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Abstract

We present a tracking method where full camera position and orientation is tracked

from intensity differences in a video sequence. The camera pose is calculated based

on 3D planes, and hence does not depend on point correspondences. The plane

based formulation also allows additional constraints to be naturally added, e.g. per-

pendicularity between walls, floor and ceiling surfaces, co-planarity of wall surfaces

etc. A particular feature of our method is that the full 3D pose change is directly

computed from temporal image differences without making a commitment to a par-

ticular intermediate (e.g. 2D feature) representation. We experimentally compared

our method with regular 2D SSD tracking and found it more robust and stable. This

is due to 3D consistency being enforced even in the low level registration of image

regions. This yields better results than first computing (and hence committing to)

2D image features and then from these compute 3D pose.

Key words: visual tracking, SSD tracking, image registration, plane tracking, 3D

model
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1 Introduction

In visual tracking the pose of an object or the camera motion is estimated over

time based on image motion information. Some applications such as video

surveillance only require that the target object is tracked in image space.

For other applications such as augmented reality and robotics full 3D camera

motion is needed. In this paper we concentrate on tracking full 3D pose.

One way to classify tracking methods is into feature-based and registration

based. In feature-based approaches features in a (usually a priori) 3D model are

matched with features in the current image. Commonly a feature detector is

used to detect either special markers or natural image features. Pose estimation

techniques can then be used to compute the camera position from the 2D-

3D correspondences. Many approaches use image contours (edges or curves)

that are matched with an a priori CAD model of the object [15,18,8]. Most

systems compute pose parameters by linearizing with respect to object motion.

A characteristic of these algorithms is that the feature detection is relatively

decoupled from the pose computation, but sometimes past pose is used to

limit search ranges, and the global model can be used to exclude feature

mismatches [15,2].

In registration based tracking the pose computation is based on directly align-

ing a reference intensity patch with the current image to match each pixel

intensity as closely as possible. These methods assume that the change in
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location and appearance of the target in consecutive frames is small. Image

constancy can be exploited to derive efficient gradient based schemes using nor-

malized correlation, or a sum-of-squared differences (e.g. L2 norm) criterion,

giving the technique its popular name SSD tracking. Unlike the feature-based

approaches which build the definition of what is to be tracked into the low level

routine (e.g. a line feature tracker tracks just lines), in registration based track-

ing any distinct pattern of intensity variation can be tracked. The first such

methods required spatial image derivatives to be recomputed for each frame

when “forward” warping the reference patch to fit the current image [16],

while more recently, efficient “inverse” algorithms have been developed, which

allow the real time tracking for the 6D affine [10] and 8D projective warp [3].

A more complicated appearance model can be used to compensate changes in

intensity [10] or can be learned as a mixture of stable image structure and mo-

tion information [13]. A related approach [14,9], where instead of using spatial

image derivatives, a linear basis of test image movements are used to explain

the current frame, has proved equally efficient as the inverse methods during

the tracking, but suffers from longer initialization times to compute the basis,

and a heuristic choice of the particular test movements.

In this paper we extend the registration-based techniques by constraining the

tracked regions to 3D planes. This will allow tracking full 3D camera posi-

tion like in the featue-based approaches but eliminates the need for explicit

feature matching. The update is based on the same SSD criterion as the clas-

sical registration-based methods with the difference that the update is done

directly on the 3D parameters and not on the 2D warp parameters. The ap-

proach is thus different from previous approaches that first estimate the ho-

mography warp from salient points and then the 3D motion parameters from
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the homography [19]. We do not assume any apriori model. Instead 3D plane

parameters are estimated and optimized during the first ≈ 100 frames using

structure-from-motion techniques. The algorithm does not require complete

scene decomposition in planar facets, but works with few planar patches iden-

tified in the scene. Man-made environments usually contain planar structures

(e.g. walls, doors). Some advantages of using a global 3D model and local

surface patches are that only surfaces with salient intensity variations need

to be processed, while the 3D model connects these together in a physically

correct way. We show experimentally that this approach yields more stable

and robust tracking than previous approaches, in which each surface patch

motion is computed individually.

