
Abstract

In computer vision and graphics as well as in mobile robotics one is often interested

in capturing 3D real world scenes. In the former, models are captured for such

purposes as photorealistic rendering. In the latter, models are captured to generate

navigation maps for robot control. The objective in both fields is similar: How

can the modeling of existing scenes be achieved?

This thesis investigates alternative ways of capturing the geometry and ap-

pearance of an indoor environment by using image-based modeling. Calibrated

and uncalibrated methods are investigated and contrasted. The resulting models

are validated by utilizing them in two robotics tasks. We first use the model as a

navigation map to localize the pose of a robot and to track its motion based on

images from a camera fitted on the robot. Second, we generate synthetic images

by reprojecting and texturing the captured model given a desired camera pose.

The first approach is based on a panoramic image mosaic augmented with depth

information and is built using calibrated cameras and range sensors (a trinocular

device and a laser range-finder). Several methods for registering camera and range

sensors were developed and compared. The model is segmented into planar pieces

that can be reprojected in new positions.

The second approach uses an uncalibrated camera that samples a scene. By

maintaining visual tracking of corresponding feature points, the geometry of the

scene is reconstructed using stratified structure from motion. The geometric model

is then bundle-adjusted and reprojected into the original images to acquire sur-

face appearance. Surface appearance is represented not using a single traditional

texture, but by acquiring a basis that captures the view dependency of the surface.

Contents

1 Introduction 1
1.1 Panorama with Depth . 2
1.2 Geometric Model with Dynamic Texture 3
1.3 Contributions . 4
1.4 Organization of the Thesis . 5

2 Image-Based Modeling and Rendering Techniques 6
2.1 Image and View Morphing . 8
2.2 Plenoptic Sampling . 9

2.2.1 Image Mosaics . 9
2.2.2 Concentric Mosaics . 11
2.2.3 Lightfield and Lumigraph 11

2.3 Depth-Based Reprojection . 13
2.3.1 Reprojection through Epipolar Constraints 14
2.3.2 3D Image Warping . 14
2.3.3 Layered Depth Images . 14
2.3.4 Image-Based Objects . 15
2.3.5 Relief Textures . 15

2.4 Hybrid Geometric and Image-Based Models 16
2.4.1 Volumetric Models from Images 16
2.4.2 Polygonal Models using Structure from Motion 18

2.5 Summary and Comparison . 19

3 Mapping in Mobile Robotics 21
3.1 The Problem of Mapping in Mobile Robotics 23

3.1.1 Aspects and Challenges . 23
3.2 Geometric Maps . 24

3.2.1 Occupancy Maps . 24
3.2.2 Topological maps . 25
3.2.3 Simultaneous Localization and Map Building 26
3.2.4 Other Geometric Maps . 27

3.3 Image-Based Maps . 29
3.4 Summary of Mapping Algorithms 31

4 Panorama with Depth 32
4.1 Introduction to Computer Vision 33

4.1.1 Projective Camera . 33
4.1.2 Camera Calibration . 35
4.1.3 Image Projection of Geometric Primitives 35
4.1.4 Two View Geometry . 37

4.2 Cylindrical Panoramic Mosaic . 38
4.2.1 Depth Data . 40

4.3 Depth from Stereo . 40
4.3.1 Depth Panorama . 40
4.3.2 Planar Patches . 41

4.4 Depth from Laser Range-Finder . 48
4.4.1 Range and Intensity Image Acquisition 48
4.4.2 Range-Intensity Image Registration 50
4.4.3 Robust Plane Fitting . 52
4.4.4 Model Vertical Lines . 54
4.4.5 The Navigation Image-Based Map 56

5 Applications of the Panoramic Model in Mobile Robotics 57
5.1 Global Localization with Two Calibrated

Panoramic Mosaics . 58
5.1.1 Calibration of the Two Cylindrical Models 59
5.1.2 Localization Algorithm . 59
5.1.3 Experiments with Synthetic Data 61
5.1.4 Experiments with Real Data 61

5.2 Global Localization using Stereo Panorama 63
5.2.1 Feature Selection . 63
5.2.2 Planar Patch Features . 64
5.2.3 Vertical Line Features . 65
5.2.4 Point Features . 66
5.2.5 Matching Planes and Lines 67
5.2.6 Experimental Results . 68

5.3 Incremental Localization with Depth Enhanced Panorama 69
5.3.1 Angle Calibration and Matching Vertical Lines 71
5.3.2 Refinement of Matches in Image Space 71
5.3.3 Localization using Vertical Line Segments 73
5.3.4 Experimental Results . 73

5.4 Mapping and Predictive Display for Remote Robot Environment . . 76
5.4.1 Predicted Scene Rendering 78
5.4.2 Experimental Results . 80

3

6 Geometric Model with Dynamic Texture from Uncalibrated Im-
age Sequences 83
6.1 Multi-View Geometry . 84

6.1.1 Non-Euclidean Camera Models 84
6.1.2 Computation with Camera Models 87

6.2 Affine Metric Structure . 90
6.2.1 Recovering the Affine Structure 91
6.2.2 Recovering the Metric Structure 92

6.3 Euclidean Structure for Perspective Projection 93
6.3.1 Projective Factorization . 94
6.3.2 Bundle Adjustment . 95
6.3.3 Projective Ambiguity . 95
6.3.4 Self Calibration . 95

6.4 Dynamic Textures . 97
6.4.1 Texture Basis . 98
6.4.2 Geometric Texture Variation 99
6.4.3 Photometric Variation . 102
6.4.4 Estimating Composite Variability 102
6.4.5 Interpretation of the Variability Basis 103

6.5 Combining Geometric Model and Dynamic Textures for Image-Based
Rendering . 104

7 Dynamic Texture Model Implementation and Applications 108
7.1 3D SSD Tracking . 109

7.1.1 General Tracking Problem formulation 110
7.1.2 Practically Useful Motion Models 113
7.1.3 Experimental Results . 116
7.1.4 Discussion on the Tracking Algorithm 118

7.2 IBR System Implementation . 120
7.2.1 Video Capture and Tracking 120
7.2.2 Structure and Texture Editor 121
7.2.3 Real-time Texture Blending 124

7.3 Model Evaluation and Examples . 125
7.3.1 Geometric Model Accuracy 126
7.3.2 Dynamic Texture Rendering Examples 128

7.4 Tracking and Predictive Display for a Indoor Robot Environment . 134
7.4.1 Experimental Results . 134

8 Conclusions and Future Work 138
8.1 Image-Based Models . 139
8.2 Applications in Mobile Robotics . 141
8.3 Future Work . 142

4

Bibliography 144

5

List of Figures

2.1 Plenoptic function . 7
2.2 Image coordinates interpolation can produce incorrect views 8
2.3 An example of a strip panorama - Peleg&Herman ’97 [121] 10
2.4 Concentric mosaics . 12
2.5 Lumigraph and lightfield parametrization 12
2.6 (a) Setup used for lumigraph capturing (b) Example of a rendered

view using lumigraph - Gortler et al. ’96 - [55] 13
2.7 (a) One of the input images of a scene(b) Different layers for the

scene . 15
2.8 (a) Samples views of an object (b) Registered samples reprojected

onto perpendicular image planes(c) Examples of rendered new views
of the object -M. Oliveira ’99 [116] 16

2.9 (a) Image texture and depth map. (b) Pre-warped relief texture and
final textured and rendered house. - M. Oliveira et al. [117] 17

2.10 Illustration of the (a) visual hull and (b) photo hull recovered from
4 cameras (c) example of a rendered view from a volumetric model
- Kutulakos&Seitz ’2000 [86] . 17

2.11 Main steps in creating the Façade model - Debevec et al. ’96 [35] . . 19
2.12 Example of uncalibrated model developed by Pollefeys and van Gool

[125] (a) geometric model and camera positions (b) view of the tex-
tured model . 20

3.1 Example of occupancy map (white - free space, black - obstacle;
blue - unexplored space) [152] . 24

3.2 Example of map build with SLAM. The figure also shows the route
that the robot followed while building. [52] 26

3.3 (a) Example of sift features (b) View of the SIFT database [134] . . 28
3.4 View of the VRML 3D model generated using range finders and a

panoramic camera [94] . 29
3.5 Panoramic route representation [175] 29
3.6 (a) Original locations and recovered trajectory (b) Example of a

panoramic image (cylindrical projection) [75] 30

4.1 Pinhole camera model . 34

4.2 From retinal coordinates to image pixel coordinates 34
4.3 A 3D line can be represented as (v,d). The image projection is

represented by m . 36
4.4 Points on a 3D plane are in general transfered to the image plane

through a 2D projective transformation (homography). 36
4.5 Epipolar geometry . 37
4.6 Calibrated stereo geometry . 38
4.7 Example of a disparity map computed using the Triclops vision sys-

tem. (a) left intensity image (b) disparity map (c) Triclops device . 39
4.8 (a) Cylindrical panoramic model of a research laboratory; (b) Depth

map: dark - close objects; whither - far objects; black - no depth
value; (c) Extracted planar patches 42

4.9 Flow chart for planar patch extraction algorithm 43
4.10 Planar region segmentation (a) Original image; (b) Edge detec-

tion and linking; (c) Constraint Delaunay triangulation; (d) Region
growing (e) Extracted trapezoidal regions; (f) Vertical planar regions; 44

4.11 Spherical coordinates for normal to the plane 46
4.12 Point cloud for a planar region before (a) and after (b) the Hough

Transform . 46
4.13 Results of a range data segmentation algorithm 48
4.14 Image with the planar patches rendered from a different point of view 48
4.15 System configuration: the laser-range-finder with the camera at-

tached on top of it is mounted on a pan-tilt unit 49
4.16 (top) Spherical representation of the range data from an 180◦ scan

after filtering (bottom) Corresponding 180◦ panoramic mosaic. . . . 50
4.17 The projection of a space point P in the cylindrical image (θ, h)

and the panoramic mosaic (u, v). We approximate the laser-camera
transformation with a translation ∆Y and a rotation over y axis. . 51

4.18 (top) Rendered image using only the global mapping (bottom) Ren-
dered image with local alignment. Notice how misalignment from
the top edge of the left monitor is compensated. 52

4.19 Planar region segmentation: (a) Original image; (b) Edge detection
and linking; (c) Constraint Delaunay triangulation; (d) Merged pla-
nar regions . 53

4.20 Model vertical lines: (a) Vertical edge segments in the panoramic
mosaic; (b) 3D lines rendered on top of the model; 55

5.1 Two panoramic models and the planar image to be localized, each
sowing 180◦ of the view. 59

5.2 Matching lines in image-based models and planar image 59
5.3 Variation of localization error error in X and Z directions with the

number of triplets of line features; (a) without noise, (b) noise level
w = 3. 61

7

5.4 Two cylindrical panoramic images (each formed using 25 planar
images sampling 180◦) . 62

5.5 Planar image from in between the two panoramic images with the
line features superimposed . 62

5.6 (a) Recovered positions from the 9 images. The first panoramic
model is situated at (X, Z) = (0, 0) and the second one at (X, Z) =
(300, 0); (b) Error for the recovered orientation. The X coordinates
show the position of the planar image regarding the first panoramic
model. 63

5.7 Localization using planar patches 64
5.8 Localization using vertical lines . 65
5.9 Localization using points . 66
5.10 Robot positions for localization experiments. 69
5.11 Overview of the localization algorithm. t denotes robot’s transla-

tion and α robot’s orientation: (a) Edge detection and linking (b)
Compute best match and calibrate angle α based on Hausdorff dis-
tance (c) Refine matches and eliminate duplicates based on image
information (d) Localization using model-image correspondence . . 70

5.12 Illustration of matching algorithm: (a) model lines, (b) correspond-
ing matched line after angle calibration (Section 5.3.1) and matched
lines after refinement step (Section 5.3.2). Note that in the refine-
ment step pair number 5 was eliminated as being a duplicate and
the others are better aligned with the original lines in panorama.
Numbers indexes lines in the model and show the matched pairs. . . 72

5.13 Recovered position (top) and orientation (bottom) for the model-
based localization algorithm and a SFM point based algorithm . . . 74

5.14 Recovered positions for the first leg of the trajectory (straight line)
with/without refinement. Note the errors in recovered position with-
out refinement when a bad match is present. 75

5.15 Sensitivity of the localization algorithm with respect to features
position in image vs. 3D. 76

5.16 Overview of the navigation system with predictive display. The
image-based panoramic model is acquired and processed off-line us-
ing a camera and a laser range finder (a). The on-line localization
system matches lines features in the model with the ones extracted
from the current view (b). The robot location is send to the re-
mote site where a predictive view is immediately rendered (c). The
remote user can control the robot using the image-based interface. 77

5.17 Tele-operator interface where the user can view a 2D floor map with
robot position and the predictive robot view. The vector in the small
left window shows robot orientation. 81

5.18 Examples of predictive views using different texturing 81

8

6.1 Affine camera approximation . 86
6.2 Different types of affine projection. 87
6.3 A general structure from motion algorithm extracts the structure

and camera poses from a set of tracked points. 90
6.4 Texture parallax between two views 101
6.5 Comparison between spatial derivatives ∂Tw

∂x
and ∂Tw

∂y
(left two tex-

ture patches) and two vectors of the estimated variability basis
[B1,B2] (right) for house pictures. 104

6.6 A sequence of training images I1 · · · It is decomposed into geomet-
ric shape information and dynamic texture for a set of quadrilat-
eral patches. The scene structure X and views Pt are determined
from the projection of the structure using a structure-from-motion
algorithm. The view-dependent texture is decomposed into its pro-
jection y on an estimated basis B. For a given desired position, a
novel image is generated by warping new texture synthesized from
the basis B on the projected structure. On the web site is a compiled
demo rendering this flower and some captured movies 105

7.1 Overview of the 2D-3D tracking system. In standard SSD tracking
2D surface patches are related through a warp W between frames.
In our system a 3D model is estimated (from video alone), and
a global 3D pose change ∆P is computed, and used to enforce a
consistent update of all the surface warps. 111

7.2 Top Tracking individual patches using a homography. Not all re-
gions can be tracked thought the whole sequence and occlusion is
not handled. Bottom Through the 3D model each region motion
is rigidly related to the model, and tracking succeeds through the
whole sequence. The model also allows detection and removal of
occluded regions and introduction of new regions. 116

7.3 Top Translation tracking of individual regions. Though the video
sequence many patches are lost. Middle A projective 3D model is
used to relate the regions, and provide more stable tracking through
the whole sequence. Bottom An Euclidean model relates the re-
gion, and also allow the introduction of new regions. 117

7.4 Accuracy experiment. Left Scene image. Right current image and
template superimposed indicate accurate alignment 118

7.5 Video capture and tracking user interface 121
7.6 Structure editor mode . 122
7.7 The triangulation and texture editor 123
7.8 Synthetic room data and camera positions. Red dots indicate the

camera positions and green lines indicate viewing direction 126

9

7.9 Reconstructed affine (top) and projective upgraded to Euclidean
(bottom) structure under varying focal length. f = 50 (left), f =
100 (middle), f = 200 (right) . 127

7.10 Accuracy of reconstructed affine and projective Euclidean structure
as dependent of noise level with 10% outliers (top) and number of
outliers with a noise level of 2 pixels (bottom). 127

7.11 Illustration of recovered structure from real data. (top) two of the
original images overlapped with a Delaunay triangulation of the
projected structure. (middle) recovered affine structure (same tri-
angulation); (bottom) recovered projective Euclidean structure. . . 129

7.12 Left: Delauney triangulation of a captured house model. Note that
triangles don’t correspond well to physical planes. Right: Static
texturing of a captured house produces significant errors. Especially
note the deformations where the big and small house join due to
several triangles spanning points on both houses. 130

7.13 Rendered novel views of a house by modulating a texture onto a
coarse captured geometric model. Note the absence of geometric
distortions compared to the previous figure. 130

7.14 Flower sequence: (left most) One of the original images and the
outline of the quadrilateral patches 131

7.15 Examples of renderings for dinning room model from Figure 7.11.
(top) example renderings of the affine model (bottom) example ren-
derings of the projective model . 132

7.16 Texturing a rotating quadrilateral with a wreath. Top: by warping
a flat texture image. Bottom: by modulating the texture basis B
and generating a continuously varying texture which is then warped
onto the same quad. Demo on web site 133

7.17 Pixel intensity error when texturing from a close sample view (red)
and by modulating the texture basis. For most views the texture
basis gives a lower error. Only when the rendered view has the same
pose as the one of the three source texture images (hence the IBR
is a unity transform) is the standard view based texturing better . . 133

7.18 Overview of the tracking with predictive display system. 135
7.19 Recovered positions for the straight line trajectory (left) and the 2

perpendicular lines trajectory (left). The red line are the fitted 3D
lines to each line segment. 136

7.20 Examples of predictive views (top row) and the corresponding actual
images (bottom row) . 137

10

List of Tables

5.1 Error for recovered position and orientation 69
5.2 Localization accuracy for the localization algorithm (with/without

match refinement) and a point based SFM algorithm: error in dis-
tance between consecutive positions δ(cm) (ground truth 10 cm)
and deviation from straight line ρ(cm) 75

7.1 Pixel reprojection error (pixels) and recovered motion range (degrees
for rotation and original structure units for translation). The affine
SFM algorithm recovers only an image plane translation that cannot
be compared with the original 3D translation. 128

7.2 Average pixel jitter . 132

Chapter 1

Introduction

1

Traditional computer graphics uses geometry-based modeling and rendering to cre-
ate detailed 3D models of real environments. The model is either created manually
using a modeler or generated from real 3D scene data obtained using range sen-
sors [49]. Conventional 3D models are represented using polygonal, bicubic para-
metric curves, constructive solid geometry, or space subdivision (such as octrees).
New views are rendered by reprojecting this model. Since the geometry and the
reflection of real world objects is complex, efficient systems and realistic images
are difficult to obtain using traditional geometry-based modeling and rendering.

A very similar problem exists in the field of mobile robotics where the navigation
problem has been traditionally cast as acquiring a representation of the robot
space in Euclidean coordinates. Achieving photorealism during navigation is not
an issue, but the map is automatically generated and requires precise and detailed
information that is used to track the robot’s position. A navigation map can
be described in various ways. The two extreme methods are a detailed geometric
model and a scene graph representing the connectivity among topological elements
in the environment. Classic vision-based navigation systems rely on the existence
of a geometric model that contain precise metric measurements of the objects in
the environment. Without such a priori knowledge it is in general difficult to create
a metric map that contains a level of detail sufficient for robot localization.

Approaches to geometric modeling have been recently shown in image-based
modeling and rendering systems. These systems combine computer vision and
computer graphics algorithms to create a model directly from images and use this
representation to generate new photorealistic views from viewpoints other than
the original images.

We investigate in this thesis the applicability of image-based modeling tech-
niques in mobile robotics. Our approach combines a sparse geometric model with
image information to generate image-based models that are detailed enough to
provide precise robot localization and that are easy to acquire and to generate.
We developed two types of models: The first model (model 1) is a panoramic
image-based model augmented with depth information built using calibrated com-
puter vision techniques. The second model (model 2) is a sparse reconstruction of
a geometric model that uses a special view-dependent texture that can be gener-
ated from uncalibrated video. The two models are described in more detail in the
next sections.

1.1 Panorama with Depth

The first model is based on a panoramic mosaic augmented with range informa-
tion. The mosaic is acquired by rotating a calibrated camera around the optical
center, projecting then blending the images onto a cylindrical surface to obtain a
continuous omnidirectional representation.

If no parallax is provided, the mosaic allows rerendering from only the same

2

center of projection. To overcome this problem, we added depth information pro-
vided either by a trinocular vision system or by a laser range finder. In the latter
case the intensity and depth information are generated from different sensors (cam-
era and laser) so the data have to be registered in a common reference frame. We
found that for moderate-precision tasks such as robot navigation, an image-based
approach can be adopted for data registration [30]. Rather than determine the 3D
rigid transformation between the sensors, which involves sensor calibration with
respect to a common coordinate frame, we determine a 2D–2D image warp that
linearly approximates the transformation between the generated panoramic mosaic
and a similar panoramic representation of the laser range data. The registration is
further refined by fitting local splines to a set of triangulated control points. The
registered model is then segmented into planar pieces, which can be reprojected in
any position.

The other type of range data provided by the trinocular vision system is inac-
curate and noisy due to the small baseline of 10 cm relative to the size of the room
(7–10 m). We developed an algorithm that combines intensity and depth data to
obtain accurate patch segmentation [29].

