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ABSTRACT

The estimation of body composition (i.e., proportions of muscle and

fat tissues) in cancer patients has important clinical and research ap-

plications. In particular, chemotherapy drug dosage is determined

after taking into account the muscle and fat proportions in the pa-

tient’s body. Recently, there has been considerable interest in study-

ing the correlation between survival and body composition in can-

cer patients. We propose a fully automated framework for segmen-

tation and quantification of muscle and fat tissues in thoracic CT

images. A novel approach based on statistical deformation model

(SDM) constrained deformable registration using the finite element

method (FEM) is proposed. We obtained very good segmentation

results with Jaccard scores of 94.95% for muscle and 94.82% for fat

tissues respectively on a large data set of 116 thoracic CT images.

Index Terms— FEM registration, CT images, Muscle segmen-

tation

1. INTRODUCTION

The muscle and fat tissues are target locations for the water- and

fat-soluble drugs respectively used for cancer treatment. Conse-

quently, the proportions of these tissues are believed to determine

the chemotherapy toxicity and efficacy. Therefore, the estimation

of muscle and fat tissue proportions is an important task in research

studies related to cancer prognosis and treatment. Currently, this

task is being addressed through the manual segmentation of muscle

and fat tissue regions in computer tomography (CT) images taken

at specific skeletal landmarks (which are good correlates of the

whole body muscle and fat mass), using the pre-defined windows of

Hounsfield units (HU, units of radiation attenuation) for each tissue

[1], [2]. However, the manual segmentation of large databases of

CT images used in these studies is not practical and hence automatic

segmentation methods are needed. Although, the segmentation of

the fat region using automatic methods [3], [4] is relatively straight-

forward due to the unique HU range of the fat tissue [−190,−30],
the automatic segmentation of the muscle region is quite challeng-

ing as there exists significant overlap between the HU ranges of the

muscle tissue [−29, 150] and surrounding organs (see Figure 1c).

In cancer research studies that require the estimation of muscle

and fat proportions, two types of CT images are considered, the ab-

dominal and the thoracic CT images taken at the 3rd lumbar vertebra

(L3) and the 4th thoracic vertebra (T4) respectively. The automatic

segmentation of abdominal CT images has already been addressed

in [5] with great success, where the difficult step of segmenting the

muscle region was achieved by taking advantage of the well defined

muscle shape present in abdominal CT images using a shape prior

based segmentation method. But, this approach cannot be used for

the segmentation of muscle regions in thoracic CT images as in the

thoracic CT images the shape of the muscle does not conform to a

(a) Original CT (b) Manual segm. (c) Thresholded segm.

Fig. 1: Illustration of the challenge in thoracic CT segmentation.

Muscle (red), Fat (blue), Inside region (green). It can be seen in (c)

that segmentation solely based on thresholding the muscle and fat

HU ranges results in a lot of errors due to the significant overlap of

intensities between the muscle and the inside regions.

specific class of shapes (see Figure 4). However, in thoracic CT im-

ages the “inside” region containing the lungs, ribs and other organs

(see Figure 1) exhibits a consistent shape across the patient popu-

lation. Hence, a priori shape knowledge about the inside region’s

shape can be used to disambiguate the muscle tissue from the other

organs in the inside region that have overlapping intensities. Based

on this idea, we propose an automatic segmentation framework for

thoracic CT images, where the inside region is first segmented using

a shape prior model learned from training data and then the muscle

and fat regions are obtained by thresholding the rest of the image

using their respective HU ranges.

In this paper, we take a template-based segmentation approach

where a binary template encoding an initial shape is deformed via

non-rigid or deformable registration to match the region of interest in

the input image. The desired segmentation boundary is then implic-

itly defined by the contour of the initial shape and the deformation

field estimated between the template and the input image. Existing

works on template-based segmentation either use a non-parametric

representation of the deformation field [6] or parametrize the defor-

mation field using B-spline basis functions [7]. However, a com-

mon drawback in these works is the use of a uniform discretization

of the problem domain. This is inefficient because the deformation

field is computed with the same accuracy everywhere, even though

detailed deformations are only needed along the contour of the ini-

tial shape in the template. Therefore, we propose a finite element

method (FEM) based registration framework to solve the template-

based segmentation problem. Our method employs a non-uniform

mesh well adapted to the contour of the initial shape in the template

and uses Lagrange basis functions instead of the B-spline basis func-

tions to parametrize the deformation field. To better capture specific

shape deformations, we extend the proposed FEM-based framework

through the incorporation of a statistical deformation model (SDM)

[8] learned from training data. There exist a few works on template-

based segmentation which follow a SDM constrained registration

framework [9], [10], but these methods also suffer from the disad-

vantage of using a uniform mesh.
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Fig. 2: Comparison of FEM-based segmentation performance using

a uniform (Bspline basis) VS non-uniform (Lagrange basis) mesh

with the same number (N = 36) of nodes.

