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Abstract

Tumor segmentation from MRI data is an important but

time consuming task performed manually by medical ex-

perts. Automating this process is challenging due to the

high diversity in appearance of tumor tissue among differ-

ent patients and, in many cases, similarity between tumor

and normal tissue. We propose a semi-automatic interac-

tive brain tumor segmentation system that incorporates 2D

interactive and 3D automatic tools with the ability to ad-

just operator control. The provided methods are based on

an energy that incorporates region statistics computed on

availableMRI modalities and the usual regularization term.

The energy is efficiently minimized on-line using graph cut.

Experiments with radiation oncologists testing the semi-

automatic tool vs. a manual tool show that the proposed

system improves both segmentation time and repeatability.

1. Introduction

Brain tumor segmentation is essential for treatment plan-

ning and follow-up assessment. While many automatic al-

gorithms have been proposed in the literature [16, 14, 23,

18], these have not made it into clinical use. Thus in prac-

tice, radiation oncologists spend a substantial portion of

their time performing the segmentation task manually us-

ing one of the available visualization and segmentation tools

(e.g., [24]). This is mainly due to tumor segmentation be-

ing a very difficult task [21]; therefore, there will always be

cases when the automatic methods fail or perform poorly.

Another consideration is that medical doctors must always

have final control over the segmentation.

The time consuming task of manually labeling brain tu-

mors (and associated edema) also leads to considerable vari-

ation between doctors (∼ 80% [19]). Furthermore, in most
settings the task is performed on a 3D data set by labeling

the tumor slice-by-slice in 2D, limiting the global perspec-

tive and potentially generating sub-optimal segmentations.

This motivates the need for an interactive segmentation tool

that incorporates favorable aspects of the automatic meth-

ods (such as inter-slice consistency) to speed up the interac-

tion process, yet give the doctors full control over the seg-

mentation.

Although there exist good interactive segmentation tools

for natural images [6, 25, 20, 1] that have extensions to

3D medical images [3, 22, 6, 11, 27], published interaction

paradigms (scribbling for sample foreground/background

statistics in region-based techniques or clicking on edge

points for minimal path in contour-based techniques) are

ineffective in the difficult task of brain tumor segmentation.

This is due to both the overlapping intensity statistics of

the tumor and the brain tissue as well as the tumor/edema

often lacking well-defined boundaries. In addition, current

interactive segmentation tools do not additionally provide a

way of continuously adjusting the manual/automatic level

of control as desired by medical doctors.

We propose an interactive method for brain tumor seg-

mentation that overcomes some of the abovementioned dif-

ficulties. The method consists of 2D interactive and 3D

propagation tools that are based on a common energy func-

tional that incorporates region statistics computed over sev-

eral image modalities, user constraints, and the usual regu-

larization term. Defining our tools through such an energy

functional makes our method more principled and robust

compared to interactive methods based on morphological

operations or region growing [26]. Using region statistics

from several image modalities and over several slices al-

lows our 2D slice-based interaction to maintain a degree

of 3D consistency. Different degrees of interactive control

are obtained through iterated use of the 2D tools, which

are used to provide constraints for the semi-automatic 3D

propagation tool. Additionally, the 2D tools allow a finer

degree of manual/automatic interaction by introducing an

extra weighted term in the energy functional that controls

how much the segmentation adheres to the operator input.

In this way, doctors can perform a hierarchical segmenta-

tion by continuously increasing the weight of their manual

input. Based on feedback from medical doctors, we believe

that this is the right segmentation paradigm for difficult seg-

mentation tasks (such as brain tumors).

The functional is efficiently minimized using graph

cut [8]; restriction of the segmentation problem to a region

around the user interaction allows real-time update of the



segmentation for the 2D tools. Our method is similar to

GrabCut [25] but allows interactively changing the selec-

tion using a lasso or paintbrush tool (instead of the usual

scribblings [6, 25]).

We first formalize the problem as an energy minimiza-

tion (Section 2) and give the modifications of the energy to

allow user interaction and propagation (Section 3). Next we

give the graph cut solution (Section 4) and details on the

implemented segmentation system (Section 2 and 5).