To demonstrate the applicability of the proposed model for robot navigation,
we developed localization algorithms that match an image taken from the cur-
rent robot location with the model to compute the metric coordinates of the
robot position. The first localization algorithm uses corresponding vertical lines
in two panoramic mosaics for absolute robot localization [26]. The second uses
the panoramic model with depth data from the trinocular device to calculate the
absolute location of the robot by matching planar patches extracted from the cur-
rent image with the ones from the model [28]. The accuracy of the localization
was improved when global constraints were introduced for the match [21]. A sim-
ilar approach was adopted for an incremental localization algorithm that uses 3D
lines extracted from the registered panoramic model with laser range data [31].
Whereas the first algorithm does not consider the data association problem, the
following two algorithms consider the image information contained in the model
to provide a robust way for feature matching.

The delay in video transmission is a common problem in tele-robotics since
it is essential to provide realtime feedback from the remote scene to the human
operator. We use the final panoramic model (with depth from a laser rangefinder)
for a system that integrates the incremental localization algorithm with predictive
display. This system provides immediate synthesized video feedback representing
the view of the command issued before the arrival of real video [72, 71].

1.2 Geometric Model with Dynamic Texture

For the second model a single uncalibrated camera is moved about a scene.
Real time tracking is used to establish point correspondences between views and

3

an affine or projective model is built and then upgraded to a metric model using
the stratified approach. The resulting geometric model is bundle-adjusted, which
consists of optimizing the accuracy over all views. The model is subsequently repro-
jected into the original images to acquire surface appearance. Surface appearance
is represented not by using a single traditional texture, but by acquiring a dynamic
texture, which is a basis that captures the view dependency of the surface [22, 25].
We show both mathematically and experimentally how this new type of texture
model compensates for geometric inaccuracies, lighting, and nonplanarities. To
render new poses the correct texture is modulated from the texture basis and then
warped back to the projected geometry.

The geometric model is incorporated into a region-based tracking algorithm
that relates spatial and temporal image derivatives to update the 3D camera po-
sition (full rotation and translation). The geometry of the scene is first estimated
from uncalibrated video and then used for tracking. The tracking algorithm was
integrated with a predictive display system. That system uses the ability of the
dynamic texture model to be reprojected from any position in order to generate
immediate visual feedback for a remote operator.

The dynamic texture model is also used for other augmented reality applica-
tions [24, 23], which are not included in this thesis since they are not directly
related to robotics applications.

1.3 Contributions

The main contributions of this thesis are:

1. We contrast calibrated and uncalibrated methods for building models of scene
geometry and appearance from images. To generate the image-based models we
develop:

• A planar patch segmentation algorithm that integrates both depth and in-
tensity data provided by a trinocular stereo system. The noisy depth data
returned by the trinocular device cannot be used directly in the segmen-
tation algorithm, but is combined with intensity information for a robust
planar patch segmentation (for model 1).

• A new image-based algorithm for integrating range and intensity information
from separate sensors. We performed a comparative study of performance for
traditional geometric registration techniques and image-based registration
techniques. This study demonstrated the advantages of the image-based
registration in the field of mobile robotics (for model 1).

• A new type of view-dependent texture - dynamic texture - that represents
surface appearance not using a single traditional texture, but rather by mod-

4

ulating a basis which captures the view dependency of the surface (for model
2).

2. We demonstrate the use of the models as navigation maps in mobile robotics
with specific applications in localization, tracking, and predictive display.

• We develop localization algorithms that use the first image-based model and
a single camera image to compute the position of the robot. The rich infor-
mation contained in the image data is used for solving the data association
problem (application of model 1).

• We develop a tracking and localization algorithm by extending the 2D image
patch-based real-time tracking algorithms to 3D model-based tracking. In
our method a 3D geometric model is both estimated from uncalibrated video
and used to track rotational and translational camera scene motion from
image differences (application of model 2).

• We integrate the models’ ability to generate novel views from any position
with the developed localization and tracking algorithms in a predictive dis-
play application for tele-robotics, where synthesized immediate visual feed-
back replaces the delayed real video from a remote scene (application of
model 1 and 2).

1.4 Organization of the Thesis

The thesis starts by presenting the current state of the art in the two related re-
search areas - image-based modeling in Chapter 2 and the problem of mapping
in mobile robotics in Chapter 3. Chapter 4 presents the panoramic model with
depth from stereo or laser rangefinder and Chapter 5 the model’s applications in
robot localization and predictive display. Chapter 6 describes the methods for ob-
taining geometric models from uncalibrated images and introduces the theory of
dynamic textures. Chapter 7 evaluates model performance and presents applica-
tions in tracking and predictive display of the second model. Finally, we present
our conclusions, possible improvements, and new directions in this research.

5

Chapter 2

Image-Based Modeling and
Rendering Techniques

6

Image-based rendering systems combine computer vision and computer graphics
algorithms to create a model directly from images and use this representation to
generate photorealistic novel views from viewpoints different from the original ones.
Image-based modeling and rendering (IBMR) encompasses a wide range of theories
and techniques. The field is still young, and giving it a precise definition at this
point would be premature. However, a common characteristic of IBMR methods is
that images play a central role. While traditionally computer graphics has focused
on transforming 3D data into 2D image projections, image based rendering (IBR)
techniques shifts this emphasis to 2D - 2D image transforms. Using image-based
approaches the model is very easy to acquire, and the cost of rendering is inde-
pendent on scene complexity, because the sample images contain the complexity
of the scene. The realism of the rendered images is directly dependent on the
input images, hence it is possible to produce photorealistic renderings. A signifi-
cant problem with current image-based rendering systems is how to accommodate
changes in the scene (new objects, changes in lighting). Another problem is that
their internal representation requires a lot of memory because of data redundancy,
but considering the evolution of computer systems, this is not so challenging in
our days.

This chapter will present some of the image-based modeling systems that are
characteristic at the current state of the art. The idea behind several image-based
rendering (IBR) systems is that they try to sample the plenoptic function [106]
for the desired scene. The plenoptic function represents the intensity of the light
rays passing through the camera center at every location, at every possible viewing
angle (see figure 2.1). In general this is a 5D function, but depending on scene
constraints it can have fewer degrees of freedom.

Based on the modality of encoding the plenoptic function and pixel transfer,
IBR techniques can be classified into four categories: image and view morphing,
plenoptic sampling, depth based reprojection and hybrid methods. The following
sections will briefly describe each of these categories.

ϕ
θ

(X,Y,Z)

Figure 2.1: Plenoptic function

7

2.1 Image and View Morphing

Image morphing techniques generate intermediate views by interpolation in image
coordinates, without considering the 3D geometry of a scene. Hence synthesized
views are typically not geometrically correct (see figure 2.2). A well known tech-
nique is Beier and Neely’s feature based image metamorphosis [9]. They used
corresponding line segments to smoothly transform a source image into a desti-
nation image using simple pixel interpolation. A more advanced technique, called
view morphing, was developed by Seitz and Dyer [135]. Assuming that the motion
of the camera is restricted to a line that connects the two centers of projection,
they generate new views of a scene that represent a physically-correct transition be-
tween two reference views. The intermediate views are created by first prewarping
the images in order to align the projection planes, then morphing using interpo-
lation, and then postwarping the interpolated images. Manning and Dyer extend
this idea by creating dynamic view morphing [98]. Lhuiller and Quan [91] describe
a view morphing technique which also produces interpolated views that correctly
reproduce the motion of salient points in the scene. They describe a scheme for
triangulating the input images in such a way as to respect intensity discontinuities.
A similar approach, called view interpolation was created by Chen and Williams
[19]. Arbitrary viewpoints, but with constraints on the viewing angle are generated
by interpolating images stored at nearby viewpoints. Their technique requires cal-
ibration and a full correspondence map between the sample images. This is very
difficult to obtain from real images, so their algorithm was tested with synthetic
images.

Image morphing techniques are very fast and simple, but they produce nonreal-
istic and geometrically incorrect renderings approximated from the sample images.
View morphing techniques demonstrate that it is possible to produce correct in-
terpolated images from a set of correspondences, but, except in Chen’s method,
the camera motion is limited to a lines connecting the camera centers.

Figure 2.2: Image coordinates interpolation can produce incorrect views

8

2.2 Plenoptic Sampling

In this class of techniques, a subsample of the plenoptic function is captured from
a set of input images. New views are generated by interpolating the appropriate
rays from the plenotic function. One of the first techniques in this category are
image mosaics that sample a 2D plenoptic function under some particular view-
point or scene constraints. The next subsections will first present some mosaicking
techniques and then the more general plenoptic sampling techniques - lightfield
and lumigraph.

2.2.1 Image Mosaics

One of the simplest image-based modeling techniques is image mosaicking. The
term “mosaic” refers to the combination of at least two images to yield a higher
resolution or larger image. This is a very old technique and was developed long
before the age of digital computers. It appeared shortly after the photography
was invented in 19th century, when images acquired from balloons or tops of the
mountains were manually pieced together to create maps. Today mosaics are
used in many applications like white-board and document scanning, approximation
of 3D scenes [147, 148, 141], video compression [68], architectural walkthroughs,
virtual museums, cartoons [169], telepresence, tele-medicine, and astronomy.

In order to register the images into a larger unified image, they are related by a
linear projective transformation (homography). This is possible when the images
either sample a planar surface, or are taken from the same viewpoint. The general
form of a projective transformation is:

s







u′

v′

1





 =







H11 H12 H13

H21 H22 H23

H31 H32 H33













u
v
1







where (u, v) and (u′, v′) are corresponding pixels in two images, s is a scale factor
and H is a non-singular matrix (defined up to a scale factor).

Creating an image mosaic involves three subproblems: projecting the images
on the desired surface (planar, cylindrical, spherical), and correcting geometric
deformations caused by different types of lenses, registering the images into a
common coordinate system, and correcting resulting small errors from the reg-
istration process e.g. by smoothing.

There are different types of image projection depending on the desired appli-
cation and acquisition technique. The simplest set of images to mosaic are pieces
of a planar scene such as a document or a white-board. As mentioned before, these
pieces are related by a linear projective transformation, so they can be registered
together into a larger planar image [147]. While planar mosaics are convenient rep-
resentation for relatively small field of view (less 180◦), they become problematic for
wider scenes. In those circumstances either cylindrical or spherical representations

9

are more suitable giving panoramic or panospheric mosaics. Cylindrical panoramic
mosaics are created by projecting images taken from the same viewpoint but with
different viewing angles onto a cylindrical surface [141, 148]. They can be used for
fixed location visualization (Quick Time VR) [18] or variable location visualization
by interpolating several panoramas (plenoptic modeling) [106] and for recovering
3D structure of the environment [80]. Spherical panoramic mosaics can be created
either by projected planar images taken from a fixed center of projection onto a
sphere [147], or using special lenses and mirrors [114].

Images with parallax, which do not satisfy any of the two conditions mentioned
above, can also be composed into a mosaic. Irani et al [68] used a polynomial trans-
formation with more than eight degrees of freedom to compensate for nonlinearities
due to parallax. An interesting approach is presented by Dornaika et al. [40] where
an intermediate image is used for registering two images under arbitrary camera
motion. Another solution is to use a one dimensional camera to scan scenes. This
can be realized using conventional cameras by combining strips taken from a se-
quence of neighboring images. In this way Peleg [121] and Tsuji [175] created
a panoramic mosaic from images along an arbitrary path. Figure 2.3 shows an
example of a strip panorama.

Figure 2.3: An example of a strip panorama - Peleg&Herman ’97 [121]

In order to create the image mosaics, images have to be registered or matched
based on aligning overlapping areas. Carefully calibrated cameras prior to the ac-
quisition process can eliminate this step, but this is cumbersome and inconvenient
for the user. The image registration techniques used in the literature include:

• Manual registration methods where the operator has to manually align
the images.

• Feature based methods that manually or automatically detect specific fea-
tures in the images, compute correspondences, and then estimate the camera
motion.

• Finding the motion that will best align the images by exhaustively search-
ing all the possible motions. This can be computationally extremely expen-

10

sive. Another possibility is to iteratively adjust the motion parameters by
minimizing the differences between the overlapping areas. This method can
lead to a local minimum unless a reliable initial estimate is provided.

• Frequency domain techniques compute the image displacement from phase
correlation. These methods require significant overlap between the images.

After image alignment, usually the mosaic has to be further processed in order
to eliminate remaining distortions and discontinuities where input images overlap.
These errors are caused by changes in the illumination, imperfect registration,
dynamic scenes, etc. The lighting problem can be reduced using histogram equal-
ization or locally smoothing the mosaic at the intersection lines [148]. For com-
pensating small errors introduced by motion parallax Szeliski and Shum [148, 141]
developed a local alignment (deghosting) technique which warps each image based
on the results of pairwise local registration.

Image mosaics are easy to build, but the rendered images must satisfy the same
constraints as the input images, so it is not possible to create arbitrary new views.
Adding more information like depth or disparity can overcome this problem.

2.2.2 Concentric Mosaics

Concentric mosaics are a generalization of cylindrical panoramas that allow the
viewer to explore a circular region and experience horizontal parallax [140]. Con-
centric mosaics are created by composing slit images taken at different locations
along a circular path. Thus a cylindrical panorama is equivalent to a single mosaic
for which the axis of rotation passes through the camera’s center of projection.
Novel views are rendered by combining the appropriate captured rays (see fig-
ure 2.4). This procedure assumes that all images are infinitely far away. Since
this assumption is not satisfied in most cases, the algorithm can introduce verti-
cal distortion in the rendered images. In practice, dense concentric samples are
obtained using a regular camera moved along a circular path. The camera can
be oriented either tangent or normal to the path and multiple concentric mosaics
are created through resampling. A similar approach is described in [120] where a
stereo panorama is created using a camera with one left and one right slit that is
rotating along a circle.

2.2.3 Lightfield and Lumigraph

This class of methods first build up a lookup table of light rays by taking many
image samples of an object or a scene and then reconstruct images from arbitrary
viewpoints by interpolation in the stored table. This lookup table is an approx-
imation of the plenoptic function. A significant advantage of these methods is
that pixel correspondence is not necessary and rendering is fast, but they require

11

i j

C

C
C

C

n

m

k mCM

CMk

vi

jv

L

L

i

j

Figure 2.4: Concentric mosaics

extensive data acquisition, knowledge about the camera viewpoint during data ac-
quisition, and high memory requirements. That is why they are more suitable for
synthetic scenes.

Appearing simultaneously in ’96 light field rendering [90] and the lumigraph
[55] both use a 4D parameterization of the plenoptic function where the scene
is restricted to a bounding box (see figure 2.5). In this representation, a ray is
parametrized by its intersection with 2 planes, structure known as light slab. The
interpolation scheme used by Levoy and Hanrahan [90] approximates the resam-
pling process by interpolating the 4D function from nearest samples. Lumigraph
[55] is reconstructed as a linear sum of the product between a basis function and
the value at each grid point. Figure 2.6 shows the setup used for capturing a lu-
migraph type model from real images (a) and an example of rendering using the
model (b).

t
v

u

s

Figure 2.5: Lumigraph and lightfield parametrization

A generalization of the lumigraph is presented by Buehler et al. [14]. Their
approach eliminates the lumigraph requirement of having the cameras on a regular
grid by allowing unstructured set of cameras and using variable information about
the scene geometry. The technique is similar to the view dependent texture map-
ping [35]. The same idea of acquiring dense images taken from a free-moving hand
held camera for sampling plenoptic function is presented by Koch and Pollefeys in

12

(a) (b)

Figure 2.6: (a) Setup used for lumigraph capturing (b) Example of a rendered view
using lumigraph - Gortler et al. ’96 - [55]

[81]. They use uncalibrated structure from motion algorithms for recovering cam-
era positions. Novel views are generated by piecewise mapping and interpolating
nearest viewpoints.

If a detailed geometry of the scene is known, surface light fields [168] can be
efficiently used to encode the rays leaving every point on the known surface (lu-
mispheres). A detailed geometry of the scene is acquired using laser scans which
are registered with photographs. This technique is related to the methods in sec-
tion 2.4 since it uses a known geometry of the scene, but the idea of sampling the
plenoptic function belongs to this class of IBM.

By imaging an object from several viewpoints, the lumigraph and lightfield
techniques can produce detailed and realistic models. However the large number
of input images required to avoid blurring of synthesized views often make them
unpractical compared to other IBR techniques.

2.3 Depth-Based Reprojection

This large class of IBR techniques use a relatively small number of images with
depth or disparity values to reproject image pixels at a given camera viewpoint.
The rendered images are geometrically correct, but an accurate disparity or depth
map is very difficult to recover from images alone. Depth can be evaluated from
stereo vision or using other sensors such as laser range-finders or sonars and then
combined with intensity and color information provided by images to form an
image-based model. Disparity is usually computed from image correspondence.
Some researches include the depth-based techniques in the hybrid geometric and
image-based methods (Section 2.4). Here, considering that there is no explicit
geometric model of the scene reconstructed from the images, they are listed as a
separate class.

13

The next subsections will briefly summarize some of the well known depth-
based reprojection techniques, more precisely: Laveau and Faugeras’ disparity
based reprojection [87], 3D image warping [105], layered depth images (LDIs)
[137], image-based objects [116], and relief textures [117].

2.3.1 Reprojection through Epipolar Constraints

One of the first IBR techniques using a collection of images with disparity values
to generate new views was presented by Laveau and Faugeras [87]. They used fully
calibrated images with disparity maps and epipolar constraints to compute a novel
view through a process similar to raytracing.

2.3.2 3D Image Warping

Three dimensional image warping [105] is a geometric transformation that correctly
maps a source image with depth to an arbitrary target view. The 2D to 2D warping
normally used in texturing models is only physically correct when model facets are
true planes. If the texture has 3D structure, using a 2D image alone for texturing
is at best an acceptable approximation, but in some cases (such as close up views
or views at a grazing angle to the surface) it will give a flat, unnatural appearance
to the rendered views. In 3D warping a depth map is used to correctly “rearrange”
the texture image into a new view. The target image can be obtained by applying
a planar projective transformation to the source image followed by a per-pixel
shift proportional to the generalized disparity in the direction of the epipole of the
target image (this corresponds to a factorization known as plane-plus-parallax in
the computer vision literature). Normal texture mapping is a special case of 3D
warping when all pixels in the source image have the same disparity values. The
visibility problem is solved using a list-priority algorithm [105].

The 3D warping approach is generalized to cylindrical mosaics in plenoptic
modeling [106].

2.3.3 Layered Depth Images

A layer depth image (LDI) [137] is a view of the scene from a single camera view
point, where multiple pixel values are stored for each line of sight. In this case,
each element of the image consists of an ordered list of samples. For rendering
with LDIs, the 3D warping equation can be applied in occlusion compatible order.
In this way, LDIs can reduce the occlusion artifacts while retaining the efficiency
of the 3D warping equation. This property in combination with polygonal tech-
niques is exploited in [104] to produce efficiently high resolution rendering of large
environments. Figure 2.7 illustrates the idea of layer depth images.

The LDIs idea is further improved in [17] by introducing the LDI tree - a
combination of a hierarchical space partition scheme with the concept of the LDI.

14

(a) (b)

Figure 2.7: (a) One of the input images of a scene(b) Different layers for the scene

The fixed resolution of the LDI may not provide an adequate sampling rate for
every either reference (input) image or rendered video. The LDI tree preserves the
sampling rate of the reference images by adaptively selecting an LDI in the tree.

2.3.4 Image-Based Objects

While image with depth and LDIs can be warped to produce correct reprojections
of represented surfaces, to render all views of a 3D object, samples from several
viewpoints are required. Image-based objects (IBOs) [116] provide a compact image
representation of 3D objects. They are constructed by acquiring different views of
an object that are registered and projected from a single center of projection onto
the facets of a parallelepiped that represents a bounding box of the object (figure
2.8). Thus each IBO is represented by six LDIs that are warped in occlusion-
compatible order.

2.3.5 Relief Textures

Relief textures [117] are an extension of conventional textures that supports the rep-
resentation of 3D surface detail and view-motion parallax. This effect is achieved
by pre-warping the relief textures and mapping the resulting images onto flat poly-
gons. More intuitively (see Figure 2.9), using a rectangular geometry model of a
house and texturing it with a flat 2D texture would give un-natural renderings for
many views. However, using a texture composed of both an image and depth map,
and relief-texturing the same geometry recreates the correct views of the house
fine structure. In the figure particularly this is evident for the roof and dormers.

Relief textures can be used in the context of image-based objects for generating
an object representation as six relief textures associated with the object bounding
box. New views of the object can be obtained by pre-warping the relief textures
and mapping the resulting images onto the facets of the box.