The main contributions in this work are given below:

(1) We propose an efficient FEM-based registration framework with

a SDM using a non-uniform mesh (see Section 2) for inside re-

gion segmentation.

(2) A completely automatic segmentation framework for muscle

and fat tissues in thoracic CT images (see Section 3) (such

a framework has not been reported before to the best of our

knowledge).

(3) We validated the proposed segmentation framework on a large

number (= 116) of thoracic CT images and obtained excellent

Jaccard scores: 94.95% for muscle and 94.82% for fat tissues

respectively (see Section 4).

2. SEGMENTATION VIA FEM-BASED DEFORMABLE

REGISTRATIONWITH A GAUSSIAN SDM

2.1. FEM-based deformable registration framework

Given input I : Ω → R and template IT : ΩT → R images, where

Ω,ΩT ⊂ R
d, the task of deformable or non-rigid registration is to

find a dense deformation field U : ΩT → R
d such that the input

image warped using the deformation field, I(x+U(x)) is similar to

the template image IT . In a FEM-based framework, the deformation

field U is approximated as a linear combination of a set of basis

functions {φn}
N
n=1:

U(x) =
N∑

n=1

Unφn(x) ∀x ∈ ΩT . (1)

The basis functions {φn}
N
n=1 are defined on a uniform or non-

uniform tessellation of the template image domain ΩT given by

the mesh M = ({Pn}
N
n=1,∆) , where {Pn}

N
n=1 denotes the

nodes of the mesh and ∆ is the set of elements (triangles or rect-

angles - see Figures 2c, 2d). The deformable registration task is

transformed into finding the unknown nodal deformation field pa-

rameters Θ = [Un]
N
n=1 ∈ R

Nd (which correspond to the value of

the deformation field at the nodes Pn, i.e., Un ≡ U(Pn)) through

the finite-dimensional multivariate minimization of an energy:

Θ
∗ = argmin

Θ∈RNd

ED(Θ; I, IT ) + αER(Θ), (2)

where ED is the data term which measures the similarity between

the warped input and the template images, ER is the regulariza-

tion term that enforces the smoothing constraints on the estimated

deformation field and α is the regularization constant. Choos-

ing the data and regularization terms as the sum of squared dif-

ferences (SSD) similarity measure and the diffusion regularizer

1
2

d∑
i=1

∫
ΩT

∇UT
i D∇Ui dx [11] respectively, we get the finite-

dimensional formulations of these terms using the FEM approxi-

mation in (1) as:

E
SSD
D (Θ; I, IT ) =

∫
ΩT

(I(x+
N∑

n=1

Unφn)− IT (x))
2
dx, (3)

E
diff
R (Θ) =

d∑
i=1

N∑
m,n=1

UniUmi

∫
ΩT

D(∇φn · ∇φm) dx, (4)

where Un = [Uni]
d
i=1 and D is the diffusivity or the stiffness field.

A common way of minimizing (2) is to decouple the data and reg-

ularization terms and minimize them alternatively [12]. However,

here we perform a combined minimization of the data and regular-

ization terms using a gradient-descent strategy Θ
(k+1) = Θ

(k) −
τ (∇ESSD

D (Θ(k); I, IT ) +α∇Ediff
R (Θ(k))), where ∇ ≡ ∇Θ and τ

the time step is determined using line search.

2.2. Template-based segmentation via FEM-based registration

In order to perform template-based segmentation using the above

described FEM-based registration framework, a binary image IT :
ΩT → {0, 1} defining an initial shape of the region of interest is

chosen as the template. This template is then deformed through

the energy minimization in (2) and the final segmentation label I∗ :
Ω → {0, 1} is given by inverse warping the template using the opti-

mal nodal deformation parameters Θ∗ = {U∗

n}
N
n=1 as:

I
∗(x) = IT (x−

N∑
n=1

U
∗

nφn) ∀x ∈ Ω. (5)