2. Energy formulation of the segmentation

problem

Formally, image segmentation for a given image I can

be defined as finding a curve C that partitions the image

domain Ω ⊂ ℜ2 into two disjoint regions Ωin (object) and

Ωout (background). The formulation of the segmentation

problem in 3D is the same except that the segmentation is

represented by a surface. When no distinct edges are present

in the image, optimal segmentation can be obtained using an

active region model (extension of the Chan-Vese [9]) that

partitions the image only based on the regions’ appearance:

E(C) = Edata(C) + αEreg(C)
Edata(C) = −

∑
x∈Ωin

log pin(x) −
∑

x∈Ωout
log pout(x)

Ereg(C) = |C|
(1)

where pin and pout are statistical models for data in the two

regions (in/out) and |C| denotes the curve length and acts as
a regularization (smoothing) term. Parameter α controls the

balance between the data and the regularization terms, with

large values of α giving smoother segmentations.

Region statistics

The MRI brain data has different modalities (T1, T1C, T2,

FLAIR). At least two of them are present in most cases.

We register them (using a rigid transformation) and com-

pute pin/pout (tumor/brain) statistics from this vector val-

ued data. We provide the choice of three different statis-

tics (multivariate Gaussian, independent histograms, and

multi-dimensional histogram). We noticed that the multi-

dimensional histogram provides the best results.

3. Interactive segmentation & propagation

Two major paradigms for existing interactive segmenta-

tion tools are: (1) Contour-based methods like intelligent

scissors [20] or live-wire [1] suitable for edge-based seg-

mentation. The user indicates pixels where the segmenta-

tion boundary should pass and the segmentation is achieved

as the shortest path according to an energy based on gra-

dients. (2) Region-based interactive graph cut [6, 25] or
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Figure 1. Illustration of 2D interactive segmentation (left) and 2D

interactive subtraction (right). Ωt

out represents the previously seg-

mented regions in all slices.

interactive continuous (level set, weighted distance) tech-

niques [11, 2] where the segmentation discriminates be-

tween two regions based on statistics that are learned from

user scribblings (marking foreground/background pixels).

In tumor segmentation, region statistics for tumor/brain

tissue generally overlap and a few pixels of user scribbling

are not enough to distinguish between them. We therefore

designed an interactive segmentation technique that allows

intuitive local control over the segmentation using 2D op-

erations, where the user interaction influences the in/out

statistics by drawing a region that contains the segmenta-

tion. After several 2D slices have been segmented we prop-

agate the segmentation to the 3D volume.

3.1. 2D Interactive Tools

The foundation for our 2D tools is that interactive up-

dates should only be applied to a local region, e.g., a user

supplied mask, M t, which can either be obtained from a

paint-brush or a lasso-type tool. Given such a region, we

incorporate the information of the user selected region into

the current segmentation,Ωt
in by taking region statistics pin

fromΩt
in

⋃
M t and pout fromΩt

out\M
t. The segmentation

energy (Eq. 1) is solved using these updated region statis-

tics and local control is obtained by updating the current

segmentation only within the operator selection. Formally,

with Ω = M t and M̂ t = argmin E(C) being the segmen-
tation restricted toM t, the segmentation is updated as fol-

lows:

Ωt+1
in = (Ωt

in\M
t) ∪ M̂ t (2)

Ωt+1
out = Ωt+1

in (3)

Refer to Figure 1 (left) for an example of the process.

The region statistics are taken from all segmented slices,

which allows the system to learn region statistics from the

user selections throughout the volume. Furthermore, incor-

porating user input in this way requires no bootstrapping,



Figure 2. A typical user interaction with a square brush (green). Initially, pin and pout are extracted using the brush location. As the user

sweeps the brush around the contour, the segmentation (red) and the region statistics are updated to include the newly segmented region.

The user only provides a coarse path around the boundary (green trails) but the recovered segmentation accurately delineates the tumor

(red).

Figure 3. A typical user interaction with a lasso. The user adds a selection to an existing segmentation (red). The segmentation is updated

within the users selection in real-time as the selections the region to be modified.

meaning our approach allows Ω1
in to be empty. Figure 2 il-

lustrates an example stroke (e.g., over time, t) starting with

no initial segmentation. Figure 4 illustrates a similar inter-

action over time with the lasso.