15

(a) (b) (c)

Figure 2.8: (a) Samples views of an object (b) Registered samples reprojected onto
perpendicular image planes(c) Examples of rendered new views of the object -M.
Oliveira ’99 [116]

Depth-based reprojection techniques are popular among IBR methods because
they produce high quality and correct renderings. While they are most practical
for synthetic models, their practicality is still limited by the difficulty of acquiring
depth maps for real scenes.

2.4 Hybrid Geometric and Image-Based Models

This last class of IBR techniques is closer to the traditional graphics modeling
by having a geometric model as the based structure of the image-based model.
The difference is that the geometric model is obtained and textured directly from
images. Currently, there are two different groups of techniques - those that recon-
struct a volumetric model from images and those that reconstruct architectural
models using structure-from-motion (SFM) techniques (see Section 6.1). Next
subsections will give examples in both categories.

2.4.1 Volumetric Models from Images

Virtualized reality. A volumetric model of an object or scene is a geometric
representation of the volume occupied by the object. T. Kanade’s virtualized reality
[129] uses a collection of calibrated cameras in conjunction with multi-base line
stereo techniques to compute a volumetric model of the scene. The model is first
represented as a collection of 3D points that is converted by ISO surface extraction
to a polygonal mesh that is textured from images. This model is applied to dynamic
scenes.
Volume carving [136, 86] is a common method that uses silhouette edges to carve
unoccupied regions from an explicit volumetric representation. The resulting shape

16

(a) (b)

Figure 2.9: (a) Image texture and depth map. (b) Pre-warped relief texture and
final textured and rendered house. - M. Oliveira et al. [117]

- called visual hull is a tighter fit than the object’s convex hull that encloses the
scene. All voxels falling outside the projected silhouette are eliminated from the
volume. The photo-hull or maximal photo-consistent shape [86], contained inside
the visual hull, is obtained using color consistency check on the visual hull. See
Figure 2.10 for an illustration of the visual hull (a) and photo hull (b) concepts.
The resulting volume is a quantized representation of the visual hull according to
the given volumetric grid. Figure 2.10 (c) shows an example of a rendered view
from a volumetric model.

Visual Hull Photo Hull

Figure 2.10: Illustration of the (a) visual hull and (b) photo hull recovered from
4 cameras (c) example of a rendered view from a volumetric model - Kutu-
lakos&Seitz ’2000 [86]

Image-based visual hulls. A more efficient representation of the visual hull [103]
uses silhouette edges to compute the visual hull without constructing an auxiliary
geometric or volumetric representation. The visual hull is stored as intervals along

17

rays originating from each camera center for the sample data. The rendering algo-
rithm takes advantages of epipolar geometry and McMillan’s occlusion compatible
order [105] to achieve real time performance.

2.4.2 Polygonal Models using Structure from Motion

A polygonal model of the scene can be reconstructed using images and structure
from motion techniques (see section 6.1). A structure from motion algorithm
takes as input a collection of corresponding image features (points, lines) and
reconstructs their position in a 3D space. Depending of the level of calibration and
camera model the resulting representation can be Euclidean (metric), projective
or affine. The metric model is the most suitable for rendering with traditional
graphics techniques. Most of the current systems focus on the more constrained
problem of architectural reconstruction for which the abundance of planar surfaces,
parallel and perpendicular lines make the reconstruction problem simpler and more
robust.

A well known system - Façade [35] proposed a non-linear optimization algorithm
to reconstruct 3D textured models from photographs. Their system is built from
two components: the first is a photogrammetric modeling system that recovers
the basic geometry of the scene and the second a model-based stereo algorithm
that refines the geometric model to conform with its actual appearance from a
set of photographs. For rendering they present a view-dependent texture-mapping
that produces new images by warping and composing multiple views of the scene.
The main steps in the algorithm are illustrated in figure 2.11. A similar system
presented by Coorg and Teller [32] uses calibrated spherical mosaics to reconstruct
a large set of 3D buildings. When dense range data is available from range-finders,
it can be combined with the image data to form a detailed 3D model [144] of a
large scene. The algorithm first segment the data into planar surfaces and then
reconstruct buildings’ edge segments as intersection of planes.

Recent advances in uncalibrated structure from motion [59] made the model ac-
quisition more efficient and convenient for large-scale applications. Theoretically,
using self-calibration constraints, the geometric model of the scene can be recon-
structed from a set of uncalibrated images, e.g. taken with a hand held camera
[93, 125, 8, 166]. The model is then textured from the sample images. Most of
these systems are developed by European groups that pioneered the use of projec-
tive geometry in recovering the scene structure and camera motion. Most of the
practical systems impose external constraints on the scene geometry (planarity,
parallelism, perpendicularity) to make the self calibration more robust. Figure
2.12 shows an example of a reconstructed model and camera positions using un-
calibrated structure from motion and a view of the textured model.

The hybrid geometric and image-based methods are very promising in practical
applications. Beside being compact, their 3D geometry allows most traditional
computer graphics processing (e.g. light, shadows). Recent development of SFM

18

Figure 2.11: Main steps in creating the Façade model - Debevec et al. ’96 [35]

techniques made the geometric model acquisition easier by not requiring strong
calibrated cameras. Despite having an approximate geometric model of the scene,
the desired realism can be achieved by using an image-based texture. Our second,
uncalibrated model (see Section 6) offers a very efficient and innovative example
of a hybrid model.

2.5 Summary and Comparison

This chapter provided an overview of image-based rendering techniques. They are
divided in four main groups depending on the way of representing and using the
image data in modeling: image and view morphing, plenoptic sampling, depth-
based reprojection and hybrid geometric and image-based methods. Given the
current development of IBR techniques, the survey intended to provide an intuitive
understanding of these methods focusing on their fundamental aspects. There
are two very good surveys in the area that should be mentioned - one by Sing
Bing Kang [78] and a more recent one by Manuel Oliveira [115]. Despite the
existing challenges, image-based methods offer many advantages over traditional
graphics modeling techniques in creating realistic models. An experimental study
and comparison of non-euclidean image-based methods is presented in [20].

19

(a) (b)

Figure 2.12: Example of uncalibrated model developed by Pollefeys and van Gool
[125] (a) geometric model and camera positions (b) view of the textured model

20

Chapter 3

Mapping in Mobile Robotics

21

People have always wanted to build robots that can function in every day life and
help without being helped too much. One of the most difficult problems is under-
standing the surrounding environment and freely navigating through it. Mapping
in mobile robotics addresses the problem of acquiring a model of the physical en-
vironments through mobile robots. This problem is regarded as one of the most
important tasks in autonomous navigation. Map building has been of considerable
interest to humans over the last 4000 years. The basic process of distance mea-
surement, correlation and triangulation was known by Phoenicians who built the
first maps of the Mediterranean area. Today navigation is studied from different
aspects and is applied in many areas like maritime, aviation, industrial or military
applications. Despite the significant progress in robotic mapping in the last two
decades, there are still many challenges.

The robot understands the environment through its sensors. There are different
sensor technologies considered in the literature: odometry; ultrasonic, laser range
and infrared sensors; vision sensors; radar, compasses and GPS. Considering vision
as the main sensor for acquiring the model, the mapping problem becomes closely
related to image-based modeling problem (discussed in the previous chapter). Be-
ing viewed by two different and distinct research communities, the solutions to
these two related problems are quite different. The work presented in this thesis
integrates two types of image-based maps in mobile robotic systems and analyzes
the advantages of the image-based representation in different tasks - localization,
tracking, and predictive display.

This chapters presents a short survey of existing robotic mapping techniques.
Considering the amount of work in the area the goal is not to enumerate all the
existing systems and techniques, but more to present the main existing approaches,
differences and challenges in mapping indoor environments. Some very good sur-
veys exist in the area - Thrun’s very comprehensive presentation of mapping based
on a probabilistic approach [151], a survey on vision based navigation approaches
that includes both techniques for indoor and outdoor environments [37], and some
older reviews presented by Boresnstein [11] or Cox [34].

From a mapping point of view, the most natural classification would consider
the type of information that is represented. Most of the systems use a geometrical
representation of the navigation space - geometric-based maps where the 2D or 3D
physical space is mapped according to the absolute geometric relationships between
objects. The level of detail in geometric maps varies - most of the systems use point
features or occupancy grids while other use mode complex features (lines, polygons,
2D or 3D objects) or a complete CAD like model of the environment. The second
category, which is seldom used but very related to the presented work, are image-
based maps. In this case the map is simply a collection of images from known
locations or along a path followed by the robot, that sample the environment
without necessarily extracting an explicit geometric model. Some would consider
another distinct category - topological maps that represent the environment based
on topological relationships between features using a graph or a net. Because

22

the topological approaches rely on geometric information, they can be seen as a
higher resolution representation of a geometric map, and are mostly use for path-
planning purposes. This survey starts with a short definition and description of
the mapping problem and the aspects that have to be considered when designing a
robotic mapping algorithm, followed by a summary of each of the above mentioned
types of maps: geometric and image-based maps.

3.1 The Problem of Mapping in Mobile Robotics

Mapping involves acquiring a model of robot’s environment that is usually used in
navigation (e.g. localization). A map is usually formed by a collection of landmarks
that are then identified by the robot in order to relate (localize) itself with respect
to the map. By a closer look to the mapping problem, we see that, without an a
priori map, the problems of mapping and localization are dependent on each other.
Mapping is therefore like a chicken and egg problem: if the robot position can be
tracked around the environment, building a map becomes simple; conversely, if the
map is already known, robot position can be computed at any point in time [11].
The problem becomes more complex, if both localization and mapping are solved
concurrently. This is refereed to in the literature as simultaneous localization and
map building (SLAM) and is a central topic in mobile robotics. It will be later
discussed in subsection 3.2.3. Next subsection presents most important problems
in mapping as classified in [151].

3.1.1 Aspects and Challenges

Mapping and localization rely on sensor measurements. Any realistic navigation
system has to account for measurements noise, caused by sensor limitations, un-
certainties and inaccuracies. The most natural way to incorporate noise in the
mapping process is to use probabilistic algorithms. Perceptual noise is complex
to model and accumulates in time. Some of the common approaches for modeling
robotics mapping (see subsection 3.2.3) are Kalman filters, expectation maximiza-
tion or a combination of these two.

A second important and difficult problem in mapping, which is often ignored, is
the correspondence problem, also refereed to as the data association problem. The
correspondence problem involves relating current robot measurement with existing
map features. The most robust systems address this problem using vision sensors.
We believe that image information, which can easily describe complex aspects of
the environment, is a very promising way of dealing with the data association
problem (see chapter 4).

Another challenging problem is the fact that environment can change in time.
The change can be cause by actual spatial changes in the environment (moving
chairs, people), occlusions or by changing illumination. The latest type of change

23

is only valid when working with vision sensors. Most of the systems rely on static
objects and small changes are modeled by noise.

A last problem is robot exploration. When the map is unknown, or partially
known, the robot has to be guided in order to continue its exploration. Most of
the approaches are heuristic, but the majority of the systems do not address this
problem.

Next sections will present the most important techniques in geometric based
maps (occupancy, topological, SLAM and others) and image-based maps.

3.2 Geometric Maps

3.2.1 Occupancy Maps

Historically, the first maps were represented as occupancy grids - a 2D array of
cells, each containing a value that represents the algorithm’s certainty about the
existence of obstacles in that cell (see Figure 3.1 for an example of an occupancy
map). After the pioneering work of Giralt et al. [51] and later Moravec and Elfes
[110, 111, 43] this approach was adopted by many researchers [12, 173, 172, 101].
Borestein and Koren [12] refine this approach by introducing histogram grid which
allows dynamically modeling the data when the robot is moving.

Figure 3.1: Example of occupancy map (white - free space, black - obstacle; blue
- unexplored space) [152]

Most of the systems based on occupancy maps use sonar or laser sensors, but
certainty values can also be extracted from vision sensors. Murray and Jennings
[112] propose a trinocular stereo system to build an occupancy map from range
values. Matthies et al. [118] build a 3D occupancy map using an omnidirectional
stereo system. Thrun [152] combines sonar and vision sensors to create a grid-
based occupancy map. The vision occupancy map is estimated from disparity
values. In [164] an edge map and a color map extracted from an omnidirectional
vision sensor are integrated with a sonar map to produce an exact occupancy map.

24

The central problem in generating occupancy maps is incorporating noisy and
incomplete measurements, assuming known robot position. The algorithms are
often based on one of the probabilistic approaches described in subsection 3.2.3.

3.2.2 Topological maps

An alternative type of map - topological map [100, 107, 83], represents the naviga-
tion space by a graph, where nodes correspond to key places of the environment
(e.g. corners, doors) and arcs correspond to connectivity of moving from one place
to another. The graph does not reflect the geometry of the space, but the rela-
tions between key places of the environment that can be used for path planning
or navigation. That is why usually topological maps are enriched with local met-
ric information [152] or image-base information [130] to facilitate localization or to
establish correspondence between current and past locations. Sometimes the topo-
logical maps are built from the geometrical maps [152, 172], or from image-based
maps [69].

Voronoi diagrams can also represent the connectivity of free space in a very
compact way by storing a collection of points equidistant from two nearest ob-
stacles. They can be used to generate optimal paths that are equidistant from
obstacles. Canny and Donald [15] use simplified Voronoi diagrams to generate
collision free paths among obstacles. In [69] and [130] image-based information
is added to the graph in order to help the localization process. Ishiguro et al.
[69] generate a topological map, called T-Net, that approximates local areas with
straight paths which are memorized with pairs of feature points. The robot is
moving along the T-Net by tracking feature points. Visual information, in the
form of omnidirectional visual and range data and a panoramic route representa-
tion, is associated with the graph. In [130], the robot explores the space, stores
the sequence of unfamiliar images, and associates them with an arc. It will close
a loop when it finds a familiar image. The appearance of an unfamiliar image is
marked as a new node in the graph and a new arc begins from this node.

Topological maps are mostly used for path-planning, so accuracy in robot po-
sition is not so important. Many topological maps rely more on external sensors
(sonars, cameras, GPS) than on internal sensors (odometry). Without any ad-
ditional information (metric, images), it is very hard to localize the robot. One
solution is to use odometric information and to correct the estimated location after
each node [84]. Another solution is to keep a short history of the measurements. If
additional information is stored in each node, traditional feature-based approaches
can be used for robot localization [152, 150, 130, 69]. When images are used to
identify arcs or nodes in the graph, matching is done by traditional correlation
techniques in image or transformed space (for example histogram matching [163]).

25

Figure 3.2: Example of map build with SLAM. The figure also shows the route
that the robot followed while building. [52]

3.2.3 Simultaneous Localization and Map Building

The process of simultaneous tracking the position of the robot relative to its envi-
ronment and, at the same time, building a map of the environment is referred in
the literature as SLAM (simultaneous localization and map building) [38] or con-
current mapping and localization [153]. The stochastic approach was introduced
in the 1990s with a series of seminal papers by Smith et al.[143] that put the basis
of the statistical framework for formulating SLAM.

Most of the systems use sonar or laser range-finders to observe landmarks (sig-
nificant point features) that will form the map. Figure 3.2 shows an example of
a map and the path that was followed while building. Some vision-based systems
use low level features such as vertical edges [16], but they have data association
problems as good features are difficult to extract and match. There are two main
families of algorithms that are presented in the next subsections, one based on
Kalman filter and the other on expectation maximization.

Kalman Filter

A classical approach for generating maps is based on Kalman Filter, that was
initiated by Smith et al. [143] and later developed by numerous researchers, most
notably by a group of researchers located at University of Sydney, Australia.

In the original formulation, a single filter was used to maintain robot position,
landmark locations and covariances between them. The computational complexity

26

is O(n2), where n is the number of features in the map, so it increases with map size.
In a recent paper, Thrun [109] developed an algorithm -FastSLAM - that reduces
the problem complexity to O(log n) using particle filters for robot path estimation.
Another approach for improving complexity is to decompose the problem into
multiple smaller ones [52].

One advantage of Kalman filter based approaches, which made them popular
in the mobile robotics community, is the capability of estimating a full posterior
probability of robot map, pose and uncertainties in the map. Another advantage
is that it was shown - in a formal theoretical study [38] of the evolution of the map,
and uncertainty - that the approach converges to the true map up to a residual
uncertainty distribution.

One of the main disadvantages of the algorithm is the assumption about the
measurement noise as being independent and Gaussian, which can introduce prac-
tical limitations. Another is that in general Kalman filter approaches are unable
to cope with correspondence problem. This problem can be eliminated by combin-
ing the incremental Kalman based approach with a maximum likelihood estimator
[96, 154].

Expectation Maximization (EM)

An alternative to Kalman filter solution to SLAM is based on expectation maxi-
mization or shortly EM [153]. EM algorithms are one of the best current solutions
to the data association problem. The E-step estimates robot location at differ-
ent points based on the currently best available map and the M-step estimates a
maximum likelihood map based on locations computed in the E-step. Being not
incremental, as data has to be processed several times in order to find the most
likely map, it can not run in real time.

Recently, real time algorithms have been developed by integrating probabilistic
posteriors with ML estimates, known as incremental maximum likelihood method
[154, 173]. The algorithm computes a single incremental map, by computing pos-
terior probability over all robot poses, and not just the last measurements. The
posterior estimate can be implemented using particle filters [36] , a version on Bayes
filters using stochastic sampling. The hybrid approaches however cannot work in
real time for large environments as the cost of computing posterior probability
grows.

3.2.4 Other Geometric Maps

We include here some feature based maps that do not belong to any of the above
presented categories and are mostly acquired using vision sensors. Image patches,
with a distinct signature, are a good way to identify point features in the envi-
ronment. Sim and Dudek [142] proposed learning visual features using principal
component analysis. A tracked landmark is a set of image thumbnails detected in

27

the learning phase. An interesting and robust system that tracks SIFT landmarks
(image features invariant to translations, rotations, scaling) was developed by See,
Lowe and Little [134]. The distinctiveness of these features makes them easy to
track over longs periods of time. An Extended Kalman Filter is used for keep-
ing track of robot and landmark positions and uncertainties. Figure 3.3 shows an
example frame with the SIFT features marked and the SIFT database map (right).

(a) (b)

Figure 3.3: (a) Example of sift features (b) View of the SIFT database [134]

More complex features - shape and objects such as lines, ceilings, doors, walls
can be considered when building the navigation map. These maps are sometimes
referred as object maps [151] and the techniques are borrowed from computer vision
and photogrammetry literature. They have the advantage of being more compact,
more accurate and closer to human perception, but in general harder to build.
Most of them model flat and square surfaces that are common in man-made en-
vironments, neglecting the complex aspects of the real world. We believe that by
using techniques from image-based modeling for creating object maps, can make
them not only easier to acquire but also more realistic.

Different types of sensors (laser range-finders [33, 16], stereo vision [2, 174],
or omnidirectional vision sensor [171]) can be used to extract the line segments.
Forsberg [50] designed a navigation system in clustered rooms where direction and
distances to the walls are determined using range-weighted Hough transform over
range data provided by a laser range-finder. Faugeras et al. [46] used stereo vision
for extracting road direction and the location of curbs. Their algorithm has good
performance in indoor as well as outdoor environments. In [89] more complex
primitives like planes, cylinders, corners and edges are tracked and matched with
an a priori geometric map. A complete polygonal model generated from range
data using a non-redundant triangular mesh and texture mapping is created in
[42]. Thurn et al. generated a textured compact 3D model [94]. The algorithm
employs the expectation maximization to fit a low-complexity planar model to 3D
data collected by range finders and a panoramic camera. Figure 3.2.4 shows a view

28

of the model (data file is in VRML format, which makes it possible to synthesize
arbitrary views) .

Figure 3.4: View of the VRML 3D model generated using range finders and a
panoramic camera [94]

3.3 Image-Based Maps

Images contain rich information about the surrounding environment. That is why
a set of images organized in a meaningful way can be used as a map for robot
navigation. This map is very easy to build, but it has the disadvantage that it is
hard to extract information from images. There are two different approaches in
image-based maps. One is to memorize images along a path that should then be
repeated by the robot, and the other is to memorize images at fixed locations as
reference points in the navigation environment. An omnidirectional image contains
views in all directions at a location, so most of the systems use it as a signature of
that area. Localization is usually done by matching stored images with the current
one observed by the robot.