Different types of basis functions can be used for the parameteri-

zation of the deformation field in (1). Here, we propose the use

of piecewise-linear Lagrange basis functions (hat functions) [13] in-

stead of the popular cubic B-spline basis functions [7]. This is be-

cause the Lagrange basis can be naturally defined on non-uniform

meshes whereas the standard cubic B-spline basis is restricted to uni-

form meshes. As mentioned earlier, the use of a non-uniform mesh

adapted to the contours of the initial shape in the template leads to

greater computational efficiency over a uniform mesh. We illustrate

this fact using a simple example in Figure 2, where the “star” shaped

region of interest in a ∼ 200 × 200 input image is successfully seg-

mented using a Lagrange basis on a non-uniform mesh generated

from just 36 nodes (see Figures 2d, 2g) whereas the use of a B-

spline basis on a uniform mesh with the same number of nodes (see

Figures 2c, 2f) results in a failed segmentation. Hence, for the same

amount of computational effort, i.e., the number of nodal deforma-

tion parameters needed to be estimated, the use of Lagrange basis on

a non-uniform mesh is much more accurate than the use of B-spline

basis on a uniform mesh.



2.3. Gaussian statistical deformation model

Let us assume that we obtained a set of M nodal deformation field

parameters {Θ(m) = [U
(m)
n ]Nn=1}

M
m=1 by registering M training

images {I(m) : Ω → R}Mm=1 to a template image IT , using the

above discussed FEM-based deformable registration method. For

introducing a priori shape knowledge into the future registration

tasks, we now construct a statistical deformation model (SDM) from

these nodal deformation field parameters {Θ(m)}Mm=1. Following

[14], the space of deformation parameters is modeled using a mul-

tivariate Gaussian density N (Θ,ΣΘ), with a sample mean Θ and

a Nd × Nd sample covariance matrix ΣΘ. Further, the dominant

modes of shape variation are computed using principal component

analysis (PCA) and they are used to devise an additional shape-based

regularization term as follows:

E
PCA
S (Θ) = ||B (Θ−Θ)||2 +

1

2(βσ2
0)

||Θ−Θ||2, (6)

B = diag(η1 . . . ηK)[B1 . . . BK ]T,

Σ
Θ

= (1− β)ΣΘ + βσ
2
0IdNd,

η
2
k = ((1− β)σ2

k + βσ
2
0)

−1 − (βσ2
0)

−1
,

where , {Bk}
K
k=1 is the PCA basis corresponding to the augmented

covariance matrix Σ
Θ
. Here, σ2

k are the eigen values of the matrix

ΣΘ and β, σ0 are constants. The above regularizer can be seen as

imposing a shape prior on the deformation fields by penalizing devi-

ations from the Gaussian SDM as opposed to strictly restricting the

deformation fields to the span of the PCA basis. Incorporating the

shape-based regularizer into (2) we obtain the following statistically

constrained FEM-based deformable registration formulation:

Θ
∗ = argmin

Θ∈RNd

E
SSD
D (Θ; I, IT ) + αE

diff
R (Θ) + βE

PCA
S (Θ), (7)

where α, β are regularization constants. Again, a line search

based gradient descent strategy with an additional shape-based

term ∇EPCA
S (Θ(k+1)) is used to perform the minimization of the

above energy.

3. PROPOSED FRAMEWORK FOR AUTOMATIC

MUSCLE AND FAT TISSUE SEGMENTATION

The main idea of the proposed segmentation framework is to first

determine the “inside” region (see Figure 1b) of an input CT image

through shape prior based segmentation using the FEM-based de-

formable registration with a Gaussian SDM presented in the Section

2.1. Then, the muscle and fat regions are segmented by thresholding

the points in the input CT image not belonging to the inside region

using the pre-defined HU ranges of muscle and fat tissues respec-

tively. Before these segmentation steps are performed, a shape prior

of the inside region shape is constructed from training data which in-

volves the computation of a mean shape and encoding the deviations

from the mean shape using a Gaussian SDM. The various compo-

nents of the proposed segmentation framework are described in de-

tail below:

(1) Computation of mean inside region shape: Given a training

set of binary inside region shapes {L(m) : Ω → {0, 1}}Mm=1,

we follow the backward approach [15] for mean shape com-

putation. In this approach, L(1) is chosen (without loss of

generality) as the reference shape and all the other training

shapes {L(m)}Mm=2 are non-rigidly registered (after an initial

(a) (b)

(c) (d)

Fig. 3: (a) Input image I (b) Mean shape of the inside region L (c)

Thresholded input image BI initialized with L (green contour) (d)

BI with final estimated inside region shape L∗ (green contour)

affine alignment) to L(1) using the FEM-based deformable reg-

istration method (see Section 2.1). The unbiased mean inside

region shape L (see Figure 3b) is obtained by warping back the

average of the registered training shapes using the inverse of the

average deformation field.