Previously [7] we have shown how 3D points estimated using structure-from-

motion techniques can be used to constrain the SSD tracking. The current

work focuses on planar regions constrained to lie on estimated 3D planes.

We investigated two ways of defining the 3D planes, one using plane equation

parameters (normal and distance) and the other using 4 control points. Related

work of incorporating a 3D model into SSD tracking [22] calculates a 3D

model from a 2D active appearance model (AMM) and use it to improve the

tracking. Baker et al. [4] presented another related extension of the original

Lucas-Kanade tracking algorithm applied to either 3D volumetric data (e.g

CT, MRI data) or projection of 3D data in images.

The rest of the paper is organized as follows: we start with a short remonder of

traditional 2D SSD tracking in Section 2 followed by the general description of

our 3D SSD tracking approach in Section 3, followed by a presentation of the

particular parametrization of the homography warp induced by a 3D plane in

Section 4. Then Section 5 presents existing methods for estimating 3D planes
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Fig. 1. Overview of the 2D SSD tracking. A 2D surface is related through a warp W

between template space T and image space It. An incremental update in parameter

space ∆µ is computed at every step and added to the current warp.

from images. The complete tracking system is presented in Section 6 and its

qualitative and quantitative evaluation in Section 7 followed by conclusions

and a discussion in Section 8.

2 Background: 2D SSD Tracking

The goal of the SSD tracking algorithm, as originally formulated by Lucas-

Kanade [16], is to find an image warp W (x; µ) that aligns a 2D template

region T (x) with the current image region I(x) (see Figure 1). The warp is

parametrized by a set of parameters µ and defines how a pixel x in template

space maps to the location W (x; µ) in the space of image I. Commonly used

warps include the translational (2 parameters) that is used in modeling optic

flow, the affine warp (6 parameters) or the more complex homography warp

(8 parameters).

Formally, under image constancy assumption (e.g. no illumination variation,
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no occlusion) used in motion detection and tracking [12], the goal of the Lucas-

Kanade algorithm is to find the warp (parameters µ) that minimize the error

between the template and the image warped in the space of the template:

T (x) = It(W (x; µt))) (1)

The problem is efficiently solved iteratively by computing an incremental up-

date ∆µ for the parameters of the warp from frame It−1 to It that is added to

the current warp. The advantage of this formulation is that if the change ∆µ

is small the problem can be linearized. We write the update through function

composition (“◦”) instead of say simple addition to allow a more general set

of transforms. Mathematically µt = µt−1 ◦∆µ can be obtained by minimizing

the following objective function with respect to ∆µ:

∑

x

[T (x) − It(W (x; µt−1 ◦ ∆µ)))]2 (2)

3 3D SSD Tracking problem formulation

We modified the 2D SSD tracking algorithm by constraining the motion of a

set of Q patches in a sequence of images through a 3D rigid model M (refer to

Figure 2). As a consequence the 2D motions of the image patches are defined

as 2D warps W (xk; µ(Pt,M)) induced by the 3D motion Pt of the model M.

The main differences in our approach compared to the 2D SSD tracking [16,3,10]

are:

• We track full 3D camera position Pt instead of 2D warp parameters µt.

• The warp parameters µ(Pt,M) are defined by the model M and its 3D pose
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Fig. 2. Overview of the 2D-3D tracking system. In standard SSD tracking 2D surface

patches are related through a warp W between frames. In our system a 3D model

is estimated (from video alone), and a global 3D pose change ∆P is computed, and

used to enforce a consistent update of all the surface warps.

Pt. Hence 2D warp parameters for the patches are no longer independent

but a function of the 3D pose Pt. The model M is also estimated from video

in a bootstrapping phase as described in Section 5.

• The algorithm tracks several regions unified by the same rigid motion through

the model.

Compared to feature based tracking main difference is that our model directly

influences (constrains) the parameters µ(Pt,M) of each 2D patch. In feature

based approaches the positions of patches are first computed independently

from local 2D image information, and only after these 2D alignments are fixed

is the 3D pose computed.
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• It computes the globally optimal 3D alignment Pt with respect to the chosen

measure (normally sum of squared differences SSD, but other norms would

be possible). This is not the case for feature based methods. Even if 2D SSD

tracking is used to find the locally optimal parameters µk for each feature

patch k, these parameters are not normally the same as those giving the

globally optimal 3D alignment of all patches.