Figure 3.5: Panoramic route representation [175]

One of the earliest works from the first category (route representation) was
created by Tsuji [175] where a panoramic representation of the route is obtained
by scanning side views along the route. Figure 3.5 shows an example of route
panorama. The robot uses the panoramic representation recorded in a trial move
and the current one for locating itself along the trial route. In a later work [92]
landmarks are extracted from the panoramic representation by segmenting objects
based on color and range information. The current landmarks are matched with the

29

stored ones using dynamic programming. In [102] the model contains a sequence
of front views along the route. The robot memorizes, at each position, an image
obtained from a camera facing forward, and the directional relation to the next
view. An interesting approach is presented in [170] where the route is memorized as
2D Fourier power spectrum of consecutive omnidirectional images at the horizon.
The robot position is determined by comparing patterns from memorized Fourier
power spectrum with the principal axis of inertia.

(a) (b)

Figure 3.6: (a) Original locations and recovered trajectory (b) Example of a
panoramic image (cylindrical projection) [75]

The problem with route representation approaches is that the robot has to move
along the same pre-stored route. To overcome this problem, omnidirectional images
are stored in fixed places of the environment [70, 64, 167, 75]. This representation
is very suitable for homing applications where the robot has to move toward a
target location. The omnidirectional images used to represent the space are very
similar and require a lot of memory space, so they are processed and compressed.
Ishiguro [70] transforms the images into the Fourier space; Hong [64] uses a one
dimensional signature of the image assuming that the robot is moving on a plane.
Winters [167] and Jogan [75] use an eigenspace representation of panoramic images.
The former one compresses the images using Principal Component Analysis (PCA),
and represents the map as a manifold in the lower dimensional eigenspace obtained
from PCA. Johan uses Zero Phase Representation (ZPR) to project differently
oriented panoramic images into one representative image and then Singular Value
Decomposition (SVD) to find a lower dimensional representation of a set of images
in terms of linear combinations in the eigenspace. Figure 3.6 shows a map with the
locations of the panoramic images and recovered trajectory (left) and an example of
a panorama (right). For eigenspace approaches, localization is done by projecting
the representation of the current image into the eigenspace. Other techniques
compare the current image with the stored ones and find the optimal position.
Ishiguro [70] uses a spring model to arrange the observation points according to
the environment geometry. A simpler approach to the homing problem is found in

30

[5, 6] where the robot is moved toward a goal position specified by a planar image.
The translation and rotation that will align the robot with the desired position are
computed from the current image and the target image by recovering the epipolar
geometry.

3.4 Summary of Mapping Algorithms

This chapter presented a short overview over existing robotic mapping techniques.
There are two main categories of maps - geometric and image-based maps. Most
of the systems are using geometric maps that contain 2D or 3D information about
the navigation environment. They can be further subdivided into occupancy, topo-
logical maps, SLAM (probabilistic point feature type) maps and object maps.
Image-based maps, more seldom used, use images to represent the navigation space
without an explicit geometric model.

The current trend in mobile robotics is probabilistic maps. They are robust to
noise, can work in real time, and handle large scale environments. Despite being
very promising, there are still problems, and one of the harder ones is data asso-
ciation. We believe that using the image information contained in an image-based
map can lead to a solution to this problem. In addition, considering how much
information we, people, have about environment, mostly acquired using vision, the
mapping alternative presented in this thesis might be a natural way to represent
a space. Object maps are along the same idea, but the present solutions are usu-
ally very tedious. Another advantage of an image-based type model is that it can
very easily and naturally be interpreted by a human operator (e.g. for controlling
a mobile robot in a remote location). The operator commands can be given in
image space (e.g. by dragging the model) as opposed to the abstract Cartesian
coordinates provided by a geometric map.

31

Chapter 4

Panorama with Depth

32

This chapter presents the first method for constructing image-based navigation
maps using traditional calibrated techniques. The map is formed by a panoramic
model enriched with depth information. In the beginning some basic computer
vision techniques are summarized for a better understanding of the theory behind
the model. The cylindrical panoramic model is then introduced, followed by a
description of the two modalities of acquiring depth information (trinocular stereo
and laser range-finder) and how depth data is integrated with intensity data. In
particular, an innovative depth-intensity image-based registration algorithm is used
for registering the cylindrical panoramic image with depth data acquired by the
laser range-finder. In the next chapter, for demonstrating the use of the model
in mobile robotics, we present applications in robot localization and predictive
display.

4.1 Introduction to Computer Vision

This section presents some basic problems and concepts in compute vision start-
ing with the projective camera model and calibration, projections of geometric
primitives and, in the end, an introduction to two view geometry in particular the
parallel stereo configuration. More advanced geometric vision notions about the
modern formulation of multi-view geometry are presented later in Section 6.1.

4.1.1 Projective Camera

Computer vision studies the process of image formation and the world proprieties
that can be recovered from images or video. The mathematical image formation
abstraction is the camera matrix K, which projects 3D world points to 2D image
points through a focal point C (see Figure 4.1). When representing the points in
homogeneous coordinates, K is in general a 3 × 4 matrix. For the moment we
introduce the simplest and most common camera model - the pinhole model. This
is a finite camera, meaning that the center of projection is a finite point. Another
class of cameras, infinite cameras, in particular affine cameras, that have the center
of projection at infinity, are presented in Section 6.1.1.

As Figure 4.1 shows, if the center of projection is chosen as the world coordinate
system, the projection equation can be written as follows:

x =
fX

Z
and y =

fY

Z
, (4.1)

The nonlinear equation becomes linear when representing points in homogeneous
coordinates:







x
y
1





 ∼







fX
fY
Z





 =







f 0 0 0
0 f 0 0
0 0 1 0

















X
Y
Z
1











(4.2)

33

X

Z

Y

C

v u

camera center

principal axis

X

x

image plane

c

Figure 4.1: Pinhole camera model

where we denoted ∼ the point equivalence in homogeneous coordinates.

(c ,c)v

u

u v

Figure 4.2: From retinal coordinates to image pixel coordinates

Using this projection the image points will be indexed with respect to the principal
point (intersection of image plane with the optical axis). In real cameras image
pixels are typically indexed with respect to the top left corner of the image and,
in addition, the coordinates of the pixel do not correspond to the coordinates in
the retinal plane but depend on the physical dimensions of the CCD pixels in the
camera. The 2D transformation that transforms retinal points into image pixels is
(see figure 4.2):







u
v
1





 ∼









1
px

+ cu
1
py

+ cv

1









=









1
px

0 cu

0 1
py

cv

0 0 1















x
y
1





 (4.3)

where (cu, cv) represents the principal point location (not always the center of the
image) and px, py the 2 pixel scale factors along horizontal and vertical directions
respectively. Combining equation 4.2 and 4.3, we obtain the projection equation
in component and standard matrix form as:

x =









f
px

0 cu 0

0 f
py

cv 0

0 0 1 0









Xcam =









f
px

0 cu

0 f
py

cv

0 0 1









[I|0]Xcam = K[I|0]Xcam (4.4)

34

Here K is called the calibration matrix and is formed from camera internal param-
eters. More parameters can be introduced to model different real cameras (e.g.
skew in the case when the pixels are not rectangular). This parameters are in
general related to a particular physical camera and can be determined ahead in
the process of camera calibration [161] (see Subsection 4.1.2).

In a general configuration, when the world coordinate system is different than
the camera coordinate system, an additional 3D transformation is required:

x = K[R|t]X = PX (4.5)

The 3 × 4 matrix P is called the camera projection matrix and has in general 11
DOF. If P can be decomposed like in equation 4.5 (3×3 left hand submatrix M is
nonsingular) it is called finite camera. If M is singular the camera is called infinite
camera.

4.1.2 Camera Calibration

Camera calibration [161] deals with computing the camera matrix given images of
a known object and is equivalent to the resection problem discussed in Subsection
6.1.2. The calibration object is usually built as a 2D or 3D pattern with easily
identified features (e.g. checkerboard pattern). The camera matrix is then decom-
posed into internal and external parameters, assuming a certain camera model.
The linear camera model discussed so far can be a bad approximation for a very
wide lens camera and radial distortion has to be considered. The radial distortion
is small near the center but increasing toward the periphery, and can be corrected
using:

û = uc + L(r)(u − cu) (4.6)

v̂ = vc + L(r)(v − cv) (4.7)

where (û, v̂) denotes the corrected point for (u, v) and (cu, cv) is the principal point
of the camera and r2 = (u − cu)

2 + (v − cv)
2. L(r) is the distortion function and

can be approximated with L(r) = 1+k1r +k2r
2 + The coefficients of the radial

correction k1, k2 are considered part of the internal camera parameters.

4.1.3 Image Projection of Geometric Primitives

A point in 3D is projected on the image plane on a 2D image point using equation
4.2. The image point can geometrically be obtained by intersecting the ray defined
by the 3D point and the camera center of projection with the image plane.

A line in 3D projects to a line in the image plane. Geometrically, as illustrated
in Figure 4.3, the line projections obtained by intersecting the plane defined by
the 3D line and the camera center with the image plane. Algebraically, the 3D line
can be represented by a point d and a direction v. Denoting with m the normal of

35

image lineimage plane

3D line

v

d

Z

Y

Xm

C

Figure 4.3: A 3D line can be represented as (v,d). The image projection is
represented by m

the plane defined by the camera center and the 3D line, the equation of the image
line is:

mxx + myy + mzz = 0 (4.8)

where m = (mx, my, mz) = v × d. If the camera is registered with the reference
coordinate system and has focal length 1, m represents the projective coordinates
of the image line. Note that in 2D projective space a line has 3 coordinates (same
as the point). Different formulation of line projection equation can be obtained
using Plücker representation [59].

X

Y

Z

C
x

xπ

image plane

world plane

Figure 4.4: Points on a 3D plane are in general transfered to the image plane
through a 2D projective transformation (homography).

Points on plane π can be represented as (X, Y, 0, 1)T when choosing the refer-
ence coordinate system aligned with the plane (see Figure 4.4). The projection
equation 4.5 can then be rewritten as:

x = PX =
[

p1 p2 p3 p4

]











X
Y
0
1











=
[

p1 p2 p4

]







X
Y
1





 = Hxπ (4.9)

36

where pi denotes column i in the projection matrix. So, in general, the map be-
tween points of the plane xπ = (X, Y, 1)T and their image x is a 3×3 matrix named
planar homography or 2D projective transformation. Considering projections of
points from the same physical plane on two images, it can easily be shown that,
they are related by the same type of transformation (2D homography).

4.1.4 Two View Geometry

C

x

e

l’

X

e’ C’

epipolar plane

epipole

epipolar line

epipole

Figure 4.5: Epipolar geometry

Epipolar geometry

Without having any information about the position of a 3D point, given its pro-
jection in one image, its projection is restricts in a second image to a line that is
called the epipolar line. This is the basic geometric constraint for the two view
geometry and is illustrated in Figure 4.5. Geometrically it can be easily be proven
by considering the plane that connects the camera centers C,C′ and the point x
in the first image - epipolar plane. This plane intersects the second image plane
on a line that is the epipolar line. Note that all epipolar lines in an image have a
common point - the projection of the second camera center. This point, is called
the epipole and is denoted e and e′ respectively for first and second camera in
Figure 4.5.

Algebraically, the epipolar constraint is formulated using the fundamental ma-
trix F [47]. F is a 3×3 matrix that has rank 2 (the epipole e is the nullspace of F).
A lot of effort has been put in robustly estimating F from a pair of uncalibrated
images (e.g [156]). It can be estimated linearly given 8 or more corresponding
points. A nonlinear solution uses 7 corresponding points, but the solution is not
unique. Here are some important properties of the fundamental matrix that allows

37

the computation of the epipolar lines and epipoles.

l′ = Fx l = F Tx′ (4.10)

Fe = 0 F Te′ = 0 (4.11)

Calibrated stereo

(0,0)

x

X

Z

(d,0)

=fZ

xl r

{2nd camera}{1st camera}

Figure 4.6: Calibrated stereo geometry

A special case of the two view geometry arises when the cameras are calibrated and
aligned (the image planes are parallel with the line connected the camera centers).
A 1D illustration of this configuration is presented in Figure 4.6. In this case the
epipolar lines correspond to image rows so corresponding points in two images are
on the same scanline. The horizontal displacement between two corresponding
points is called disparity. This special case has practical application in computing
dense depth from images. Correspondence problem is simplified (corresponding
point is on the same scanline) and there is a simple solution for depth, knowing
the focal length of the cameras f and the distance between the camera centers d:

Z =
df

xl − xr
(4.12)

where xl − xr represents the disparity (horizontal distance between corresponding
calibrated image points). Note that the cameras have to be calibrated and xl, xr

normalized with respect to image scale and center. An example of a depth map
computed using a trinocular vision system (from Point Gray Research [131]), used
for one of the models presented in this thesis in Section 4.3, is presented in Figure
4.7.

4.2 Cylindrical Panoramic Mosaic

Image mosaicking, as described in Section 2.2.1, deals with merging a collection of
images into a bigger image. A panoramic mosaic captures a 360◦ degree view of

38

Figure 4.7: Example of a disparity map computed using the Triclops vision system.
(a) left intensity image (b) disparity map (c) Triclops device

the environment and can be constructed by composing planar images taken from a
single point of view. This mosaic is geometrically correct because the input images
are related by a 2D projective transformation (homography).

In this research, a CCD camera was mounted on a pan-tilt unit that could be
programmed in order to control the amount of rotation. The camera was fully
calibrated using Tsai’s algorithm [161]. The rotating camera took an image every
5-10 degrees and they were blended into a mosaic as described next. Using the
camera model from equation 4.4,

K =







au 0 cu

0 av cv

0 0 1





 (4.13)

a pixel x = (u, v)T backprojects on the 3D ray d = (dx, dy, dz)
T , according to:

dx =
u − uc

au
dy =

−v + vc

av
dz = −1 (4.14)

Each acquired image was projected onto a cylinder with the radius equal to the
focal length of the camera f through the mapping:

θ = tan−1(
dx

dz
) v = f

dy
√

d2
x + d2

y

(4.15)

The projected images “stitched” or correlated in order to precisely determine the
amount of rotation between two consecutive images. In the cylindrical space a
translation becomes a rotation, so we can easily build the cylindrical image by
translating each image with respect to the previous one. To reduce discontinuities
in intensity between images we weight the pixels in each image proportionally
to their distance to the edge [148]. Figure 4.8 (a) presents a 360◦ cylindrical
panorama constructed using the presented technique. More examples are shown
in the following sections.

39

4.2.1 Depth Data

The panoramic model does not contain any depth information (parallax), so a
single model can only be reprojected from the same viewpoint where it was ac-
quired, and has limited use in any robotic application when the robot should be
able to freely move in the navigation space. A solution would be to consider mul-
tiple panoramic image from relatively distant viewpoints. A major problem in this
case is the correspondence problem1 that is very difficult for planar and relatively
close images and becomes very challenging for the case of distant panoramas. This
option is investigated in a robot localization application in Section 5.1. An al-
ternative solution is to enrich the model with dense depth data that can then be
use to generate correct re-projections. Two modalities of acquiring depth data
are described in the following subsections: a trinocular vision system and a laser
range-finder.

4.3 Depth from Stereo

4.3.1 Depth Panorama

The depth panorama is acquired using a trinocular vision system from Point Grey
Research [131] (see Figure 4.7). This system consists of three cameras and produces
a real time disparity map. The disparity information was used along with the
intensity data to produce a “stereo” panorama. A similar approach is presented
in [80], with the difference that they used two panoramas to produce the depth
map, while, in this work, the disparity information is provided by the trinocular
system for each of the images to be composed in the panorama. In this way,
there are significant quantization errors in the generated disparity map because
of the small baseline, although the correspondence problem is easier to solve (see
Subsection 4.3.2).

The trinocular system is rotated around the optical center of the reference
camera. Along with the intensity cylindrical panoramic image, we also build the
corresponding depth map. The result of the mosaicking technique is presented in
Figure 4.8(a) and the corresponding “depth” map in Figure 4.8(b).

It is known that depth from stereo has physical limitations due to calibration of
cameras, quantization on CCD and a relatively small baseline compared to object’s
depth - as easily derived from equation 4.12. Some other algorithm related source
of errors like establishing correspondences might introduce more noise. For filter-
ing depth data, but also to provide strong features for the localization algorithm
(Section 5.2) that is using the model, we developed an algorithm for extracting
planar patches that will enrich the current panoramic model. Next subsection

1The correspondence problem is the problem of relating/identifying geometric primitives or
features that correspond to the same physical entity.

40

presents a segmentation algorithm based on both intensity and range data. The
approach was developed on planar images and then applied to cylindrical mosaics.

4.3.2 Planar Patches

Most of the current algorithms for extracting planar regions are based on range
image data. Several algorithms are known in the literature for segmenting range
images in planar regions. They can be classified into three main categories: region
growing, split-and-merge and clustering methods. An experimental comparison of
the range image segmentation algorithms [44] has shown that this problem is far
from being “solved”.

Region growing approaches start with a fine segmentation of the initial image
and then bigger regions are grown based on similar plane equations. The initial
segmentation can be obtained by fitting a plane to each pixel based on an N × N
window [44], or by generating a mesh from the original 3D points using traditional
graphics techniques like Delaunay triangulation [47, 79]. The approach presented
in [74, 113] is based on the observation that, in the ideal case, the points on a scan
line that belong to a planar surface form a straight 3D line segment. Therefore one
can first divide each scan line into straight line segments and then perform region
growing using the set of line segments. In [79] the boundary of the final regions is
further simplified in order to accommodate noise in the range data.

In [119], the split-and-merge approach originally proposed by Horowitz and
Pavlidis [66] for intensity images was extended to range images. Schmitt and Chen
[133] propose a new split-and-merge algorithm that uses a Delaunay triangulation
as the basis for an adaptive surface approximation technique.

Clustering represents another class of algorithms for segmenting range data into
planar regions. The feature space in which the clustering takes place differs from
one algorithm to the next and can be a pixel [76], or a pixel and the estimated
normal [44].

All these algorithms use a best fitted plane to range data to verify the planarity
of a region. An interesting texture-based planarity constraint is presented in [122].
Having an initial triangulation of the scene in two images, the planarity of each
triangle is determined based on the correlation between the texture of matched
triangles after rectifying them to a common viewpoint.

Most of the current systems segment the range image data into planar regions,
which are then integrated into a 3D model. They rely on dense and accurate
depth information that is usually acquired using laser or structured light range
finders. As mentioned before, depth from stereo has errors caused by limitations
due to calibration and CCD quantization or other algorithmic inaccuracies like
mismatched correspondences (for a performance comparison of stereo algorithms
see [82]). As an example, considering the Triclops baseline (10 cm), the error
in depth for a distance of 10 m is about 0.5 m. Another characteristic of stereo
algorithms is that they generates disparity only for textured ares (where correlation

41

(a)

(b)

(c)

Figure 4.8: (a) Cylindrical panoramic model of a research laboratory; (b) Depth
map: dark - close objects; whither - far objects; black - no depth value; (c) Ex-
tracted planar patches

42

makes sense). The developed image-based panoramic model is designed for indoor
robot navigation, where most of the planar patches, like doors, walls, cabinets,
either have regular or do not have any texture, but they are visually distinctive
in the intensity image. So using disparity information alone in extracting planar
patches would not be appropriate in our case. Instead, we designed a planar patch
extraction algorithm that uses a combination of intensity and depth information.

The main observation that led us to the current algorithm is that in a typical
indoor environment, most of the planar regions have an intensity distinct from the
surrounding regions. So the first step in the segmentation algorithm is a region
growing approach based on average intensity. This algorithm is summarized in
Subsection 4.3.2. Next, depth information is used to segment the regions gener-
ated by the region growing algorithm, based on a planarity test. To compensate
the errors in depth data, we use a generalized Hough transform to eliminate the
bad points. Subsection 4.3.2 describes this planar patch selection approach. Sub-
section 4.3.2 presents some experimental results for evaluating the robustness of
the algorithm.

Intensity based segmentation

Extracting
trapezoidal

regions

Region
growing

triangulation
Delaunay

Edge detection
and linking

In
te

ns
it

y−
ba

se
d

se
gm

en
ta

ti
on

Hough
transform

Select
planar patches

Original
image

Planar
patches

Trapezoidal
regions

D
ep

th
−

ba
se

d
se

gm
en

ta
ti

on

Figure 4.9: Flow chart for planar patch extraction algorithm

The flow chart of the segmentation algorithm is presented in Figure 4.9. The fun-
damental structure used by the global region growing algorithm is a triangular
mesh. The segmentation algorithm takes place in the image domain so the mesh
is also generated in pixel space. We choose a constrained Delaunay triangulation
[139] based on edge segments to construct our 2D mesh because it generates a con-
nected mesh with disjoint triangles. The edge segments input to the triangulation

43

(a) (b) (c)

(d) (e) (f)

Figure 4.10: Planar region segmentation (a) Original image; (b) Edge detection and
linking; (c) Constraint Delaunay triangulation; (d) Region growing (e) Extracted
trapezoidal regions; (f) Vertical planar regions;

algorithm are edges of the resultant mesh. The segmentation algorithm extracts
regions with distinct average intensity that should have also distinctive edges.