(2) Building a SDM of inside region shape: The possible vari-

ations of the inside region shape are represented by the set of

nodal deformation field parameters {Θ(m)}Mm=1 that are esti-

mated through the FEM-based deformable registration (after an

initial affine alignment) of the training shapes {L(m)}Mm=1 with

the mean shape L. A Gaussian SDM is built to compactly en-

code these shape variations and the corresponding PCA-based

regularizer EPCA
S (Equation (6)) is formulated for enforcing

shape prior constraints in the next step.

(3) Segmentation via SDM constrained FEM-based registra-

tion: The segmentation of the inside region in the input image I

is performed on a binary thresholded version of the input image

BI : Ω → {0, 1}, which is obtained by setting the points in

the input image that lie outside the HU ranges of muscle and fat

tissues to 1. In order to initialize the segmentation, the mean

shape L is affinely-aligned with the thresholded image BI (see

Figure 3c). The mean shape L is then deformed towards the

thresholded image BI according to the minimization of the

energy in (7) incorporating the shape-based regularizer EPCA
S .

The desired final inside region shape L∗ (see Figure 3d) is de-

termined by warping back the mean inside region shape L using

the inverse of the optimal nodal deformation field parameters

(see Equation (5)).

(4) Muscle and fat region segmentation: The muscle and fat re-

gion segmentation is performed by thresholding points in the

input image that do not belong to the estimated inside region

using the respective muscle and fat HU ranges (see Figure 4).

4. EXPERIMENTS

Our experimental data set consisted of 146 axial 2D thoracic CT im-

ages of size 512 × 512 taken at the level of T4 from patients with

head and neck cancers. Out of these 30 images were used for train-



Original CT Muscle region Fat region

Fig. 4: Muscle and fat region segmentation results. Manual label

(red), automatic label (green) and overlap (yellow).

Tissue Jaccard (%)

Thresholding Proposed framework

Muscle 86.82 ± 5.31 94.95± 2.10

Fat 87.51 ± 8.74 94.82± 5.05

Table 1: Comparison of Jaccard scores obtained by thresholding-

based segmentation and the proposed FEM-based segmentation

framework with a SDM on 116 CT images. (All values are reported

as mean ± SD)

ing the SDM. We evaluated the performance of the proposed auto-

matic segmentation framework by comparison with manual segmen-

tations on the remaining 116 images in our data set. The manual seg-

mentations were performed by a single expert operator using Slice-

O-Matic V4.3 software (Tomovision, Montreal, Canada), while the

proposed automatic framework was implemented in MATLAB. The

regularization parameters were chosen as α = 1.5 and β = 1.0
(see Equation 7). The non-uniform mesh on the mean shape of the

inside region consisted of 503 nodes. It was generated by manu-

ally selecting a few seed point along the contour of the mean shape

followed by Delaunay triangulation and refinement. We ran the ex-

periments on a 3.2 GHz Quadcore machine with 4 GB of RAM.

The automatic segmentation took about 1 min for each image. We

used the Jaccard score metric to measure the overlap between the

manual and automatic segmentations. In Table 1, it can be seen that

a significant improvement in the Jaccard scores is achieved using

our proposed framework compared to the simple thresholding-based

segmentation. In Figure 4, visual segmentation results obtained us-

ing our proposed framework are shown on 3 images. Further, we

also estimated the tissue cross-sectional areas (cm2) from segmen-

tations by summing up tissue pixels and multiplying by the pixel

surface area. In Table 2, we can see that the coefficient of varia-

tion (COV) between the automatic and manual methods is within

(1−3)% which is similar or less than inter- or intra- operator COVs

reported for manual segmentation [16].

5. CONCLUSION

The proposed automatic framework provides fast and accurate seg-

mentations of both the muscle and fat tissues, which permits the un-

dertaking of large scale cancer research studies involving measures

based on muscle and fat proportions in the human body.

Tissue Area (cm2) COV

Manual Automatic (%)

Muscle 197.8 ± 44.7 199± 45.2 1.39± 1.58

Fat 168.1 ± 84.4 172.5 ± 90 2.57± 3.03

Table 2: Comparison of tissue cross-sectional areas estimated using

manual and automatic segmentations on 116 CT images. (All values

are reported as mean ± SD)
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