• By restricting movement of 2D patches to those consistent with a rigid

3D scene transform, individual feature trackers don’t lose track even if an

individual image signature is weak.

We first develop the general theory without committing to a particular 3D

model or 2D warp. Later, in the next section, we present the algorithm for

tracking planar patches constrained to lie on estimated 3D planes.

A model of the scene M is projected into the image space It through a projec-

tive transformation Pt (defined by its parameters pt). In the calibrated case, Pt

is an Euclidean transformation Pt = [Rt, tt], where R = Rx(αx)Ry(αy)Rz(αz)

represents the rotation matrix and t = [tx, ty, tz]
T is the translation vector.

Therefore pt contains the rotation angles and the components of the transla-

tion p = [αx, αy, αz, tx, ty, tz]
T .

Having defined a set of Q regions on the model, the goal of the 3D SSD tracking

algorithm is to find the (camera) motion Pt (motion parameters pt that best

align the regions in the template space ∪kT (xk) with the regions in the current

image ∪kIt(xk). As we track 3D Euclidean motion we assume that the image

pixels xk have been normalized. As mentioned before, the 3D motion Pt of M

induces a 2D warp for each patch denoted for convenience with W (xk; µ(pt)).

As an example, we look at the case of the motion of a planar patch. It is known
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that the motion in image space induced by the 3D motion of a planar patch is

perfectly modeled by a homography (2D projective transformation). We show

in Section 4 that the 8 parameters of the homography that define the warp

between two images can be calculated from the 3D parameters of the plane

and the relative motion between the images. Note that the 3D model motion

is global but each individual local region has a different 2D motion warp Wk.

Mathematically, we are looking for the set of 3D parameters pt such as the

image constancy assumption holds:

∪kT (xk) = ∪kIt(W (xk; µ(pt))) (3)

As in the case of the 2D algorithm, the motion is computed as an incremental

update ∆p from frame It−1 to It that is composed to the current motion

pt = pt−1 ◦ ∆p and can be obtained by minimizing the following objective

function with respect to ∆p:

∑

k

∑

x

[T (xk) − It(W (xk; µ(pt−1 ◦ ∆p)))]2 (4)

The update in position ∆p is based on the image difference between the tem-

plate image and the current image warped in the space of the template, the

update in position taking place on the side of the current image. As a conse-

quence, the computations are performed in the space of the current image.

For efficiency, we solve the problem by an inverse compositional algorithm [3]

that minimize the error between the template image and the current image

warped in the space of the template image, with the update on the template

image (see Equation 6). As shown below, working in the space of the template

image, speeds up the tracking as more computations can be done only once
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at the initialization. The goal then is to find ∆p that minimizes:

∑

k

∑

x

[T (W (xk; µ(∆p))) − It(W (xk; µ(pt−1)))]
2 (5)

where in this case the 3D motion parameters are updated as:

Pt = inv(∆P ) ◦ Pt−1 (6)

where inv(P ) = [RT | − RT t] for P = [R|t]. As a consequence, if the 2D warp

W is invertible, the individual warp update is (see Figure 2):

W (xk; µ(pt)) = W (xk; µ(∆p))−1 ◦ W (xk; µ(pt−1)) (7)

For the numerical computation of ∆p Equation 5 is linearizing through a Tay-

lor expansion (∆pt is represented as a column vector of motion parameters):

∑

k

∑

x

[T (W (xk; µ(0))) + ∇T
∂W

∂µ

∂µ

∂p
∆p − It(W (xk; µ(pt−1)))] (8)

As the motion of the template image is zero (the model is aligned with the

template frame) T = T (W (xk; µ(0))). Denote the image derivatives by M

M =
∑

k

∑

x

∇T
∂W

∂µ

∂µ

∂p
(9)

and the error between the template regions and the corresponding current

warped image regions by et, flattened as a column vector on intensities :

et = T − It(W (xk; µ(pt−1))) (10)

Equation 8 can be rewritten as an overdetermined linear equation system in
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matrix form :

M∆p ' et (11)

Where each column in M represents the spatial derivatives of a particular

parameter pi (i.e. the derivative images shown in Fig. 3 flattened into column

vectors) and the motion ∆p is computed as the least squares solution to

Equation 11.