For edge extraction and linking we used the code provided by Dr. S. Sarkar at
University of South Florida [132]. Their edge detection algorithm is an adaptation
of the optimality criterion proposed by Canny to filters designed to respond with a
zero crossing. For edge linking, they segment an edge chain into a combination of
straight lines and constant curvature segments. Figure 4.10(b) presents the edge
image after the edge detection and linking algorithm is applied to original image
(Figure 4.10(a)), and Figure 4.10(c) presents the result of constrained Delaunay
triangulation with the edge segments.

The global region growing algorithm starts with the triangular mesh and merges
the initial triangular regions into larger ones that have similar average intensity.
The process stops when a threshold in the number of regions or total mesh error
is passed. We used a modified version of the region growing algorithm presented
in [47, 79].

From the initial triangular regions, region adjacency graph is created, where the
vertices represent the regions and the edges indicate that two regions are adjacent.
Each edge is weighted by the error given by

Eij =
∑

u,v∈Ri

I(u, v)

Ni
−

∑

u,v∈Rj

I(u, v)

Nj
(4.16)

where Ri and Rj are the adjacent regions that share the edge, I is the initial image

44

to be segmented, and Ni represents the number of pixels from region Ri. Larger
regions are grown from the initial mesh by merging adjacent regions. At each
iteration the two regions that produce the smallest error Eij are merged. This
guarantees that the total error grows as slowly as possible. After each merge the
adjacency graph is updated.

There are two thresholds for stopping the region growing process. One is the
total number of regions and the other is an upper bound for the total error. In our
case the first one works better.

The resulting regions are presented in Figure 4.10 (d). Final regions usually
have irregular shapes that can be either concave or convex. We developed a heuris-
tic algorithm that extracts the biggest trapezoid out of a region. The algorithm
proceeds by first filling all the small interior holes and then finding the biggest rect-
angle included in the original region. For easily testing if a certain pixel belongs
to the current region or not, we created a black and white image that contains
only the current region. We then detect the bigger interior rectangle - Rh - by
horizontally scanning the image. The initial rectangle is the longest vertical scan
scan line of the current region. This rectangle is extended in both left and right
directions till its area stops growing. The procedure is repeated for vertical scan
to obtain Rv. The final rectangle is the biggest one between Rh and Rv. This is
then expanded up and down into a trapezoid to fit the original region shape. The
result of this algorithm is shown in Figure 4.10 (e).

Planar region selection

The trapezoidal regions that result from the intensity based segmentation algo-
rithm are distinct regions not necessary planar. This section describes the algo-
rithm that thresholds these regions based on a planarity error measure and some
properties of the corresponding 3D plane.

The trinocular system provides 3D information for some of the interior points
in each trapezoidal region. This depth data is very noisy, so, before calculating
the best fitted plane to region points, we eliminate the outliers using a generalized
Hough transform [54].
Consider the plane equation

X sin φ cos θ + Y cos φ + Z sin φ sin θ + ρ = 0 (4.17)

where ρ is the distance to the plane from the origin, and φ and θ are the spherical
coordinates of the normal (see Figure 4.11). There is an infinite number of planes
that pass through the point (X, Y, Z)T , but they all satisfy equation 4.17. By
fixing X, Y, Z and considering φ, θ, ρ as the parameters of equation 4.17, we will
have a surface in the parameter space corresponding to the point (X, Y, Z)T . All
the points belonging to a certain plane will have the corresponding surfaces in the
parameter space intersecting at one point (φ, θ, ρ)T which represents the parameters
of that plane. We subdivide the parameter space in cells according to expected

45

φ
θ

X

Y

Z

n

Figure 4.11: Spherical coordinates for normal to the plane

ranges of φ, θ, ρ and then compute the corresponding cells for each 3D point by
incrementing φ and θ and calculating ρ from equation 4.17. The range for φ and θ
is [0◦, 180◦]. The parameters of the cell that contains the largest number of points
give an approximation of the plane fitted to the region points, so we will keep only
these points for computing the exact equation of this plane. Figure 4.12 shows a
point cloud before (a) and after (b) the Hough transform.

2 2.2 2.4 2.6 2.8 3 3.2 3.4
−1

−0.5

0
−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

X

Z

Y

2 2.2 2.4 2.6 2.8 3 3.2 3.4
−1

−0.8
−0.6

−0.4
−0.2

0

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

X

Z

Y

(a) (b)

Figure 4.12: Point cloud for a planar region before (a) and after (b) the Hough
Transform

For computing the plane equation of a planar patch, we compute the best
fitted plane that approximates the points selected by Hough transform. The plane
parameters (n, d) are determined by minimizing the error measure

E =
N
∑

i=1

(nT Xi + d)2 (4.18)

where Xi are the points in the region, N is the number of points, n in the unit
normal of the plane, and d is the distance from the origin to the plane. This
is a classical non-linear optimization problem [47] and the solution for the plane
normal nmin is an eigenvector of length one of the covariance matrix Λ associated
with the smallest eigenvalue λ, which is also the minimum error. The covariance

46

matrix is given by

Λ =
1

N

N
∑

i=1

AiA
T
i , Ai = Xi − X and X =

1

N

∑

Xi

The minimum distance to the best fitted plane is given by

dmin = − 1

N

N
∑

i=1

nT
minXi

After computing the plane that best approximates the points in each region we
decide if this is a real planar patch by thresholding the plane error (equation 4.18),
number of points with disparity relative to patch size, and patch dimension in the
image space. For the robot navigation application we are interested in extracting
only planes that are almost vertical so another threshold criterion is the normal
angle with the horizontal plane. Figure 4.10(f) shows the extracted vertical planar
patches.

We used this segmentation algorithm to extract planar patches out of the
cylindrical panoramic model. For each planar patch we store its position in the
panoramic image and the corresponding plane equation. The result is presented in
Figure 4.8(c). The panoramic model with depth from stereo is formed from
intensity and depth panoramic mosaics and vertical planar patches represented as
trapezoidal regions in image space and with the plane equation in 3D space. This
represents our first developed image-based map for robotics and was applied for a
localization algorithm that is described in Section 5.2.

Evaluation of the plane segmentation algorithm

To compare the performance of our algorithm with others, we implemented Kang
and Szeliski’s range-based segmentation method [79]. The result is presented in
Figure 4.13 that shows the algorithm’s inability to handle noisy range data. For
example the poster from the right part of the image is considered to belong to
the same plane as the cabinet below that is about 0.5 m in front of it. This
is because of the noise present in the depth data resulting from the trinocular
system. Figure 4.10(f) shows the output of our segmentation method where the
poster and the cabinet are correctly separated into two distinctive regions.

After applying the segmentation algorithm, for evaluating the correctness of
the plane equation for the extracted planar patches, we produce an image ren-
dered from a different view point than the original one. For producing the ren-
dered image, we first project the corresponding 3D points for the corners of each
rectangular patch on the evaluated plane, and then re-project them from a new
viewpoint. All the interior points of the rectangular region from the original image
belong to the same plane so, by texture mapping the interior of each patch we
obtain a geometrically correct image. Figure 4.14 shows an example of a rendered
image for the three extracted planar patches from Figure 4.10(f).

47

Figure 4.13: Results of a range data segmentation algorithm

Figure 4.14: Image with the planar patches rendered from a different point of view

4.4 Depth from Laser Range-Finder

An alternative modality to acquire depth data uses a laser range-finder. This
section describes the steps involved in building a cylindrical panoramic model
enriched with depth data from a laser range-finder. The main difference from the
approach presented in the previous section is that, an additional registration step is
required for aligning the depth and intensity data. Beside this, the resolution of the
depth data is sparser than the resolution of the intensity data, so only some pixels
in the panoramic mosaic will have depth values. The first step in model building
involves data acquisition where both intensity and range data are obtained and
mapped to a cylindrical coordinate system. Subsequently, the two data sets are
registered under a common coordinate system. For further refining the model,
planar patches are fitted to registered data and vertical lines are extracted as
intersections of vertical planes.

4.4.1 Range and Intensity Image Acquisition

The data acquisition system consists of a laser range-finder (Acuity Research, Inc.)
and a CCD camera, mounted on a pan-tilt unit (PTU) (see Figure 4.15). We use
the pan axis of the PTU to rotate the camera in order to build a cylindrical or
panoramic image model. The same pan axis of the PTU and a rotating scanner

48

attached to the laser range finder produce two degrees of freedom, sufficient for
spanning a unit sphere to acquire complete range information. Once two separate
images are obtained, they will be registered to generate the final image-based model
enhanced with 3D geometric features.

PAN−TILT UNIT

LASER

CAMERA

Figure 4.15: System configuration: the laser-range-finder with the camera attached
on top of it is mounted on a pan-tilt unit

The data returned for each sample of the laser range finder consist of a range
r, an amplitude a, and angular position of the rotating mirror θ of the scanner.
The amplitude a corresponds to the strength of the returned signal, and is related
to, among other things, both r and the gray-scale value of the reflecting surface.
Since the pan angle φ of the PTU is also known, each sample can be expressed
as a quadruple (r, a, θ, φ), and it can be considered as two images sampled on a
spherical surface: a range image r and an amplitude image a. We ignore the small
translation between the mirror center of rotation and the pan-tilt unit center, and
apply a filter to eliminate outliers in the range data. Finally, because the laser range
finder often does not generate uniformly sampled data, due to a variety of reasons
such as noise and non-reflecting surface, a 3× 3 median filter was applied over the
neighboring samples to fill the missing values and create a uniform grid. The top
figure in Figure 4.16 shows a scaled spherical range image, r, representing 180◦

scan of our navigation environment. In our scheme for representing depth values,
the close objects appear in lighter shades than far objects. The corresponding
180◦ panoramic mosaic constructed using the algorithm described in Section 4.2 is
shown in the bottom figure of Figure 4.16.

49

Figure 4.16: (top) Spherical representation of the range data from an 180◦ scan
after filtering (bottom) Corresponding 180◦ panoramic mosaic.

4.4.2 Range-Intensity Image Registration

The registration of volumetric and intensity data is an important problem espe-
cially in the fields of model building and realistic rendering. Most of the proposed
solutions are recovering the rigid transformation between the sensors using point
or line features [144, 85]. This is in general a non-linear problem and requires an
initial estimate to converge. In contrast, image-based techniques compute a direct
mapping between the points in the data sets to recover the transformation. The
accuracy of this method depends on the original assumptions about the physical
system (e.g. affine camera or planar scene) but in general they are good for locally
recovering a mapping between data sets. In [30] we compared the two approaches
and find that image-based methods are fast and adequate for application that does
not require a high precision alignment. In the setup presented here the two sensors
are very close to each other an image to image warp is suitable for aligning the
two data sets.

The first step in the registration algorithm is to project the spherical range
data into a cylindrical representation with the radius equal with the focal length
of the camera. This mapping is given by

X(r, θ, φ) 7→ X(r, θ, f tan φ) = X(r, θ, h) (4.19)

where r represents the distance from the center of the cylinder to the point, h is
the height of the point projected on the cylinder, θ is the azimuth angle and f
the focal length of the camera. Again, this data is sampled on a cylindrical grid
θ, h and represented as a cylindrical image. The same procedure is applied to the

50

amplitude data and get the cylindrical amplitude image.

∆

CCS

Y

Y

y

z

x
c

c

u r

vc

, ,)(r hθ

Y∆

y
l

x
l

zl

θ

φ h

z
α

l

c

z

LCS

(X,Y,Z)=X X

Figure 4.17: The projection of a space point P in the cylindrical image (θ, h) and
the panoramic mosaic (u, v). We approximate the laser-camera transformation
with a translation ∆Y and a rotation over y axis.

From the intensity and range data in similar cylindrical image representations,
we compute a global mapping between them. The physical configuration of the
sensors is approximated, as in Figure 4.17, assuming only a vertical translation
∆Y and a pan rotation between the two reference coordinate systems LCS (laser
coordinate system) and CCS (camera coordinate system). For a point xl(θ, h)
in the cylindrical laser image, its corresponding point in the panoramic mosaic
xc(u, v) is

u = aθ + α
v = f Y −∆Y

r
= f Y

r
− f ∆Y

r
= bh − f ∆Y

r

(4.20)

where a and b are two warp parameters that will account for difference in resolution
between the two images, α aligns the pan rotation and Y = r h√

f2+h2
is the height

of the 3D point X(r, θ, h). For the presented setup, f = 1000 pixels, ∆Y = 5 cm
and the range of the points is r = 5 − 8 m, so f ∆Y

r
= 6 − 10 pixels and it can be

approximated to a constant −β. The general warp equations are:

u = aθ + α, v = bh + β (4.21)

The warp parameters (a, b, α, β) are computed from two or more corresponding
points in the two images using a least square approach.

After the global mapping, the two data sets are only approximately aligned
with a misalignment of 5 − 7 pixels. We perform a local alignment using a set of

51

corresponding control points. The local map “stretches” the range data to fit the
intensity data using cubic interpolation based on a 2D Delaunay triangulation of
the control points.

After the data registration algorithm, each range data point acquired by the
laser range-finder has a corresponding pixel value in the panoramic image. Be-
cause the resolution of the panoramic mosaic is bigger than the resolution of the
range image, this relation does not hold the other way, more explicitly, there is no
corresponding range value for every pixel in the panorama. To solve this problem
the range values are interpolated for the points in-between.

Figure 4.18: (top) Rendered image using only the global mapping (bottom) Ren-
dered image with local alignment. Notice how misalignment from the top edge of
the left monitor is compensated.

For visualizing the performance of the registration algorithm, the navigation
room was rendered from different positions than the one where the model was
taken. The registered range points on the panoramic image are triangulated using a
2D Delaunay triangulation and the the corresponding image triangles are rendered
using OpenGL. In a complete mesh, some of the triangles might not represent
physical planes but are artifacts of occluding contours, and in most of the cases
this appears at silhouette edges [104] where points from the object are connected
with background points. To avoid this phenomenon,all the triangles within a
threshold that are parallel to the viewing direction are eliminated. Figure 4.18
shows the rendered view after global mapping (top) and with additional local
alignment (bottom). Notice that the misalignment of the texture on the computer
monitor is corrected with the local mapping technique. The bad quality of the
rendered images is due to some inaccuracies present in depth data. Part of these
will be eliminated by the plane fitting algorithm presented in the next subsection.

4.4.3 Robust Plane Fitting

Man-made environments are mostly composed from planar regions. A common
technique in data modeling [144, 148] is to segment the range (3D data) into planar
regions. In most of the cases, the goal is to create a 3D CAD-like model of the

52

(a) (b)

(c) (d)

Figure 4.19: Planar region segmentation: (a) Original image; (b) Edge detection
and linking; (c) Constraint Delaunay triangulation; (d) Merged planar regions

53

scene, composed of planar regions that are suitable for rendering. In our case, the
goal is not to reconstruct a full 3D model of the scene, but to extract a sparse set of
robust 3D features (e.g. lines) that are required by the localization algorithm (see
Section 5.3). So, the plane fitting algorithm was used to eliminate bad data and
create a cleaner model. For planar region detection, the algorithm is very similar
to the planar patch detection algorithm from Section 4.3.2 with the difference that
the planes are fitted directly to the range data that is much more reliable when
acquired by the laser range-finder. It starts with a set of triangles in image space
that are merged into larger regions based on residual error from a best fitted plane
to the corresponding 3D data points. We used the same observation that planar
regions are often bordered by intensity discontinuities (edges in the image), for
generating the starting triangular mesh for the region growing algorithm. The
edges in the region adjacency graph are weighted with the residual error of a plane
robustly fitted to the union of the 3D points corresponding to the adjacent regions
Ri,Rj that share that edge.

Ei,j =
∑

Xk∈Ri,Rj

αk(n
TXk + d)2 (4.22)

where Xk are corresponding 3D laser points for the regions and αk is a weight
factor (see the paragraph about plane fitting). Larger regions are grown from the
initial mesh by merging, at every step, adjacent regions that produce the smallest
error, and the algorithm stops when a threshold on the total number of regions is
reached. At the end the 3D points in each region are projected to the corresponding
fitted plane. Figure 4.19 illustrates the plane detection algorithm on a segment
of the panoramic image, with the original image, detected edge segments, mesh
triangles, and the final planar regions.

For determining plane equations, we used a weighted least square approach. It
is well known that even a few outliers present in the data set can cause an erroneous
estimation of the fitted plane. A robust fitting algorithm first estimates a plane as
described in Section 4.3.2 (solving equation 4.18), and then assigns weights to the
points depending on their residual:

αk = 1/(nTXk + d)2

The plane is re-estimated by solving the weighted least square problem:

min
N
∑

k=1

αk(n
TXk + d)2 (4.23)

In practice the points that have residuals above some threshold are eliminated by
setting α to 0 and the plane is re-estimated with the remaining ones with α = 1.

4.4.4 Model Vertical Lines

The incremental localization algorithm (see Section 5.3), designed for the image-
based map described in this section, matches 3D vertical line features from the

54

(a) (b)

Figure 4.20: Model vertical lines: (a) Vertical edge segments in the panoramic
mosaic; (b) 3D lines rendered on top of the model;

model with detected vertical edges in the current image. To calculate the model
lines’ parameters, vertical edges are first detected in the panoramic model, and
then, the line equation is calculated from the corresponding 3D points of the reg-
istered range data. There are three major categories of discontinuities in 3D that
can generate an edge in the image:

(a) lines on the same surface that are discontinuities in intensity (color),
(b) surface discontinuities, and
(c) occluding contours on a smooth surface.

The lines in the first category will lie on the same plane, the ones in the second
at the intersection of two planes and the ones in the third belong to a planar
surface and it separates it from a background surface. For the last two cases, the
estimated 3D line points might lie on two surfaces. A robust estimation of the line
equation should consider the line as the intersection of the planar surfaces in case
(b) and, in case (c), should first eliminate the points that belong to the background
surface and estimate the line from the points lying on the foreground surface. The
proposed algorithm simply eliminates the last two cases and considers only the
first one where most line points belong to the same planar region.

A line in 3D can be represented in terms of a unit vector v, that indicates the
direction of the line and a point d on the line (see Section 4.1.3). Having N points
on a line the line equation can be estimated in a similar way to the plane equation.
Normalizing the points with respect to their centroid X = 1

N

∑N
k=1 Xk, gives the

zero mean points Ak = Xk − X. The direction of the line is the eigenvector vmax

corresponding to the biggest eigenvalue of the covariance matrix

Λ =
1

N

N
∑

k=1

AkA
T
k

55

The mean point was chosen as being the line point dmax = X. Each line is
approximated with the closest vertical line. Figure 4.20 shows a rendering of the
model with the vertical lines.

4.4.5 The Navigation Image-Based Map

Finally, to produce the composite model, the panoramic model with depth
from laser range-finder consists of the panoramic image mosaic registered with
a sparse, piece-wise planar 3D model, and a set of vertical line segments with
corresponding 3D coordinates. This represents the second developed image-based
navigation map that is used for robot navigation (Section 5.3) and predictive dis-
play (Section 5.4).

56

Chapter 5

Applications of the Panoramic
Model in Mobile Robotics

57

This chapter presents some applications in mobile robotics of the panoramic image-
based models described in the previous chapter. The general idea is that the model
is used as a navigation map for robot navigation. The models are built off-line and
the robot is carrying an on-board camera during navigation. The robot motion is
assumed, planar which is reasonable for indoor environments where motion takes
place on the floor, so the robot location is represented by a 2D translation and a
rotation angle. The first few applications deal with the problem of robot localiza-
tion. Section 5.1 presents an algorithm that uses two panoramic image mosaics
to globally localize a robot that travels in the proximity of the models. The sec-
ond application, described in Section 5.2 uses the “stereo” panoramic model from
Section 4.3 for a global localization algorithm that uses a view taken with the
same trinocular sensor. The last localization algorithm, described in Section 5.3
is designed for the panoramic model enhanced with depth acquired by the laser
range-finder. This time we developed an incremental localization algorithm that
is integrated into a predictive display system for a remote robot environment in
Section 5.4. In general, the robotic applications demonstrate the applicability of
the proposed panoramic image-based model in traditional tasks for mobile robotics
(localization) integrated with less usual applications, like the predictive view gen-
erator, that make use of the image content of the model. The image-based map
has to be regarded as an alternative to the traditional geometric (feature-based)
maps and has the advantage over traditional geometric maps of being detailed but
easily acquired and interpreted by an average user when controlling the robot. The
data correspondence problem is also solved using image information.