Positive/Negative segmentation

The interactive segmentation method described above is

used to add regions to the current segmentation - “positive

behaviour”. Similarly we defined a “negative behaviour”

that subtracts regions from the current segmentation. Re-

fer to Figure 1 (right) for an illustration. In this case, the

new region statistics are calculated by subtractingM t from

the inside and adding it to the outside (e.g., pin is sampled

from Ωt
in\M

t and pout from Ωt
out ∪ M t). This negative

behaviour is defined by switching the roles of Ωin and Ωout

in Eqns 2 & 3. See Figure 4 (a) for an illustration of the

positive and (b) for negative segmentation.

Adherence to user selection

While in most cases it is desirable to benefit as much as

possible from the automatic behaviour of the segmentation

method, there will always be difficult cases when the au-

tomatic method performs poorly (even when restricted to a

user selected region). We design another level of interaction

that controls how well the recovered segmentation adheres

to the user selection; it is controlled by balancing the in/out

data terms with a factor h. The adherence parameter, h, can

take values from 0.5 (balanced terms, i.e., the usual energy
scaled by 1

2
) to 1 (manual behavior where all points inside

the selected region are constrained to belong to the inside of

the object). The energy restricted to a user supplied region,

Ω = M t, is then:

E(C)=−
∑

x∈Ωin

h log pin(x)−
∑

x∈Ωout

(1−h) log pout(x)+α|C|

(4)

See Figure 4 (b) for an illustration of a segmentationwith

increased adherence (notice that the red segmentation curve

is closer to the green user selection compared to Figure 4

(a)).1

Adherence can be thought of as a prior; the segmentation

prefers to adhere to the user provided region when h close to

unity. Such a prior is similar to other priors in the literature

(e.g., [13, 17]), where a segmentation that is closer to the

prior shape is given a lower cost. Priors in this form have

been used in similar difficult segmentation tasks (e.g., un-

defined boundaries, overlapping region-statistics between

foreground/background) because graph-cut seeded/scribble

approaches require too much manual interaction [13].

1See web page for video illustrating the adherence parameter [5]



(a) normal behavior (b) increased adherence (c) negative segmentation
Figure 4. Balancing automatic and manual control. Green lines show user selection and red lines shows updated segmentation.

3.2. 3D Propagation

To obtain a degree of 3D interaction that leverages the

consistency between slices, we adopt an approach similar

to the 3D extensions of the 2D contour-based tools [12, 15].

Specifically, the operator performs segmentations on any

2D slice until satisfied and specifies that the segmentation

should be fixed/locked on such a slice.

In general, this type of interaction is easily integrated

into the energy formulation, where we use a set of labels

L : Ω → {−τ, 0, τ} (similar to [10]), with τ being some

large number. The labels take on values of −τ for pixels

fixed to be inside (tumor), τ for values fixed to be outside

outside, and zero otherwise (i.e., the slice is not locked).

The extra term to the energy functional in Eq. 1 is then

Econs(C) =
∑

x∈Ωin

L(x) −
∑

x∈Ωout

L(x) (5)

In this form, the labels enforce constraints on user-

confirmed slices that have already been marked as

’in’/’out’, and ensure these values do not change during

subsequent semi-automatic segmentation operations.

3.3. Comparison to existing methods

Our 2D interactive technique allows the user to update

the region statistics while maintaining accurate control over

the region affected by the segmentation. Iterative updat-

ing of the region statistics is similar to methods like Grab-

Cut [25]. But unlike our method, slight user interaction may

have non-local effects in techniques like GrabCut; non-local

behaviour is undesirable because a distant region where the

segmentation had already been manually specified could be

adversely affected. Restricting the region of interaction also

allows for efficient real-time behaviour of our tool (also

pointed out by [17]). Our adherence parameter, h, is sim-

ilar to enforcing the user selection as a prior, which has

been noted in the literature [17], but it has not been used
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Figure 5. 2D Graph structure and edge neighborhood.

in the context of continuous updating (adding/subtracting)

to a segmentation as we do.