The image derivatives M are evaluated at the reference pose p = 0 and they

are constant across iterations and can be precomputed, resulting in an effi-

cient tracking algorithm that can run in real time (see Section 6). Figure 3

shows examples for the 6 derivative images corresponding to the three rota-

tion angles and three components of the translation. Note that several of the

derivative images for one patch look perceptually similar. While they are lin-

early independent, they are not very well separated. For instance image plane

translation and translation along the optic axis will be similar if the image

patch used is wholly on one side of the optic axis – see the rightmost two

images. Hence tracking of several DOF from one planar patch as in 2D SSD

tracking is relatively ill-conditioned (more on this in the experiments section).

However in 3D tracking the combination of several planar patches gives a well

conditioned problem.

4 Homography induced by a plane

The proposed tracking algorithm is based on the assumption that the motion

in image space induced by the motion of the model regions can be expressed
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Fig. 3. Examples of derivative images M for the image patch on the front of the

house in Fig. 2. The images from left to right corresponding to the three rotation

angles and three components of the translation.

as a 2D warp W (xk; µ(pt)) that depends on the model M and the current

motion parameters pt. We now show, for the case of a planar patch, the explicit

formulation of the homography warp function of plane model and its relative

position to the camera. We consider two cases, one where the plane is defined

using the normal and distance to origin and the other when the plane is defined

using four control points. The second case can be reduced to the first one but

numerically different as it enforces stronger constraints.

4.1 Parametrized plane

It is well known that images of points on a plane in two views are related

by a homography [11]. In general a homography warp H has 8 independent

parameters represented as a vector µ. For Euclidean planes in general positions

H is uniquely determined by the plane equation and thus there are only 6DOF

in H. A 3D plane is represented as π = [nT , d], where n is the unit normal

and d is the signed distance from the origin to the plane. For points X on the

plane, nTX + d = 0. If the world coordinate system is aligned with the first
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camera coordinate system, the calibrated projection matrices have the form:

P0 = K[I|0] Pt = K[R|t] (12)

where K is the camera matrix (internal parameters) and R, t represents the

3D motion of the second camera with respect to the first one. As mentioned

before, there are six motion parameters in p that determine R and t: the three

angles of the general rotation and the three components of the translation.

The homography induced by the plane π has the form:

H = K(R −
t

d
nT )K−1 (13)

Image points in the two views I1, I2 are then related by u2 = Hu1. If the

image points are normalized with respect to camera internal parameters x =

K−1u = [R|t]X the homography becomes:

H = R −
t

d
nT (14)

Using the notation from the previous section, the 2D warp W induced by the

motion p then has the form:

W (x; µ(p)) = Hx = (R −
t

d
nT )x (15)

The explicit dependency for the warp parameters µ function of p and π =

[nT , d] can be calculated from Equation 14, but this is not necessary as the

image derivatives M can be calculated directly using the warp derivatives ∂W
∂p

obtained from the derivation of Equation 14.
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4.2 Plane defined through four control points

In a projective space, a plane can be defined using four control points Yj, j =

1 · · ·4. Denote the projection of the control points in the current image by yj =

K[R|t]Yj, where R and t represents the motion of the camera for the current

image relative to the template frame. The parameters µ of the homography

H between the reference view and the current view are determined by the

projection of the control points in the two views. This explicit dependency of

the 2D warp parameters µ as function of 3D motion parameters p and model

3D points Yj is difficult to obtain analytically. Instead we calculate the ∂µ
∂p

terms required by the image derivatives M using the implicit function theorem

in the warp equation

y0j = Hyj = HK[R|t]Yj j = 1, N (16)

where y0j = KYj represents the projection of the control points in the first

frame and H is parametrized as 1

H =





























µ1 µ2 µ3

µ4 µ5 µ6

µ7 µ8 1





























(17)

1 In the current parametrization of the homography warp we set the last value from

the 3×3 matrix µ9 = 1 (fixing the scale) which does not allow this value to be 0. In

the present case this is not a limitation since all points on the tracked patch remain

finite (µ9 = 0 when the image center is mapped to infinity).
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Equation 16 can be rewritten in the form