5.1 Global Localization with Two Calibrated

Panoramic Mosaics

Assume two panoramic image-based models constructed at known locations in a
common environment, displayed as the two cylinders with the texture map of the
environment in Figure 5.1. The global localization algorithm presented in this
section calculates, from a single planar image captured by the robot, the position
and orientation of the robot with respect to either one of the two panoramic models.
The vertical axes of the two panoramic models are aligned and parallel to the image
plane of the robot’s camera. The localization algorithm uses a set of corresponding
vertical lines as features for the two panoramic models and the planar image. Note
that the vertical lines remain vertical when projected on a cylinder and are not
transformed into curves like horizontal or arbitrary lines. The correspondence
problem is not considered in this application, but is assumed that corresponding
features already exist. For the experiments, the process of detecting corresponding
lines is performed manually.

58

Figure 5.1: Two panoramic models and the planar image to be localized, each
sowing 180◦ of the view.

5.1.1 Calibration of the Two Cylindrical Models

The localization algorithm requires the the exact position and orientation (starting
angle) of the panoramic images with respect to the world coordinate system. For
simplicity and without loss of generality, the center of first panoramic image was
chosen as the origin of world coordinate system. We used McMillan’s algorithm
[106] to compute the relative position of the second cylinder and the rotational off-
sets which align the angular orientation of the two cylinders to the world coordinate
system.

5.1.2 Localization Algorithm

��

��

��

1

3
Y

2

3 2()α2
Z X

Y

1l

3 33

2 2 2

3 3
u()

α1()

O(0,0,0)

π

π π

l

m

(X ,0,Z)C

C

m

m

3(R ,t)

(X ,0,Z)

Figure 5.2: Matching lines in image-based models and planar image

The localization algorithm, depicted in Figure 5.2, uses pairs of vertical lines in
the two panoramas and current robot view. The vertical line features are specified
using only one coordinate - the horizontal coordinate, u, for the planar image and
the azimuth angle , α, for the cylindrical models. The length of the line feature was
not considered because this might not be a robust constraint due to occlusions.

59

Consider three corresponding lines m1(α1), m1(α2), and m1(u3) as depicted in
Figure 5.2. These lines together with the centers of projection O,C2,C3 determine
three planes π1, π2, π3 that should intersect on the same line l. The normals to these
planes, expressed in the normalized local coordinate systems, are given by

n1 = [cos α1, 0, sin α1]
T

n2 = [cos α2, 0, sin α2]
T

n3 = [1, 0, u′

3]

(5.1)

where u′

3 = u3−uc

au
is the normalized coordinate of u3 considering the camera model

given by (4.13). The projective coordinates of the normals in the coordinate system
of the first cylindrical model are [47],

np
1 =

[

n1

0

]

np
2 =

[

n2

tT
2 n2

]

np
3 =

[

RY
3 n3

tT
3 RY

3 n3

]

(5.2)

where t2 = [X2, 0, Z2] is the displacement between the position of the second
model and origin of the coordinate system, and t3 = [X3, 0, Z3], RY

3 (θ) are the
displacement of the current position and orientation of the robot with respect to
the world coordinate system.

The planes π1, π2, π3 should intersect on the same line. This is equivalent to
the algebraic condition that the 4 × 3 matrix, formed with the normals np

1,n
p
2,n

p
3

as columns, is of rank 2 [47]. This implies that all 3 × 3 determinants extracted
from the matrix are equal to zero. For vertical planes, the second row from the
matrix is zero, so we have only one determinant left,

D(α1, α2, u
′

3) =







cos α1 cos α2 cos θ − u′

3 sin θ
sin α1 sin α2 sin θ + u′

3 cos θ
0 A B







where
A = −X2 cos α2 − Z2 sin α2

B = −X3(cos θ − u′

3 sin θ) − Z3(sin θ + u′

3 cos θ)

θ, X3, Z3, can be found by minimizing the following function with N ≥ 3 triplets
of corresponding lines:

min
X3,Z3,θ

N
∑

i=1

(

D(α
(i)
1 , α

(i)
2 , u

′(i)
3)

)2

This minimization problem is solved by the Levenberg-Marquardt non-linear min-
imization method [128]. Experimental results with both synthetic and real data
are presented in the following sections.

60

5.1.3 Experiments with Synthetic Data

To verify and evaluate the robustness of the algorithm, we tested its sensitivity to
noise. The noise can be caused by errors in selecting corresponding lines, by image
quantization error, and by errors in model construction or calibration. 25 space
vertical lines were selected and projected on two cylinders. Both cylinders have a
radius equal to the focal length. The first cylinder shares the origin with the world
coordinate system. The second one is three meters away from the first along the
X axis. The space vertical lines were also projected on a planar image, using the
calibrated camera model. To simulate erroneous line selection, noise uniformed
distributed in the interval (−w, w) (in pixels) was added to the coordinates of the
line features in the cylindrical models and planar image. Then the algorithm was
applied to recover the position and orientation of the third image captured by a
robot between the two cylinders. For noise level w = 3 pixels the error was about
6.6 mm for position estimation, and 0.2◦ for orientation. The experiment was
repeated for different numbers of lines, and the results show that the localization
error decreases if the number of lines increases and, it stabilizes for more than 10
triplets of line features (see Figure 5.3).

0

2

4

6

8

10

12

14

16

18

20

22

0 5 10 15 20 25

er
ro

r
(m

m
)

no. of line features

Error in X direction
Error in Z direction

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25

er
ro

r
(m

m
)

no. of line features

Error in X direction
Error in Z direction

(a) (b)

Figure 5.3: Variation of localization error error in X and Z directions with the
number of triplets of line features; (a) without noise, (b) noise level w = 3.

5.1.4 Experiments with Real Data

For evaluating the algorithm with real data, we first built two panoramic cylindrical
images as described in Section 4.2. The data acquisition setup was formed from
a tripod and a pan-tilt unit on top of the tripod. For simplicity, the panoramas
sampled only half of the environment, or 180◦ of each cylinder. The distance
between the cylindrical models was about three meters. Then, the exact location
and starting angles for the cylindrical models were computed using the method

61

Figure 5.4: Two cylindrical panoramic images (each formed using 25 planar images
sampling 180◦)

described in Section 5.1.1. The calibrated distance and orientation of the cylinders
are C2 = (3000.04, 0, 3.05E−5)(mm), and the rotational offsets β1 = −21.88◦ and
β2 = −69.70◦. The results are shown in Figure 5.4, where the cylindrical images
are unrolled.

Figure 5.5: Planar image from in between the two panoramic images with the line
features superimposed

Next, the localization algorithm was applied for images at nine locations between
the two cylindrical models. The origin of the coordinate system was chosen at the
origin of the first model, and the X axis along the line that connects the centers of
the cylinders. Figure 5.5 shows one typical image. Figure 5.6(a) shows the actual
and the estimated position, and Figure 5.6(b) shows the error in estimated angle
for each position. The actual location of the robot was measured using a meter
stick for the position, and a pan tilt unit for the rotation angle. The position error
is measured in centimeters, and the rotation error in degrees. The average position
error was around 5.5 cm in X and Z directions, and 3.5◦ for the rotation angle.

In addition to positions between the cylinders, we also tested the localization
algorithm with images taken from other positions. The accuracy of the proposed
method depends mostly on the viewing direction, and much less on the position
of the robot. When the planes πi generated by the line features from the current
image and from one of the cylindrical models are very close to each other, the

62

-60

-40

-20

0

20

40

60

80

0 50 100 150 200 250 300

z
(c

m
)

x (cm)

Original position
Computed position

-10

-5

0

5

10

0 50 100 150 200 250 300

er
r

(a
ng

le
)

x (cm)

Error for the rotation angle

(a) (b)

Figure 5.6: (a) Recovered positions from the 9 images. The first panoramic model
is situated at (X, Z) = (0, 0) and the second one at (X, Z) = (300, 0); (b) Error
for the recovered orientation. The X coordinates show the position of the planar
image regarding the first panoramic model.

localization error increases. This happens, for example, when the robot is close to
the location of one of the models and the line features belong to objects that are
far away from the camera. In comparison to an earlier point-based algorithm [27],
however, this new line-based algorithm performs much better.

5.2 Global Localization using Stereo Panorama

The panoramic model with depth from stereo and extracted planar patches from
Section 4.3 is used in a global localization algorithm designed for a robot that is
carrying the same trinocular sensor. The robot’s position and orientation with
respect to the model’s coordinate system are calculated from the current image
and its corresponding disparity map.

5.2.1 Feature Selection

Three types of features were considered for the localization process - planar patches,
vertical lines, and points. First, planar patches are extracted from the current im-
age using the same segmentation algorithm described in Section 4.3.2. The robot’s
position and orientation are computed from pairs of corresponding features in the
model and current image. Matching points and lines is a very difficult problem
in computer vision especially when there is significant difference in scale between
corresponding features. The proposed algorithm overcomes this problem by first
matching the planar patches and then matching vertical lines that belong to cor-
responding patches. For point features, the corresponding pairs were manually
extracted. Plane equations were extracted using depth information. From the

63

plane equations, the 3D parameters of lines and points are calculated by inter-
secting image features with the corresponding plane. In this way the algorithm
becomes more robust to errors present in the depth data.

All variations of the localization algorithm use first a linear method, and then
the initial results are refined using non-linear minimization. The non-linear min-
imization problem was solved using a Levenberg-Marquardt non-linear minimiza-
tion algorithm [128]. The following subsections briefly describe each localization
algorithm.

We denote by t = [Xt, 0, Zt]
T the robot’s position and by Ry its orientation. As-

suming planar motion, t is a translation in (X, Z) plane and Ry is a rotation about
Y axis, both relative to model’s coordinate system. The center of the panoramic
image was chosen as the origin of the coordinate system, the Y axis along cylinder’s
axis, and Z axis pointing the starting angle in the cylindrical model.

5.2.2 Planar Patch Features

� � � �

� � � �

� � � �

� � � �

� � � �

� � �

� � �

� � �

� � �

� � �
� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

Y

X

Z

Y’

X’Z’

d d2 2(n ,) (n ,)
(n’ ,)2 d’d’1

1 1
1 2(n’ ,)

(R ,t)y
ROBOTMODEL

Figure 5.7: Localization using planar patches

Consider a plane that has parameters in the model coordinate frame (n, d) and in
the image coordinate frame (n′, d′) (see Figure 5.7). The equations of this plane
in the two coordinate frames and their relationship are the following:

nTP + d = 0
n′TP′ + d′ = 0

(5.3)

and,
P = RyP

′ + t (5.4)

64

By substituting Equation (5.4) into the plane equations and comparing them we
get the following constraints:

n = Ryn
′

nT t + d − d′ = 0
(5.5)

The rotation Ry can be computed from the first constraint (rotation about Y
axis), but for the translation t we need another plane non-parallel with the first.
So for completely localizing the robot, at least two non-parallel planar patches are
needed. A least square algorithm was used to solve this problem if more than two
planar patches are available. The results are further refined by minimizing

E =
N
∑

i=1

dist(n,n′) +
N
∑

i=1

|d − d′|

where N is the number of planar patches, and dist(n,n′) is the distance between
the normal vectors n,n′.

5.2.3 Vertical Line Features

(Ry,t)

((v,d)

u

Y

X

v’,d’)

X’
Z’

Y’

u’

MODEL ROBOT

Z

Figure 5.8: Localization using vertical lines

A 3D line can be represented in terms of a unit vector v, which indicates the
direction of the line, and a vector d, which represents a point on the line that is
closest to the origin [149]. In the case of vertical lines, v = (0, 1, 0)T , and d is
the intersection of the line with the horizontal plane. A vertical line in the image
plane can be characterized by its u coordinate.

Let’s consider a vertical line that has parameters (v,d) in the model coordinate
space, and (v′,d′) in the camera coordinate space (see Figure 5.8). Denote by u
and u′ the parameters of the projection of this line on the model surface and image

65

plane, respectively. As mentioned before, u and u′ are used to compute the 3D
equations of the lines, by intersecting the plane determined by the line projection
with the corresponding planar patch. The relation between the two representations
is the following:

v = v′ = (0, 1, 0)T

d = Ryd
′ + t

(5.6)

The first equation does not bring any constraints on the robot position and is
always true considering the way we extract line’s equation (intersect two vertical
planes). Using the second equation, which provides two constraints on Ry and t,
the robot can be localized with two or more corresponding vertical lines. The initial
estimates are further refined by minimizing the distance between the projections
of the estimated lines and the real ones.

E =
N
∑

i=1

(u′

i − u′′

i)
2

where N is the number of lines, and u′′

i is computed by projecting d′

i on the image
plane. In this case

d′

i = RT
y (di − t)

.

5.2.4 Point Features

(Ry,t)
Y

X
X’

Z’

Y’
MODEL ROBOT

(u,v)Z
(u’,v’)

P P’

Figure 5.9: Localization using points

The point-based localization algorithm is very similar to the line-based localization
algorithm. If P and P′ are the 3D point coordinates in the model coordinate sys-
tem and camera coordinate system, respectively (see Figure 5.9), the geometrical
constraint between the two representation is the following:

66

P = RyP
′ + t (5.7)

With two or more corresponding points, the position and orientation of the robot
can be calculated using linear methods. The non-linear algorithm minimizes the
distance between the projection (u′′, v′′) on the image plane of the estimated 3D
point

P′ = RT
y (P − t)

and the real feature point (u′, v′). The error function is

E =
N
∑

i=1

√

(u′′ − u′

i)
2 + (v′′

i − v′)2

5.2.5 Matching Planes and Lines

For the above localization algorithms to work, corresponding features must be iden-
tified in the image-based model and the current view. We developed a matching
algorithm that computes the corresponding planar patches in the current image
and the model. The algorithm first performs a global registration to find the po-
sition in the cylindrical model correspondent to the middle of the image. Then
it matches patches that are around that position (within 300 pixels left or right
considering that the cylindrical image width is about 1800 pixels). The global
registration correlates a window from the middle of the image with the model.

All possible matches are generated and a score is computed for each candidate.
Some of the patches from the model are occluded or simply not selected in the
current image and vice versa, so not all the patches from the image or model should
appear on the match. The correlation score is based on the difference in intensity
between matching patches, relative distance between adjacent patches in the model
and image, and number of patches present in the match. If (πi, π

′

i), i = 1, n is a
candidate match, where πi represents a patch in the model, π′

i the corresponding
candidate patch in the current image, and n is the number of patches in the match,
the correlation score is:

score = ∆int + dist +
4

n + 1

The difference in intensity can be computed as

∆int =
1

100n

n
∑

i=1

|Ii − I
′

i|

where I i (I
′

i) represents the average intensity in πi (π′

i). For computing the relative
distance between adjacent patches, both distance in the image plane and in 3D
space is considered. Correlation is not included in the matching score because dif-
ferences in scale between matching patches and occlusions can cause the algorithm

67

to fail. Denoting by (ui, vi) ((u′

i, v
′

i)) the centroid of patch πi (π′

i) in the image
plane and by (Xi, Yi, Zi)

T ((X ′

i, Y
′

i , Z
′

i)
T) the centroid in the 3D space, the relative

distance is:

1

n − 1





n−1
∑

i=1

|dui − du′

i| + |dvi − dv′

i|
√

du2
i + du′2

i + dv2
i + dv′2

i

+
n−1
∑

i=1

|Di − D′

i|
|Di + D′

i|





where
dui = ui − ui+1

dvi = vi − vi+1

Di =
√

((Xi − Xi+1)2 + (Yi − Yi+1)2 + (Zi − Zi+1)2)

and the same for du′

i, dv′

i and D′

i.
From corresponding planar patches, corresponding vertical lines are detected

by matching the left and right borders of the planar patches. For matching a pair
of vertical lines, the algorithm first computes their gradient in a window along the
line to see if they are real edges. Then, the middle position of a pair of lines is
correlated and decided if it is a match or not based on the correlation score.

We have tested this matching algorithm for about 20 images in different po-
sitions and orientations. The algorithm automatically detects matching planar
patches in 80% of the cases. It may fail especially when there is significant dif-
ference in scale between the model and the image. If the column corresponding
to the middle of the image is manually selected, the rate is increased to 90%.
Having correct corresponding planar patches, the algorithm successfully detects
corresponding vertical lines.

5.2.6 Experimental Results

For evaluating the model accuracy and the performance of the localization algo-
rithm, we took images in seven random locations in the same room in which the
panoramic model from Figure 4.8 was taken. Figure 5.10 shows the original loca-
tions and orientations, together with the positions of the planes that were used for
localization. Planar patches and vertical lines between the panoramic model and
the current image were automatically detected and matched. The matching algo-
rithm usually gives 2 or 3 pairs of corresponding planes, and 3 to 6 corresponding
lines. For the point-based algorithm, 6 or 7 points on the planar patches were
manually chosen and matched.

Localization results using the three algorithms based on planar patches, lines
and points, are summarized in Table 5.1. The algorithms based on point and line
features perform better than the one using planar patches. This can be expected
because the points and lines equations were computed based on plane equations,
so there are no additional errors added, and the positions in the image form an
extra constraint. For the localization algorithm using planar patches, only 3D
equations of the corresponding planes were used, but not the boundary location in

68

B

G
A

F

E
C D

MODEL

Position and orientation of the robot

Vertical plane

Figure 5.10: Robot positions for localization experiments.

the image that can be occluded or partially occluded. The dimension of the room
is 10 m × 8 m. The average error for line and point-based algorithm is about
10 cm for position and 2.5◦ degrees for orientation. Both are acceptable for most
navigation purposes. Ground through is estimated manually using a meter stick
for distances and the pan unit for angles.

Err. position (cm) Err. orientation (deg)
Patch Line Point Patch Line Point

A 70.5 25.6 6.4 20 0 4
B 51.8 4.0 2.0 15 1 1
C 19.1 5.3 17.1 7 4 5
D 30.0 12.2 18.0 9 2 2
E 50.0 12.5 9.0 6 3 1
F 25.5 9.8 3.6 8 4 2
G 52.5 3.0 30.4 3 1 1
Mean 42.7 10.3 12.3 9.71 2.1 2.2

Table 5.1: Error for recovered position and orientation

5.3 Incremental Localization with Depth Enhanced

Panorama

This section presents a localization algorithm that uses the panoramic model with
depth acquired by the laser range-finder described in Section 4.4. The localization
problem involves finding the position and orientation of the robot with respect to
the model (CCS) using the current robot view in terms of a 2D image.

An overview of the localization algorithm is presented in Figure 5.11. We
perform an incremental localization where the current position is approximately

69

approx pose

3D lines

model

αt t α
approx pose

α

(b) Match(a) Edge link (c) Refine matches (d) Localize

α
t

current image
computed pose

αt,

, ,
next image

Figure 5.11: Overview of the localization algorithm. t denotes robot’s translation
and α robot’s orientation: (a) Edge detection and linking (b) Compute best match
and calibrate angle α based on Hausdorff distance (c) Refine matches and elim-
inate duplicates based on image information (d) Localization using model-image
correspondence

known either from the previous position - assuming motion continuity - or from
other sensors (odometry). An initial position and the height difference between
the model location and the robot have to be estimated at the beginning using, for
example, manually selected corresponding feature points. The first step (a) is to
detect vertical line segments in the current image using standard edge detection and
linking algorithms. The next step (b) is the angular calibration and detection of
the best match based on the minimum Hausdorff distance between the projected
model 3D lines and the detected vertical edges. The matching pairs of vertical
lines are further refined and the duplicates are eliminated in step (c), based on the
correlation score between the corresponding lines in the panoramic mosaic and the
image line. Then, current position is updated from the corresponding model-image
lines in step (d). The incremental localization approach assumes that the position
is approximately known, limiting the matching search region, relative to a global
localization approach. Next, some general notations are first introduced, followed
by the general description that is used in the localization algorithm.