Our description of 3D propagation of a segmentation is

similar to the original interactive 3D methods where fore-

ground/backgroundscribbles are used for both region statis-

tics and as hard constraints[6]. In our tool these constraints

come from entire slices being locked. As such, they are

also similar to the successful application of the 3D exten-

sions of the contour-based approaches where 2D segmenta-

tions were propagated to other slices [12, 15]. Unlike these

methods that solve the problem independently on each 2D

slice, our propagation is performed in 3D while enforcing

the 3D segmentation to obey these constraints.

4. Graph cut solution

Several works (e.g., [7]) show that the type of energy

presented in Eq. 4 with precomputed region statistics (pin,

pout) can be efficiently minimized using graph cut. Besides

providing a global minimum to the segmentation energy,

a graph cut solution is also fast and therefore suitable for

the interactive techniques. Each pixel(voxel), p, in Ω is a
node in the graph, and there are two special nodes: a source

and a sink. Edge weights between a voxel-node and the



source/sink represent the data cost for the voxel: wp,src =
−h log pin(p) and wp,sink = −(1 − h) log pout(p). Edges
between neighboring voxels, p and q, encode the regular-

ization cost. As shown by Boykov and Kolmogorov [7],

the curve length is approximated on a graph system using

the edge weights wpq =
∆Φpq

2|epq|
between neighbors p and

q, where ∆Φpq represents the angle between two adjacent

edge elements and epq is the vector associated with an edge.

We use 16 neighbors for 2D segmentation and an 18 neigh-

bors for 3D. Figure 4 illustrates the way the 2D energy is

discretized on the graph.

Created in this way, a cut in the graph isolates the source

from the sink; points connected to the sink are labeled as

“tumor” and points connected to the source as “brain”. It

was shown [7] that the cost of a cut is equivalent to the

segmentation energy from Eq. 4 and therefore the minimum

cut gives global minimum of this energy. We used the max-

flow algorithm from [8] in our implementation.

The constraints used in the 3D propagation in Section 3.2

(Eq. 5) are implemented as hard constraints discretized di-

rectly on the graph by replacing the values correspond-

ing to data edges with wp,src = 0, wp,sink = ∞ where

L(p) = −τ and wp,src = ∞, wp,sink = 0 where L(p) = τ .

The local graph cut in region M t (new user selection)

with recomputed region statistics based on the same user

selection (as explained Section 3 and Figure 1) is solved

on-line. The solution M̂ t is added to (positive behavior) or

subtracted from (negative behavior) the previous segmenta-

tion as in Eq. 2 & 3. For 2D interaction, due to the effi-

ciency of the graph cut solution when restricted toM t, the

user sees the segmentation update on-line following his/her

selection.

5. System/Implementation

We integrated the interactive segmentation method into a

system that provides a data visualization and an interactive

interface. MRI data can have different modalities (T1, T1C,

T2, FLAIR) that are visualized and manipulated in 2D (3

orthogonal views) as well as in 3D using volumetric render-

ing. The segmentation is visualized in both 2D as contours

and in 3D as a surface, but the interactions with the seg-

mentation take place in 2D slices in a manner familiar to

doctors.2.

2D interactive tools

The 2D interactive segmentation method presented in Sec-

tion 3 is implemented using 2 types of tools - a lasso tool

where the user selection is a mouse-driven curve and a

paintbrush tool that selects brush strokes. Both tools have

2The overview video gives an impression of how the tool can be used

to perform a complete segmentation [4]

adjustable levels of smoothness (regularization parameter

α) and adherence (parameter h in Eq. 4), and both tools can

add or subtract regions.

The segmentation is as fast and responsive as using a

manual tool. Recomputing the segmentation within a 19x19

square brush along a stroke, including recomputing region

statistics, takes roughly 0.01-0.02s on a 2.4GHz machine

for each cursor position. Roughly half of the time is spent

recomputing region statistics as it considers the segmenta-

tion in the entire volume; this could be improved by caching

statistics from other slices.