A(p)µ = B(p) (18)

with

A(p) =





















































y1

1
y2

1
1 0 0 0 −y1

1
y1

01
− y2

1
y1

01

0 0 0 y1

1
y2

1
1 −y1

1
y2

01
− y2

1
y2

01

...

y1

N y2

N 1 0 0 0 −y1

Ny1

0N − y2

Ny1

0N

0 0 0 y1

N y2

N 1 −y1

Ny2

0N − y2

Ny2

0N





















































(19)

B(p) = [y1

01
, y2

01
, . . . , y1

0N , y2

0N ]T (20)

where [y1

j , y
2

j , 1]T are the normalized homogeneous coordinates for yj.

Taking the derivatives in Equation 18 with respect to each component p of p

we obtain:

∂A

∂p
µ + A

∂µ

∂p
=

∂B

∂p
(21)

For a given p value µ can now be linearly computed from Equation 18 and

then ∂µ
∂p

is computed from Equation 21.
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5 Estimating the structure

The 3D model used to constrain the tracking is estimated from images in

a bootstrapping phase using structure from motion (SFM). SFM methods

use corresponding features in several images to estimate both their structure

and the camera positions. For getting correspondences, we track salient fea-

ture points using standard (2D image-plane) SSD trackers as in [3,10]. We

next present a method for estimating parameters of 3D planes followed by a

method that reconstructs 3D points. The resulting models are matching the

models required for tracking planar regions using homographies as described

in Sections 4.1 and 4.2.

5.1 Estimating plane equations from images

The plane equations are estimated from tracked feature points on each plane.

The grouping of the points into planes is done in the initialization phase by

having the user mark planar regions in the first frame. (Since SSD tracking

doesn’t depend on a particular identifiable feature type it is commonly initial-

ized manually to particular image regions.)

We first present the algorithm that computes a plane equation from two im-

ages. It is a special case of the structure from motion problem where the camera

is internally calibrated and the feature points belong to a physical plane. The

homography H induced by the plane is robustly computed using RANSAC

from 4 or more corresponding points. Having H of the form H = R−tnT /d it

can be decomposed into the motion and structure parameters {R, 1

d
t,n} [17].

There are in general four solutions but only at most two are physically valid
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by imposing the positive depth constraint (model points are in front of the

camera). We disambiguate between the two remaining solutions using multiple

frames.

In a more general case, when multiple planes are viewed in multiple images,

a reference view is chosen and the corresponding plane homographies that

relate the reference view with additional views are computed. To reduce the

solution to the decomposition of H to one, we assume a smooth position change

between adjacent views and only the solution that corresponds to the motion

closest to the previous one is chosen. For the first pair one of the two physically

valid solutions is chosen. The scale of the scene is also disambiguated by fixing

the distance to one plane. The global motion R, t for each frame is averaged

over the individual motions estimated from each plane homography and the

plane parameters are averaged over the ones computed from several views. At

the end a nonlinear optimization using Levenberg-Marquardt algorithm over

all the frames is performed which locally minimizes the symmetric transfer

error for points related through a homography:

{R2, t2, . . . Rm, tm;n1, d1, . . . ,nk, dk} =

argmin
∑

t

∑

k

∑

xtk
d2(xtk, Htkx1k) + d2(x1k, H

−1

tk xtk)

(22)

This is close to but not exactly the maximum likelihood estimator under the

Gaussian noise assumption. It is nevertheless more practical in our case as it

will give the best motion and plane structure without explicitly computing

the 3D point coordinates.
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5.2 Incorporating constraints between planes

Known constraints between planes such as perpendicularity or parallelism of

walls that naturally appear in man-made environments result in better struc-

ture and can potentially further stabilize the tracking. We impose constraints

by a minimum parametrization of the plane parameters as in [5].

Consider two planes π1 = [nT
1
, d1],π2 = [nT

2
, d2]. A perpendicularity constraint

can be algebraically expressed by a vanishing dot product between the plane

normals:

n11n21 + n12n22 + n13n23 = 0 (23)

This bilinear constraint is enforced by eliminating one plane parameter. We

chose to eliminate the parameter nik such that the absolute value of the cor-

responding parameter on the second plane njk is maximal over all the param-

eters.