A 3D line is represented by its direction v and a point on the line d (Sec-
tion 4.1.3). For a vertical line v = (0, 1, 0)T and d can be chosen as the intersection
of the line with the horizontal plane d = (X, 0, Z)T . Any point on the line can be
expressed as Xl = (X, k, Z)T where k is a real parameter that is restricted to an
interval in case of a line segment. A vertical image line can be characterized by
the column coordinate u, and a point on the line has the form xl = (u, q), where

70

q is a parameter similar to the 3D case.
Let the unknown displacement between the model coordinate system (MCS)

and the current image position (CIP) be (Ry, t), where Ry is a rotation matrix
over Y axis, and t = (tx, H, tz)

T (H is the height difference between the model and
the robot). The vertical line points Xl = (X, k, Z) expressed in MCS are projected
on the image using:

xl = K(RyXl + t) (5.8)

where K is the camera matrix (equation 4.13). Using equation 5.8, the column
coordinate of the projected line can be derived as:

uproj = au
X cos α + Z sin α + tx
−X sin α + Z cos α + tz

+ uc (5.9)

where α is the pan rotation angle.
In the following, assume that N vertical lines from the model are visible in the

current view and M vertical edges are detected in the current image (M > N).

5.3.1 Angle Calibration and Matching Vertical Lines

An error of a few degrees in the approximate orientation of the robot results in
a big displacement between the projected lines and the corresponding detected
image edges, making the matching process very difficult. The angular orientation
is calibrated using a modified Hausdorff distance [67] between the projected and
detected edges. The algorithm varies the orientation angle α in an interval of 10◦

around the given approximate position and compute the corresponding Hausdorff
distance between the projected model lines ui

proj(α), i = 1 . . . N (Equations 5.8
and 5.9) and detected vertical edges uk, k = 1 . . .M .

H(α) =
∑

i

Kth
i=1...N{ min

k=1...M
d(ui

proj, u
k)} (5.10)

where Kth
i=1...N denotes the K ranked values in the set of distances (one correspond-

ing for each model line), d(ui
proj, u

k) represents the Euclidean distance between the
center points of the line segments. Denote the edge segment that gives the mini-
mum distance to a projected model line ui

proj by uki. The algorithm chooses the
angle that has the smallest distance H(α). The corresponding set of line-edge
pairs (ui

proj, u
ki), i = 1 . . .K from Equation 5.10, represents the desired matched

model-image features. Figure 5.12 (b) shows the detected vertical edge segments,
and the matched edges corresponding to the model lines in Figure 5.12 (a).

5.3.2 Refinement of Matches in Image Space

A further refinement step is considered to correct the bad matches and to elimi-
nate duplicate matches. The algorithm takes advantage of the image information

71

1

2

3

4

5

6

7
8

Model lines

(a)

1

2

3

4

5

6

7 8

Extracted vertical segm.
Matched segm.

1

2

3

4

8

6

7

Refined matched segm.

(b) (c)

Figure 5.12: Illustration of matching algorithm: (a) model lines, (b) corresponding
matched line after angle calibration (Section 5.3.1) and matched lines after refine-
ment step (Section 5.3.2). Note that in the refinement step pair number 5 was
eliminated as being a duplicate and the others are better aligned with the original
lines in panorama. Numbers indexes lines in the model and show the matched
pairs.

72

contained in the panoramic mosaic. This will give robustness to the matching
algorithm, offering an appealing way to solve the data association problem, a very
difficult issue in robotic mapping (see Section 3.1.1).

Consider a small patch Υi in the panoramic mosaic along each model line i
that is present in a match pair. The refinement step searches for the best matching
vertical line xi

l = (ui
l, ql) in the current image, around the position of the original

match xki

l = (uki, q). A small patch I i (same size as Υi) is moved in a vicinity of the
middle point of the line segment xki

l and compared with Υi. Because correlation
is not size-invariant and robust to occlusions, we define the matching criteria as
being a combination of the correlation score and the intensity difference between
left/right corresponding portions of the patches Υi and I i (similar to the approach
in Section 5.2.5). If the score is below a threshold the pair is eliminated. If there
are more matches for the same model line, only the one with the biggest score is
considered. Figure 5.12 (c) shows the refinement matches for the model lines in
Figure 5.12 (a) . Note that pair number 5 was eliminated as being a duplicate and
the others are better aligned with the original lines in panorama.

5.3.3 Localization using Vertical Line Segments

If L pairs of 3D model lines - 2D image edges - are available, the motion parameters
(α, tx, tz) are computed by minimizing the displacement between the corresponding
projected and detected lines.

(α, tx, tz) =
min

α,tx,tz

L
∑

i=1

(ui
proj − ui

l)
2 (5.11)

The non-linear least square problem is solved using Levemberg-Marquardt non-
linear minimization algorithm.

5.3.4 Experimental Results

To evaluate the model accuracy and the performance of the localization algorithm,
we took 26 images along a trajectory at positions that are 10 cm apart, and
recovered their positions using the localization algorithm described in the previous
sections applied to model from Figure 4.16. For the first position, we manually
selected corresponding point features in the image-based model and the robot view
at the position, then applied the point-based localization algorithm described in
Section 5.2.4. This initialization step not only provided a reliable initial position of
the robot for studying the incremental localization algorithm along the trajectory,
but also recovered the difference in height, H, between the image-based model and
the robot camera reference frame, which would remain constant throughout the
experiments.

Subsequently, we performed the incremental on-line localization algorithm for
the remaining 25 points. At each position, the location computed in the previous

73

step is used as an approximate location for the current step. All the measurements
were relative to the reference frame of the image-based model.

We measured the relative accuracy of the localization algorithm, in terms of the
position error along the trajectory δ, assumed to be 10 cm apart, and the position
error tangent to the trajectory, ρ. For the 26 positions, the two errors are found
to 2.1 cm and 1.6 cm, respectively (see Table 5.2). Both of those errors are quite
satisfactory. It is worth mentioning that errors are less where the 3D line features
were more accurate.

−50 0 50 100 150 200
−60

−40

−20

0

20

40
Model origin
Position from localization alg.
Position from SFM alg.

0 5 10 15 20 25 30
−15

−10

−5

0

5

10
Orientation from localization alg.
Orientation from SFM alg.

Figure 5.13: Recovered position (top) and orientation (bottom) for the model-
based localization algorithm and a SFM point based algorithm

Having no absolute ground truth, we compared the performance of the pro-
posed localization algorithm with the results from a point based structure from
motion (SFM) algorithm (similar to the one presented in Section ??). The feature
detection and correspondence for the SFM algorithm was performed manually.
Figure 5.13 plots the recovered trajectory (positions) (a) and orientations (b) for
the two algorithms. The two algorithms are different in the sense that the SFM
algorithm uses image information alone and the proposed model based algorithm
uses the panoramic model composed from both image and laser range data. The
similarity of the results proves the success of the proposed localization algorithm
(compared to a classic algorithm). There is a consistent error in both measure-
ments probably caused by some error in the model alignment. The accuracy of the
SFM algorithm is superior to the accuracy of the proposed line based algorithm
(Table 5.2 shows same measurements compared to relative ground truth about dis-
tance between sample images and deviation from line), but the automatic selection
and matching of point features required by a robot navigation algorithm, is a very
difficult problem in this case. For the proposed line based algorithm, both the 3D

74

and image information contained the model was used to solve the data association
problem (Section 5.3.1 and 5.3.2).

No refinement Refinement SFM
Distance δ(cm) 3.8 2.1 1.6
Deviation ρ(cm) 2.9 1.6 0.6

Table 5.2: Localization accuracy for the localization algorithm (with/without
match refinement) and a point based SFM algorithm: error in distance between
consecutive positions δ(cm) (ground truth 10 cm) and deviation from straight line
ρ(cm)

For illustrating the role of image information, used in the match refinement
step (Section 5.3.2), compared to only 3D information, that is usually used in a
traditional geometric based navigation approach, the recovered trajectories (first
leg), in the two cases, were plotted in Figure 5.14. Note the errors in recovered
position without refinement when a bad match is present. The numerical results
in the two cases are presented in Table 5.2.

0 20 40 60 80 100
−25

−20

−15

−10

−5

0

5

10

15

cm

cm

Model position
Positions before refinment
Positions after refinment

Figure 5.14: Recovered positions for the first leg of the trajectory (straight line)
with/without refinement. Note the errors in recovered position without refinement
when a bad match is present.

To examine the robustness of the algorithm with respect to the errors in the 3D
line features of the model and the errors in 2D vertical line detection in the current
image, different levels of uniform noise were added to the 3D lines and the manually
selected feature points. We compute the average error between the reconstructed
positions using the noisy data and the reconstructed position using noise-free data.
Figure 5.15 plots the levels of perturbations in the 3D line and image line positions
that will produce different errors in the estimated robot location. This result is
useful to estimate the performance of the localization algorithm under varying
sensor characteristics.

75

0 1 2 3 4 5 6
0

8

16

24

32

40

N
oi

se
 in

 im
ag

e
lin

e
(p

ix
el

s)

Mean error in robot location (cm)

Sensitivity to image lines position

0 1 2 3 4 5 6
0

2

4

6

8

10

N
oi

se
 in

 3
D

 li
ne

 (
cm

)

Sensitivity to 3D lines position

Figure 5.15: Sensitivity of the localization algorithm with respect to features po-
sition in image vs. 3D.

5.4 Mapping and Predictive Display for Remote

Robot Environment

An important and challenging problem in tele-robotics is how to convey the situa-
tion at a distant robot site to a human operator. In real-world applications such as
emergency response, unmanned exploration, and contamination cleanup, typically
the remote scene geometry is unknown, and the data link between the robot and
operator can have both delays and limitations on bandwidth. Hence, at the out-
set, the operator has not only little information about the remote scene, but also
limited means of transmitting timely and high fidelity video and other data. Yet,
research has shown that tele-operation performance is significantly degraded with
delays of as small as 0.4 seconds [60]. This causes operators to lose direct intuitive
connection between their control actions and effects at the remote site displayed
in the video feedback.

Both quantitative and qualitative information from a remote tele-robotics scene
can be improved through the use of geometric modeling. For quantitative robot
localization, typically a geometric map is used as presented in Section 3.2. A differ-
ent approach to geometric feature-based maps is the appearance maps, described
in Section 3.3, that are created by “memorizing” the navigation environment using
images or templates. One of the major drawbacks of these appearance-based maps
is that robot motion is restricted to either a predefined route or positions close to
the locations where the images were originally acquired. By contrast, in image-
based computer graphics the objective is to generate models which represent the
visual appearance of a scene from all view points. Chapter 2 presents a variety of
techniques designed for modeling from images. In mobile robotics obviously differ-
ent viewpoints need to be represented. However, current localization algorithms
do not give precise enough pose to integrate the views from several positions into
one lumigraph. We present an approach in-between image and geometry based
modeling that uses the panoramic model with depth from laser (Section 4.4) for
a predicted display system. The localization algorithm described in Section 5.3 is
integrated with the system.

76

Localization on−line

Robot location

Real−time feedback on−line

Modeling

Panoramic model feature matching
localization

feature detection

off−line

in
image space

Predicted view

(c)

(b)(a)
Laser

data registration

line detection
plane fitting

Camera

User

Robot

Current view

render view control robot

Figure 5.16: Overview of the navigation system with predictive display. The image-
based panoramic model is acquired and processed off-line using a camera and a
laser range finder (a). The on-line localization system matches lines features in the
model with the ones extracted from the current view (b). The robot location is
send to the remote site where a predictive view is immediately rendered (c). The
remote user can control the robot using the image-based interface.

77

In predictive display two qualities of the model are essential: The ability to
determine the correct view point (location) to render, and the support of high
fidelity image rendering of that view point. Most current systems use geometric
CAD models to support rendering and calibrated additional sensors (e.g magnetic
or joint angle) to determine pose. For a review refer to [138]. However, this is
impractical in unstructured environments often encountered in mobile robotics.
A better method to align the predicted display is to register the remote camera
image with the model [7]. A model free telepresence vision system, presented in [4],
generates an approximate desired view by predicting the mouse movement in a
panoramic image acquired by a sensor mounted on the robot. In our approach the
model is obtained once through automatic sensing, then a single camera image is
used to align the current view location with the model to support both localization
and predictive display. An overview of our system is presented in Figure 5.16.
Specifically, the model is formed by a panoramic image-based model augmented
with a sparse set of 3D vertical line features (a) as described in Section 4.4. When
the room map has been obtained, the incremental on-line localization algorithm
from Section 5.3 is used to estimate to estimate the robot’s position (b). After
robot position has been obtained, it is sent to the remote location to generate a
synthesized view using the same model (c) as described in Section 5.4.1. In this
way, the operator who is controlling the robot has a user friendly interface as shown
in the experiments, Section 5.4.2.

5.4.1 Predicted Scene Rendering

In tele-robotics a robot at a remote site is controlled by a human operator. Good
operator and system performance depends in part on the ability of the tele-robotics
system to visually immerse the operator in the remote scene. In particular, it is
necessary to ensure that round trip delay between an operator motion command
and the visual feedback received by the operator from the remote site must be
minimized. It has been shown that longer delays prevent complex motion tasks,
and operators adopt inefficient “move and wait” strategies to motion control [10].
While time delays are inherent in information transmission over a distance, the
effect of the delays can be reduced by synthesizing estimated images based on
our model, and showing this video for operator visual feedback. In the current
implementation, we used the model to synthesize the current robot view from
the acquired model ahead of the arrival of actual (delayed) scene video. Three
components are needed to render a predicted view:

1. A geometric model of the scene segment to be rendered. We use the
piece-wise planar model derived in Section 4.4.

2. A viewpoint for the predicted image. From our model we can derive
the robot location as shown in Section 5.3, (showing current motion) and to

78

it add the operator motion command (predicting the outcome of the next
action ahead of its completion).

3. A texture image to warp onto the geometric model. The predicted
view can be textured either from the panorama or a previous camera image.

The image-based panoramic model with registered sparse range values is stored
at both robot and tele-operator locations. We used as a geometric model of the
scene the triangulation mesh formed by a constrained Delaunay triangulation with
edge segments in the panoramic mosaic. This triangular mesh was the starting
point of the region growing algorithm in Section 4.4.3 (see Figure 4.19 (c)). For each
vertex in the panoramic image xc, we compute its corresponding 3D coordinate X
(in model coordinate system) by interpolating the existing 3D laser points in its
vicinity.

We developed an OpenGL hardware accelerated implementation that allows
rendering in real-time. Given a viewpoint, the geometric model is projected in the
virtual camera and textured with an image from the remote scene. The panoramic
image contains the textures for all viewing directions, but from a single viewpoint.
This provides a good approximation to textures also in nearby viewpoints. For
rendering viewpoints far away from the model center, the panoramic texture has
several drawbacks (e.g. significant quantization effects due to aliasing, occlusions,
amplification of errors in the geometric model). A better alternative is to instead
use the last received image from the robot site. Through the localization procedure,
it is registered with the model and then re-warped into a new view. Since the
motion of the real robot is continuous and smooth, most of the new view can usually
be textured from a previous delayed image. Only during large rotational motions
where the robot rotates with an angular speed approaching the transmission delay
does the limited viewing angle of the real camera cause significant portions of the
predicted view not to be textured. The process of generating the predictive view
can be summarized as follows.

for each time step t

robot site:

(1) calculate robot location (Ry(t), t(t))
(2) send position to operator site

(Asynchronously) Send robot camera image

user remote site:

(3) add current operator motion command

(4) project scene model points X

x(t) = K(Ry(t)X + t(t))
(5) generate synthesized robot view with

(a) texture from panoramic model image

(b) or texture using delayed image from t − 1
end for

79

In Step 1, the robot location (position and orientation) is calculated from the
robot view in terms of a 2D image (as in Section 5.3). From corresponding pairs
of line segments, we compute the robot orientation (pan angle) Ry(t) and position
on the floor plane (2D translation) t(t).

After the robot position has been calculated, it is sent to the remote site in
Step 2, the current incremental operator motion command between t − 1 and
t is added in Step 3, and a predictive view can be generated by projecting the
geometric model in the new location in Step 4.

In Step 5, texture mapping a geometric model assumes that it is decomposed
in triangular planar surfaces. In a complete mesh, some of the triangles might not
represent physical planes but are artifacts of occluding contours. In most cases,
these appear as silhouette edges [104] where points from the object are connected
with background points. To avoid this phenomenon, we eliminate all the triangles
that (within a threshold) are parallel to the viewing direction.

Texturing the predicted view from the cylindrical panorama can be done di-
rectly, since the registration provides the texture coordinates for each model vertex.
In the cases where a previous camera image I(t − 1) from a different view point
is used the correct texture coordinates are obtained by projecting the geometric
model using the robot location at time t− 1, (Ry(t− 1), t(t− 1)). In this way the
delayed image I(t − 1) is warped into the new view location to generate a predic-
tive view at time t. Assuming a continuous and smooth motion, we can generate
realistic views in real-time along the entire robot trajectory.

5.4.2 Experimental Results

The localization algorithm and the predicted display are integrated into a common
interface where the remote user can visualize both robot position on a 2D floor
map and a see a predictive synthesized robot view (see Figure 5.17). In addition
to forward predicting and rendering views one or several time steps ahead of the
robot, using the model and panoramic image, the operator can also visualize entire
simulated robot motion trajectories in the remote scene before executing the actual
robot motion. The navigation system can be extended by offering the user the
possibility to control the robot by dragging and clicking on desired locations in
the rendered view. This will offer a natural and intuitive way to control the robot
without having to interpret the geometric map.

To evaluate the model accuracy and performance of the localization algorithm
with predictive display, we used the same data as in Section 5.3.4 applied to model
from Figure 4.16. In evaluating the on-line forward prediction from delayed images,
the 26 robot camera images along a trajectory were forward warped to viewpoint
about 10 cm ahead on the trajectory and compared to a real image obtained at that
same viewpoint. Figure 5.18 shows examples of rendered views along robot trajec-
tory using texture from panoramic model (middle column) and previous (delayed)
real image (left column). Notice that as mentioned in Section 5.4.1, in texturing

80

Figure 5.17: Tele-operator interface where the user can view a 2D floor map with
robot position and the predictive robot view. The vector in the small left window
shows robot orientation.

(a) texture from panorama (b) texture from previous image (c) ground truth (delayed image)

Figure 5.18: Examples of predictive views using different texturing

81

from the cylindrical panoramic image, any pan angle can be rendered, while when
texturing from a delayed image, only the overlap in pan angle between the two
views can be rendered. This accounts for the black stripe to the left or right of
the predicted views in the middle column. The black stripe in the bottom is due
to the cylindrical model being cut off at that level. Comparing the predicted with
real views (in the right column), we notice that the rendering from delayed images
produces better quality visual feedback than rendering from the panorama. This
is to be expected because between two successive robot views there is only a small
displacement, so distortions caused by texture or geometry errors are minor.

82

Chapter 6

Geometric Model with Dynamic
Texture from Uncalibrated Image
Sequences

83

This chapter presents the second type of image-based model, here developed us-
ing uncalibrated computer vision techniques. The model is formed from a sparse
geometry computed using structure from motion techniques under either of two
camera models - an affine (weak perspective) and a projective camera. For mo-
bile robotics applications metric measurements are required in order to be able to
give commands to the robot. For this, in both cases the structures are upgraded
to metric using the stratified approach [48]. In a more general application (e.g.
visualization, AR) the model can be less constrained. We present a comparison of
geometric models for AR system in [23]. To compensate for the sparsity of the ge-
ometry and other unmodeled aspects such as lighting and nonplanarities of surface
patches, we developed a technique based on a view dependent dynamic texture
represented as basis of spatial filters. The first section introduces general multi-
view geometry concepts that are used for building the geometric model, followed
by a presentation of the computation for the two types of structures: affine and
projective. The theory of dynamic textures is presented in Section 6.4 followed
by a description of the image-based rendering system (Section 6.5). Next chapter
presents the implementation details and an evaluation of the model from a graph-
ics viewpoint as well as its mobile robotics’ application in tracking and predictive
display.

6.1 Multi-View Geometry

Researchers have made made significant progress in the past 10 years in developing
the theoretical aspects of uncalibrated structure from motion. The goal is to
acquire a realistic 3D model by freely moving a camera about a scene. This section
will summarize some important aspects and problems in uncalibrated structure
from motion. For a comprehensive and complete presentation refer to e.g. Hartley
and Zisserman’s book [59].

6.1.1 Non-Euclidean Camera Models

A camera maps points from the 3D space (object space) to 2D image plane. Sec-
tion 4.1.1 introduced the projective Euclidean camera or calibrated projective cam-
era that, in general, can be decomposed into the intrinsic parameters K and ex-
trinsic parameters (camera position) - rotation R and translation t.

P = K[R|t]

In general, the 3× 4 projection matrix P has 11 DOF. If the left 3 × 3 submatrix
M is nonsingular the camera is called finite; if M is singular the camera is called
infinite.