3D propagation

After a few 2D slices have been segmented, sufficient data

for region statistics is available, and the result can be propa-

gated to 3D. Any 2D slices the operator has segmented may

be enforced as a hard label by “locking” the segmentation

on the slice. The 3D propagation is obtainedminimizing the

same energy (Eq. 1) in 3D while maintaining the hard label

constraints provided on individual slices. The 3D segmen-

tation is done incrementally; each time the tool is involved

the segmentation volume is constrained to lie within a cer-

tain distance of the current segmentation volume. Region

statistics are calculated from the sample slices and updated

at each step. The operator is free to interact and lock more

slices during the incremental application of the 3D segmen-

tation. Figure 6 shows an initial segmentation and the result

of the 3D propagation.

Invoking the 3D propagation for a volume of

256x256x33 with 6 locked slices, where the selection

is an average of 100x100 on the locked slice (e.g., a total of

270385 nodes in the graph) takes roughly 2 seconds. The

propagation of a similar setup on a 512x512x33 resolution

volume (814049 graph nodes) takes about 8 seconds.

6. Experiments and Discussion

To evaluate the semi-automatic system we asked two ex-

pert radiation oncologists and two novices to use it on two

data sets, each containing 20 MRI slices in two modali-

ties (T1C and FLAIR). The 4 users were asked to segment

each dataset twice, once in manual mode and once in semi-

automatic mode (in what order they prefer and not one after

the other to avoid the learning effect). One expert and one

novice segmented each dataset 6 times (3 manual, 3 auto-

matic). In manual mode the operator manually delineated

the tumor with a standard paint-brush and lasso tool.

We measured the time needed to perform each segmen-

tation and the intra/inter-user repeatability. Intra- and inter-

user repeatability scores average the overlap (Jaccard score)

between pairs of same segmentations (same dataset and

same manual or automatic mode) done by the same person

(the expert that segmented each data 6 times) for intra-user



initial slice initial 3D example final slices final 3D
Figure 6. Example of 3D propagation.

time (min) intra-user repeat. (% overlap) inter-user repeat. (% overlap)

manual auto manual auto manual auto

expert 7.25 1.97 83.72 93.67 67.65 76.76

novice 11.93 4.5 78.71 90.53 70.84 79.57
Table 1. Results for manual/automatic experiments. The time is measured in minutes and the repeatability is measured using the Jaccard

(overlap) score: Jaccard(A,B) = (A ∩ B)/(A ∪ B)

repeatability or different persons (expert-expert or novice-

expert) for inter-user repeatability.

The results presented in Table 1 show that the segmen-

tation done using the semi-automatic tools is about two

to three times faster than with manual labeling while the

inter/intra-user repeatability is about 10% smaller. The
manual inter-user repeatability was about 80% (matching
the result from [19]) and improved to 90% consistency us-
ing our tool. This important consistency improvement is

due to the fact that the same region statistics on all available

modalities are propagated and used globally, instead of the

doctors using a local 2D perceptual measure on one slice

and modality at a time.

7. Conclusion

We presented an interactive method for brain tumor seg-

mentation. The method is incorporated into a segmenta-

tion system that provides 2D interactive and 3D propagation

tools based on graph-cut techniques. Novel improvements

incorporated are continuous balance adjustment of opera-

tor control with an adherence parameter and the on-line 2D

user interaction through a lasso and a brush tool (and not

the point clicking and scribblings used in previous interac-

tive segmentation). This results in better control over the

segmentation by significantly changing the region statistics

and by bounding the segmentation. Experiments prove that

the proposed tool speeds up the segmentation and reduces

intra- and inter-user repeatability when compared with con-

ventional manual segmentation.

Future improvements for our interactive techniques in-

clude extending the 2D brush tools to 3D and adding the

ability to lock orthogonal slices for the propagation (e.g.,

like the live-wire extensions [12, 15]). Other improve-

ments include investigating whether optimal parameter se-

lection can be performed for the smoothness/adherence pa-

rameters (similar to [1]), e.g., by instructing the operator to

first make a manual segmentation, fitting a coarse stroke to

this region, and finding the parameters that bring the graph

cut segmentation into close alignment.
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