For the other type of constraint when the planes are parallel we impose that

the normals of the two planes are the same. This eliminates all parameters

that represent the unit normal of one plane.

n1k = n2k, k = 1, 2, 3 (24)

The resulting plane parameters and the originally recovered motions are then

optimized as before using Equation 22. A full parametrization of the planes is

recovered for every plane from Equations 23,24. A potentially somewhat more

accurate approach would involve obtaining a minimal parameterization of 3D

points on constrained planes and estimating the structure of those points and
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the camera motion from feature correspondences. This would allow defining

a maximum likelihood estimator under Gaussian image noise. The plane pa-

rameters are then computed from the estimated 3D points.

5.2.1 Estimating 3D points

For estimating the 3D positions of the control points that define planar regions

(as described in Section 4.2) we use standard SFM techniques and the stratified

uncalibrated approach [11] (projective reconstruction that is upgraded to a

Euclidean structure using automatic self-calibration). There are several well

known estimation algorithms to recover the projective structure and motion

of a scene using the fundamental matrix (2 views), the trilinear tensor (3

views) or multi view tensors for more than 3 views. In our system we used the

method developed by Werner et al. [21] that estimates the trilinear tensors

for triplets of views and then recovers epipoles from adjoining tensors. The

projection matrices are computed at once using the recovered epipoles. New

views are integrated through the trilinear tensor between the new and two

previous views. Assuming that the cameras have zero skew and aspect ratio

(au = av and s = 0) and the principal point (uc,vc) is approximately known,

the Euclidean projections are recovered using self-calibration [20]. There is

still an absolute scale ambiguity that cannot be recovered without additional

metric scene measurements, but since this scale remains fixed over a video

sequence, we can use a 6DOF Euclidean motion model for tracking the motion

between frames.

An important consideration for the 3D modeling used to bootstrap the 3D

tracking is that the model is accurate enough to make the 3D tracking con-
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BOOTSTRAPPING

corresponding features

(1) 2D Tracking

(2) SFM

(3)Init 3D Tracking

3D pose

3D SSD Tracking

TRACKING

Fig. 4. Overview of the tracking system and phases. To bootstrap 3D tracking, first

regular 2D SSD tracking is used for an initial 100 frames to calculate a 3D model.

Then the 2D patches are integrated into the 3D tracking which directly computes

3D pose updates from temporal intensity variation.

verge. In another paper [6] where we compared the accuracy of the SFM algo-

rithms for different geometries (affine, projective, Euclidean), we found that

the model obtained from a scene can be reprojected into new (different from

the training) views with a reprojection accuracy of about 1-3 pixels (if bun-

dle adjusted). This accuracy of the reconstructed model is in the convergence

range for the tracking algorithm.

6 Tracking system overview

We incorporated the proposed plane tracking algorithm into a system that first

initializes the model (plane equations or 3D points) from 2D image tracking

over a limited motion and then switches to track points on the estimated 3D

planes. Refer to Figure 4.
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6.0.2 Bootstrapping phase

(1) 2D SSD tracking: The user marks planar regions in the first frame and

specifies plane constraints (parallelism, perpendicularity) as applicable.

Feature points inside these regions are tracked using standard SSD 2D

trackers.

(2) Model computation: For the first model described in Section 4.1 plane

parameters π = [nT , d] are first initialized by averaging close form so-

lutions from homographies H that relate points on planes from a frame

to the reference (first) frame. Then a minimal parametrization is opti-

mized together with the estimated motion over all the training frames as

described in Section 5.1.

For the model described in Section 4.2 the 3D coordinates of plane’s

control points Yj are estimated using projective structure from motion

and self-calibration (Section 5.2.1).

(3) Initialize 3D tracking: The 3D planes are related to the current frame

using the 2D tracked points. This will align the origin of the world coor-

dinate system with the current frame (initial camera is [I|0]). Then the

3D plane based tracking is initialized by computing the derivative images

M (Equation 9).

