7, 7] pixels, respectively). The experiments were run on MATLAB
using Intel Core 2 Duo Processor of 2.10 GHz with 4 GB RAM. The algorithm
took about 200 sec. to complete on a 256× 256 image. Most time was taken by
MATLAB’s sparse linear equation solver.

3.1 Quality of recovered deformations

For testing the accuracy of the recovered deformation field we synthetically de-
formed a checkerboard image with a known deformation field. We tested how
deformations are recovered by the RW registration method and the demon’s
algorithm. We measured the angular and magnitude errors of the recovered de-
formation fields as well as the SSD error between target and registered images.
Qualitative results are presented in Figure 1 and numerical scores in Table 1. We
color coded deformations using the same convention as for optic flow as shown
in bottom-left of Figure 1. We notice that the recovered deformation fields using
RW registration has less artifacts, and the recovered deformations are closer in
orientation to the original ones. The magnitude of recovered deformations using
RW is slightly larger than the ones recovered using demons, probably due to
the fact that regularization is imposed at the energy level for which we obtain a
global solution as opposed to demon’s iterative approach.

3.2 Results on real medical data

For the experiments with real data, we again compared our RW method and
demon’s algorithm. To quantify results we measured SSD error between regis-
tered images and the target image. Also, both datasets had some ground truth
segmentations (WM/GM/CSF for brain MRI data and muscle in the abdominal
CT data). We calculated the dice coefficients between ground truth segmenta-
tions in the target image, and segmentations from the source image warped on
the space of the target image using the recovered deformation field. Note that a
larger, closer to 1 value for a dice coefficient indicates a better segmentation.

The first experiment uses the brain MRI dataset from Internet Brain Seg-
mentation Repository1. We performed registration between two patients, both

1 http://www.cma.mgh.harvard.edu/ibsr/data.html
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Fig. 2. Results for real data. Left to right: (row 1) brain MRI data - source,
target, SSD error between target and registered image (bright for small, dark
for large errors); (row 2) segmentations on source and target images,warped
segmentations on registered images; (row 3,4) same for abdominal CT data.



from the database. The dataset contains WM,GM and CSF labels. As shown
in the first two rows of Figure 2 and in Table 1, the RW method has better
performance both visually and quantified compared to the demon’s algorithm.

In a second experiment we registered two abdominal CT images from
a local cancer institute. Notice the large difference between the two datasets.
Demon’s method was not able to recover the large deformations but the RW’s
registration that recovers a global minimum was much better. As the muscle exist
in both images, and is therefore the part that is expected to match, we measured
the dice coefficient on the muscle segmentation. Ground truth segmentation was
provided by a medical student. Figure 2 and Table 1 present the results.

4 Discussion

We have presented a discrete method for non-rigid image registration based
on the random walker method. The new formulation has several advantages: at
each resolution level, we globally minimize a convex energy, with a regularization
term that is image dependent thus being able to accommodate different elasticity
depending on the tissue type.

As future work, we are looking into a more efficient implementation of our
method. One option is to use a lower-dimensional deformation model like the
FFD model that computes displacements only at control points. This approach
would also allow approximating non-local data potentials (e.g. mutual informa-
tion) in neighborhoods around the control points (similar to [9]). This technically
violates the independence assumption, but practically the loss of optimality at
a particular resolution may be compensated by the richer non-local measure.
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