6.1 Tracking phase

The tracking now continues in 3D with the 2D surface patches integrated into

the 3D model of the planes. This enforces a globally consistent motion for all

surface patches as described in Section 3.
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(1) An incremental position update ∆p is computed based on image dif-

ferences between the regions in the reference template and the warped

regions from the current image (Equation 11).

(2) The global camera position Pt is updated based on Equation 6.

7 Experimental results

Two important properties of tracking methods are convergence and accuracy.

Tracking algorithms based on optimization and spatio-temporal derivatives

(Equation 8) can fail to converge because the image difference between con-

secutive frames It−1, It is too large (more than just few pixels), and the first

order Taylor expansion (Equation 8) around pt−1is no longer valid, or some

disturbance causes the image constancy assumption to be invalid.

In the numerical optimization the pose update ∆p is computed by solving an

overdetermined equation system, Equation 11. Each pixel in a tracking patch

provides one equation and each model freedom (DOF) one variable. The con-

dition number of the linearized motion model M affects how measurement

errors propagate into ∆p, and ultimately if the computation converges or not.

In general, it is more difficult to track many DOF. In particular, the homog-

raphy warp (that incorporates scaling and out-of-plane rotations) causes less

apparent image change compared to a 2D translational warp. By tracking a

connected 3D model, the tracking convergence is no longer solely dependent

on one surface patch alone, and the combination of differently located and

oriented patches can give an accurate 3D pose estimate even when each patch

would be difficult to track individually.
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Fig. 5. EXP1: First row Tracking individual patches using conventional 2D image

SSD [3]. The individual patch trackers lose track of several regions during the test

sequence. Second row Through the 3D plane equations (model from Section 4.1)

each region motion is rigidly related to the model, and tracking succeeds through

the whole sequence but one of the trackers starts drifting (slightly turning within

the constraint plane) in the second half of the sequence. Third row A better model

obtained by imposing constraints between planes improves the tracking. Forth row

The best results are obtained by controlling the planar regions with four model

points (model from Section 4.2). This prevents the drifting observed in row two. In

this case, a visibility test was performed to introduce/remove patches as they go

in/out of view. (Results are also shown in on-line video1 and video5 left [1])

In the first experiment (EXP1) we compared the tracking stability for the

6DOF plane based tracker (with constraints through plane equations: SSD+PL,

planes through 3D points: SSD+3DPT proposed models from Section 4) and the

most general form of traditional 2D image-plane SSD tracking based on an

23



8DOF homography warp (SSD) [3]. We also tested the influence of plane con-

straints on tracking SSD+PLCT (e.g. roof planes perpendicular to front plane)

introduced as described in Section 5.2. The results are shown in Figure 5

(above) and summarized in Table 1 (also on-line video1 and video5 left [1]).

We found that all of the 3D model based algorithms that track 6DOF global

pose perform better than the original 2D image plane SSD tracking that in-

dividually tracks an 8DOF homography for each region. The better stability

is indicated also by the difference in condition numbers of M that vary be-

tween 4 ∗ 106 and 1 ∗ 107 for the 2D image-plane SSD tracker (indicating an

ill conditioned problem) and drops to an order of 103 for the 3D model based

trackers. Qualitatively, we observe that the tracker on the tall house is lost

at about frame 70 for the SSD while the first tracker starts drifting only in

frame 340 for the SSD+PL. The constraints have generally small influence but

nevertheless we noticed a better performance for SSD+PLCT vs. SSD+PL (drift

appears later). The last method SSD+3DPT performs the best and is able to

track the whole 512 frames without problems. This is due to the fact that

stronger constraints are imposed to the region when it is defined through four

points compared to when it is defined as part of a plane. In the first case

all degrees of freedom are defined whereas in the last case the region still

has 2DOF as it can drift on the defined plane. The last model also allows

detection and removal of occluded regions and introduction of new regions

using a Z-buffer algorithm. In the case when the regions are constrained by

parametrized planes, the removal/addition of regions cannot be performed as

the corresponding 3D region on the planes is unknown.

One of the main advantages of the proposed approach over traditional SSD

tracking is that true Euclidean 3D camera pose can be directly tracked. This
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is useful for example in robotics or augmented reality applications. In the next

experiment we evaluate the accuracy of 3D tracking in an indoor lab scene

tracked by a moving camera. Ground truth was obtained by measuring the

camera path and performing a Euclidean calibration of the model. Figure 6

shows two tracked frames of the sequence and the sequence can be seen in

video4 [1].

Fig. 6. Tracking 3D planes. Pose accuracy experiment (EXP2a and EXP2b).

video4 [1]

The first test trajectory (EXP2a) is a straight line in the horizontal plane

of 1m. Figure 7 (left) illustrates the recovered trajectory. To measure the

accuracy of the tracking algorithm we calibrated the 3D model for the planes

assuming given real dimensions (distance from camera to one plane) so we

could get the translation in meters. Here the parallelism constraints imposed

between planes (e.g. back wall and Syncrude sign) had a very small influence

on the pose accuracy. The results are displayed in Table 1. The motion in the

second trajectory (EXP2b) was along two perpendicular lines in the horizontal

plane. In this experiment, the real physical motion was not particularly smooth

and the recorded image data therefore also somewhat jumpy.

We measured two types of errors, ones that are relative measurements between

projective geometric entities (e.g. deviation from lines, planes) and others
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STABILITY EXP1 ACCURACY EXP2a ACCURACY EXP2b

Model Failure Cond. Dev. Dev. Err. Dev. Dev. Err.

frame num. plane line length plane line angle

(cm) (cm) (cm) (cm)

SSD [3] 70 107

SSD+PL 240 103 0.025 2.42 15% 0.79 1.47 15%

SSD+PLCT 340 103 0.023 2.36 13% 0.66 1.35 15%

SSD+3DPT - 103 0.02 0.95 8% 0.56 0.99 9%

Table 1

Comparison for the stability (EXP1) and accuracy (EXP2a and EXP2b) of our 3D

SSD tracking algorithm: SSD+PL uses estimated plane parameters; SSD+PLCT uses es-

timated constrained planes; SSD+3DPT uses planes defined through 4 control points.

For the stability of the trackers we compared our approach with the conventional

2D image-plane SSD as in [3]

that are related to calibrated Euclidean measurements (e.g. error in distance).

The relative measurements were quite good (on the average less than 0.5 cm

deviation from plane and about 1.5 cm deviation from straight line). But the

error in measure length was 8 − 15% and the error in the angle between the

two lines fitted to the recovered positions (in the second experiment) was also

relatively large.

The experiments show that the accuracy of the measurements connected to

properties that are not directly related to calibrated properties of the structure

is higher than the accuracy in measured distances. This is due to the difficulty

in making calibrated (Euclidean) measurements from an initially uncalibrated
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(projective) camera.
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Fig. 7. Recovered positions (in 3D space) for the straight line trajectory EXP2a(left)

and the 2 perpendicular lines trajectory EXP 2b(left). The red line are the fitted

3D lines to each line segment.

8 Discussion

We have presented a tracking algorithm that extends the existing SSD ho-

mography tracking by computing a global 3D position based on precomputed

plane equations. The parameters of the 3D planes are estimated from an initial

sequence (about 100 frames) where feature points on the planes are tracked

using regular SSD translational trackers. Constraints between planes are also

incorporated using a minimal parametrization of the planes. We showed that

the proposed tracking algorithm is more stable due to the reduced DOF com-

pared to tracking individual homographies and can handle a large range of

motion.

27



A main advantage of the method is that it tracks full 3D camera position that

might be required in applications like robotics or augmented reality. The pose

is computed directly from image derivatives with respect to pose parameters

that guarantees the best 3D pose update from the linearized model. This is

unlike the other model based approaches where 3D pose is estimated from

tracked 2D image correspondences.

We like to clarify the difference between our approach and a related method

publish by Baker et. al [4] that is also tracking 3D data through its projection

in images. The main difference is that they track 3D points whereas in our

case the tracking is performed in 2D but the warp is implicitly constrained by

a 3D model. The consequence is that in their case the inverse compositional

algorithm is not valid but in our case it is.

The present version of the algorithm does not handle partial occlusions and

illumination variation. This problem can be solved by using a robust norm

like in [10].
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