Some properties of the general projective camera P = [M |p4] can be derived
without decomposing it into internal and external parameters. For example we

84

can retrieve the camera center C as the 1D nullspace pf P (PC = 0), for finite
cameras:

C =

(

−M−1p4
1

)

and for infinite cameras:

C =

(

d
0

)

where d is the nullspace of M . This property provides an additional characteristic
for finite/infinite cameras: in the case of a finite camera the center is an actual
point, whereas for the infinite camera the center is a point in the plane at infin-
ity. The principal ray (the ray passing through the camera center and which is
perpendicular to image plane) can be expressed as:

v = det(M)m3

where m3 is the last row of M .

Affine cameras

Affine cameras (or parallel projection cameras) is a class of infinite cameras of
practical interest. An affine camera has the last row of the projection matrix of
the form (0, 0, 0, 1), they have an infinite center of projection so camera projection
rays are parallel.

In general an affine camera can be written as:

P∞ = K







i tx
j ty

0T d0





 R =







i
j
k





 t =







tx
ty
tz





 d0 = tz (6.1)

where d0 represents the depth of the point along the principal direction and i, j
are the first two rows of the rotation matrix that related the position of the object
with the camera pose.

The imaging geometry of an affine camera is depicted in Figure 6.1. It can
be described as a two step projection. Consider a plane that passes through the
world coordinate center and is parallel with the image plane. This plane can
be thought as approximating the object, and for all the points on the plane the
affine projection is equivalent to a perspective projection. The 3D point X is first
projected on this plane to get X′, and then X′ is perspectively projected on the
image plane. The deviation of the affine projection with respect to the projective
projection can be expressed as:

xaff − xpersp =
∆

d0

(xproj − x0) (6.2)

where x0 is the principal point and ∆ is the distance from the point to the object
approximation plane. From this we can see that the affine camera is a good
approximation of the imaging geometry when:

85

{camera}

{world}

X

Y
Z

k

j

d
t

i

x

x

X’

X

persp

aff

0

0
x

∆

Figure 6.1: Affine camera approximation

• The depth relief (∆) variation over the object surface is small compared to
the average distance to the object (d0).

• The distances between the object points and the principal ray are small.

A hierarchy of affine cameras

Different affine models can be derived starting with a very simple model and re-
fining it to better approximate the imaging process. This is illustrated in Figure
6.2.
Orthographic camera. If the direction of projection is along Z axis, the camera
matrix has the following form:

Porth =







i tx
j ty

0T 1





 (6.3)

Weak perspective camera. A better approximation of the perspective camera can
be obtained by first projecting orthographically on an approximate object plane
and then projectively on the image plane. It is also called scaled orthographic

86

Camera center

Image plane
Object planex

x
x
x

parap

orth

persp

wp

X (origin)0

Figure 6.2: Different types of affine projection.

projection and the camera matrix has the form:

Pwp =







k 0 0
0 k 0
0 0 1













i tx
j ty

0T 1





 (6.4)

Paraperspective camera. The weak perspective camera is a good approximation
of the perspective distortion only if the object is close to the principal axis. The
paraperspective model compensates this problem by projecting the object point
on the model plane with a direction parallel to the ray that projects the center
of object coordinate system. It is not an affine camera but a first order approxi-
mation of the perspective camera. (The other models can be seen as a zero-order
approximation.) The projection equations can be written as:

xp = x0 +
i − x0k

tz
X (6.5)

yp = y0 +
j − y0k

tz
X (6.6)

where (x0, y0) represents the image projection of the center of the object coordinate
system.

6.1.2 Computation with Camera Models

In practical application we are interested in using camera models computationally
to relate the three entities of 3D structure, 2D image projection and projection
matrix. Three basic computational problems are:

1. Resection: Given a 3D structure and its image projection compute the cam-
era pose (extrinsic parameters).

2. Intersection: Given two or more image projections and corresponding cam-
eras compute a 3D structure giving rise to these images.

87

3. Structure and Motion or Factoring: Given only the image projections in two
or more images find both the camera pose and 3D structure.

Resection

In Resection we are given 3D points X1 . . .Xn and their image projections x1 . . .xn.
Under an linear affine camera we seek to determine the eight parameters in an
affine projection. Rewriting equation 6.1 in affine (non-homogeneous) coordinates
the constraint imposed by each image-3D point is given by

xi =
[

p1

p2

]

Xi +
[

tx
ty

]

(6.7)

Each 2D-3D point correspondence hence imposes two constraints on the eight
dimensional affine camera space. We can solve for the camera parameters by
extending the above equation for N ≥ 4 points and grouping the camera elements
into a matrix,

[x1, . . . ,xn] =
[

p1|tx
p2|ty

] [

X1, . . . ,Xn

1, . . . , 1

]

(6.8)

and then transposing the expression and solving for P =
[

p1|tx
p2|ty

]

in







x1
...

xn





 =







X1, 1
...

Xn, 1





P T (6.9)

Since we use non-homogeneous coordinates we directly minimize geometric error,
hence the solution is the ML estimate for measurements perturbed by Gaussian
noise.

In the case of a perspective camera model we need to estimate the full 3 × 4
projective camera matrix in the projection equation, xi ∼ PXi (equation 4.4),
where here coordinates are given in homogeneous form, x = [u, v, w]T and X =
[X, Y, Z, t]. The projective equivalence “∼” is up to a scale, hence we cannot
directly write a linear equation system as in equation 6.8. Instead, the standard
solution, Direct Linear Transform (DLT) is based on expressing the equivalence
as a vector product 0 = xi × PXi. Let P T = [p1,p2,p3] and rewrite the vector
cross product on a matrix form we get the following three constraint equations
from each point correspondence

0 =







0T −wiX
T
i viX

T
i

wiX
T
i 0T uiX

T
i

−viX
T
i uiX

T
i 0T













p1

p2

p3





 (6.10)

However, only two of the three equations are linearly independent, hence we need
six (or more) 2D-3D point correspondences to solve for the projection matrix P.

88

One common way of solving the above is to pick the first two of the three homo-
geneous equations for each of the six points and solve for a non-trivial null vector
of the 2n× 12 matrix. Another alternative is to solve the overdetermined 3n× 12
system imposing an additional constraint ‖P‖ = 1. (Without the additional con-
straint, noise in the measurements will likely increase the rank and give a solution
P=0.)

Intersection

In Intersection we are given two camera matrices P1 and P2 and the corresponding
image point projections x1,x2, and seek the 3D point giving rise to these image
projections.

In the affine case we can directly rearrange equation 6.7 as











u1 − t1,x

v1 − t1,y

u2 − t2,x

v2 − t2,y











=











i1
j1
i2
j2











X (6.11)

and solve the overdetermined system for the 3D world point X = [X, Y, Z]. Again,
since the above equations are in pixel space we minimize geometric error, and
we don’t normally expect problems. (Note however that the system may be ill
conditioned due to the two cameras being nearly equal, i.e. i1 is nearly co-linear
with i2 and j1 near j2)

In the projective case we seek to find a homogeneous 3D point X = [X, Y, Z, t]
that simultaneously satisfies the two equivalences x1 ∼ P1X and x2 ∼ P2X. Since
the equivalence is up to a scale we can write λ1x1 = P1X and λ2x2 = P2X and
rewrite into one matrix equation as

0 =
[

P1 x1 0T

P2 0T x2

]







X
λ1

λ2





 (6.12)

And solve the homogeneous system for a consistent 3D point X and scale factors
λ1, λ2.

Structure and Motion

In the Structure and Motion (sometimes called Structure From Motion, SFM),
using only the n projected points xi,j, i ∈ 1 . . . n, j ∈ 1 . . .m in m images we seek
to find both camera poses P1, . . . , Pm and a consistent structure S = [X1, . . . ,Xn].
This is illustrated in Fig. 6.3.

Fast and robust linear methods based on direct SVD factorization of the im-
age point measurements have been developed for a variety of linear cameras, e.g.
orthographic [155], weak perspective [165], and para-perspective [123]. Section 6.2

89

Structure
from motion

algorithm

poses

+

tracked points

structure

Figure 6.3: A general structure from motion algorithm extracts the structure and
camera poses from a set of tracked points.

describes in detail the factorization algorithm used for obtaining an affine struc-
ture for the proposed image-based model. For non-linear perspective projection
the SFM problem is more difficult. Close form solutions exist for 2,3 or 4 views
configurations but there no direct linear factorization methods. However, itera-
tive factorization methods that start with an existing structure have been devel-
oped [61, 145]. Section 6.3 presents the algorithm for obtaining the projective
model developed for our image-based model and how the metric, Euclidean struc-
ture required by a robotics system can be recovered.

For a dynamic scene or a nonrigid object the problem becomes much more
complicated. A solution is to decompose the scene into rigid, static components
and estimate each structure separately. Bregler [13] proposed a generalization of
the Tomasi-Kanade factorization using linear combinations of a set of estimated
basis shapes. In our current work we made the assumption that the scene is rigid.

6.2 Affine Metric Structure

For the case when points are tracked in many images there is a linear formulation
of the reconstruction problem, called factorization. The original algorithm requires
that the image coordinates for all the points are available, so there are no occlu-
sions. More recent extensions deals with missing data. Assuming an affine camera,
nonisotropic zero-mean Gaussian noise, the factorization achieves ML affine recon-
struction. For the present work we used an extension of the Tomasi-Kanade fac-
torization algorithm [155] for weak perspective camera projection model similar to
Weinshall and Kanade [165]. First, the algorithm recovers affine structure from a
sequence of uncalibrated images. Then, a relation between the affine structure and
camera coordinates is established. This is used to transform the estimated scene
structure to an orthogonal coordinate frame. Since we use only image information
the metric unit of measure is pixel coordinates. A more detailed mathematical

90

formulation of the problem follows next.

6.2.1 Recovering the Affine Structure

A general affine camera has the form

P∞ = [M |t]
where M is a 2 × 3 matrix and t is a 2D vector (note that we dropped the last
row (0, 0, 0, 1) from the projection matrix). The projection equation using homo-
geneous coordinates can be written as:

(

x
y

)

= M







X
Y
Z





+ t

With n points tracked in m images, we form the 2m × n measurement matrix W
and we can write the projection equations in a compact was as:

W =









x1
1 · · · x1

n
...

...
xm

1 · · · xm
n









=









M1

...
Mm









[X1 · · · Xn] +









t1

...
tm









= RX + t1 (6.13)

If the image points are registered with respect to their centroid in the image plane
and the center of the world coordinate frame is the centroid of the shape points,
the projection equation becomes:

Ŵ = RX where Ŵ = W − t1 (6.14)

Rank theorem

Following [155], in the absence of noise rank(Ŵ) = 3. Under most viewing con-
ditions with a real camera the effective rank is 31. Assuming 2m > n, Ŵ can be
decomposed Ŵ = O1ΣO2, where O1 is an orthonormal 2m × n matrix, Σ is an
n × n diagonal matrix and O2 is an n × n orthonormal matrix (SVD).
Defining

R̂ = O′

1

X̂ = Σ′O′

2

(6.15)

we can write
Ŵ = R̂X̂ (6.16)

O′

1 is formed from the first three columns of O1, Σ′ is the first 3×3 matrix of Σ and
O′

2 contains the first three rows of O2 (assuming the singular values are ordered in
decreasing order).

The factorization calculates the affine shape of the structure X̂ and the affine
projection matrices R̂.

1By effective rank 3 we mean rank near 3 i.e. the first 3 singular values are large and the
4 − n ones are small

91

Missing data

The factorization algorithm assumes that the feature points are tracked in all views.
This is not the case in practice, while capturing different sides of the object when
features can easily be occluded. The measurement matrix W will be incomplete.
Different algorithm that deal with missing and noisy data have been developed
[124]. For this work we developed an algorithm that starts with a factorization with
a complete set of points that estimates an initial structure and incrementally adds
new sets of tracked features that have common points with the current structure
through intersection (see Section 6.1.2). The camera projection for the new frames
is estimated based on common points, as described in Section 6.1.2 and then used
to estimate the affine structure of the new points. A global minimization called
bundle adjustment is performed at the end. The algorithm can be summarized as
follows:

• Select a complete submatrix W1 and estimate the substructure X1 and mo-
tion R1 for the selected frames using the original algorithm.

• Repeat till there are no frames left:
Add frames: estimate the motion for all the frames that have at least 4

tracked points common with the substructure X1.
Add points: compute the structure for all the remaining points that

are tracked in at least 2 frames with known motion.

• Optimize structure and motion using bundle adjustment.

6.2.2 Recovering the Metric Structure

Assuming a weak perspective camera model, the metric properties of the structure
[165] can be recovered. The weak perspective camera is a special case of affine
camera where

M =

[

si
sj

]

(6.17)

The matrices R̂ and X̂ resulted from the affine factorization, are a linear trans-
formation of the metric scaled rotation matrix R and the metric shape matrix X.
There is in general an affine ambiguity in the reconstruction. More specifically
there exist a 3 × 3 matrix Q such that:

R = R̂Q

X = Q−1X̂
(6.18)

Normally, to align X̂ with an exocentric metric frame the world coordinates,
at least four scene points are needed. Assuming no scene information is provided,

92

X̂ can be aligned with the pixel coordinate system of the camera row and column.
This relates Q to the the components of the scaled rotation R:

îTt QQT ît = ĵTt QQT ĵt (= s2)

îTt QQT ĵt = 0
(6.19)

where R̂ = [̂i1 · · · îmĵ1 · · · ĵm]T The first constraint assures that the corresponding
rows sti

T
t , stj

T
t of the scaled rotation R in equation 6.17 are unit vectors scaled by

the factor st and the second equation constrain them to orthogonal vectors. This
generalizes [155] from an orthographic to a weak perspective case. The resulting
transformation is up to a scale and a rotation of the world coordinate system. To
eliminate the ambiguity, the axis of the reference coordinate system is aligned with
the first frame. We also estimate only eight parameters in Q (fixing a scale).

6.3 Euclidean Structure for Perspective Projec-

tion

The problem of uncalibrated SFM for a projective camera has been the focus of
many research studies in the last decade [47, 59]. Close-form solution has been
developed for the case of 2,3 or 4 views. The 2 view geometry formulation, was pre-
sented in Section 4.1.4. The epipolar geometry between the views is algebraically
captured by the fundamental matrix F . There is a family of camera matrices, and
projective structures that are consistent with this reconstruction as, in general, a
camera matrix depends on the internal parameters and choice of world coordinate
frame (external parameters), but F does not depend on the choice of the world
frame and is unchanged by a projective transformation of 3D space. So two pro-
jective matrices P, P ′ uniquely determine F but the converse is not true. Given
this projective ambiguity, we can formulate a class of projection matrices given a
fundamental matrix (canonical cameras):

P = [I|0] (6.20)

P ′ = [[e′]×F + e′vT |λe′] (6.21)

Similar constraints can be defined for 3 and 4 images. The epipolar constraint
can be formulated for three images, divided in groups of 2. But there is a stronger
constraint that involves all three: the projection of a point in the third image can
be computed from corresponding projections in the other two images. A similar
constraint hold for lines or combinations of points/lines. This are called trilinear
constraints and can be expressed using the trifocal tensor [157].

Quadrifocal constraints are formulated for 4 images (using the quadrifocal ten-
sor) [159]. An important result is that there are no additional constraints between

93

more than 4 images. All the constraints can be expressed using F , the trilin-
ear tensor and the quadrifocal tensor. An unifying theory uses multiview tensors
[62, 58].

Here is a summary of different constraints and the minimal configurations for
computing structure from motion:

2 images epipolar geometry, F

• linear unique solution from 8 points

• nonlinear solution from 7 points (3 solutions)

3 images trifocal tensor

• linear solution from 7 points

• nonlinear solution from 6 points

4 images quadrifocal tensor

• linear solution from 6 points

For generating the projective geometry for the proposed image-based model,
we used the method developed by Urban et al [162] that estimates the trilinear
tensors for triplets of views and then recovers epipoles from adjoining tensors. The
projection matrices are computed at once using the recovered epipoles. This algo-
rithm is applied for a subset of points and views. More points/camera projections
are added through intersection/resection (Sections 6.1.2, 6.1.2).

Having the projective depth recovered by this algorithm, the projective struc-
ture is enhanced through factorization.

6.3.1 Projective Factorization

A similar idea to the affine factorization (Section 6.2.1) can be adopted for projec-
tive cameras. Several algorithms exist in the literature [145, 61]. The projection
equations λi

jx
i
j = P iXj for n points and m images can be written as (in homoge-

neous coordinates):

W =









λ1
1x

1
1 · · · λ1

nx
1
n

...
...

λm
1 xm

1 · · · λm
n xm

n









=









P 1

...
P m









[X1 · · · Xn] +









t1

...
tm









(6.22)

λi
j are called the projective depth and are in general unknown. Assuming λi

j are
known (from the initial projective reconstruction), the camera matrices and 3D
projective points can be computed using a factorization algorithm as in 6.2.1. The
measurement matrix has rank four in this case.

94

If the projective depths are unknown an iterative approach can be adopted.
Initially they are all set to 1 and the structure is estimated using factorization.
The depths are re-estimated by reprojecting the structure and the procedure is
repeated. This method works well for simple, mainly planar surfaces, but in general
there is no guarantee that the procedure will converge to a global minimum.

6.3.2 Bundle Adjustment

Consider that the projective 3D structure X̂j and the camera matrices P̂i had
been estimated from a set of image features xi

j. The bundle adjustment refines
this estimates by minimizing the geometric error

min
∑

i,j

d(P̂ iX̂j,x
i
j)

2 (6.23)

The name bundle adjustment means readjusting bundle of rays between the camera
center and the set of 3D points to fit the measured data. The solution looks for
the Maximum Likelihood (ML) estimate assuming that the measurement noise
is Gaussian. This step is very important in any projective reconstruction and is
tolerant to missing data.

6.3.3 Projective Ambiguity

Given an uncalibrated sequence of images with corresponding points identified it
is possible to reconstruct the structure only up to a projective transformation.

But, there exist a homography H (or a family of homographies) such that the
transformed matrices P iH represent true projection matrices and an be decom-
posed as: P iH = KRi[I|ti], where K, Ri, ti represent the internal and external
parameters of the camera as described in subsection 4.1.1. The projective struc-
ture is upgraded to metric by H−1Xj.

The general approach for a metric reconstruction is:

• Obtain a projective reconstruction P i, Xj

• Determine the rectifying homography H from autocalibration constraints,
and transform the reconstruction to metric P iH, H−1Xj

6.3.4 Self Calibration

The theoretical formulation of self-calibration (auto-calibration) for constant cam-
era parameters was first introduced by Faugeras [45]. The goal is to recover the
projective ambiguity by imposing only constraints on the internal camera parame-
ters. To restrict the projective ambiguity (15 DOF) to a metric one (7 DOF - 3 for
rotation, 3 for translation and 1 for scale), at least 8 constraints are needed [127].

95

An internal camera parameter known in m views, gives n constraints; if the pa-
rameter is fixed across m views gives m − 1 constraints. Therefore the absence of
skew was shown to be enough for self-calibration with more than 8 views ([126, 63].
If, in addition, the aspect ration is known (au = av), 4 views are sufficient. In the
case where the principal point is known two views impose enough constraints for
self-calibration.

Present techniques can be dived in two main categories:

(a) a stratified approach that first determines the affine structure and then the
metric structure using the absolute conic;

(b) a direct approach that recovers the metric structure using the dual absolute
quadric.

We developed a self-calibration algorithm that belongs to the second category
and uses the image of the image of the absolute dual quadric (IDAC) assuming
known internal camera parameters. A very important concept in self-calibration
is the Absolute Conic (AC) and its image projection (IAC). Since it is invariant
to Euclidean transformations its relative position to a moving camera is constant.
Therefore, if the camera internal parameters are not changing its image is also
constant. It can be seen as a calibration object that is present in all scenes. Once
the AC is recovered, it can be used to upgrade the reconstruction to metric. A
practical way of representing the AC is its dual - Dual Absolute Quadric (DAC)
[160] that expresses both the AC and its supporting plane (plane at infinity) in
one entity.

The DAC, Ω∗ is related by the image of the absolute conic (IAC) ω∗

t in view t
by:

ω∗

t ∼ PtΩ
∗P T

t (6.24)

where Pt denotes the projection matrix for view t. For a calibrated Euclidean cam-
era, Pt = K[Rt|tt] the DAC has the canonical configuration Ω∗ = diag(1, 1, 1, 0)
so by substituting in equation 6.24 we obtain:

ω∗

t = KKT (6.25)

In the case of a projective reconstruction, the DAC will not be in its standard
position, so the self-calibration algorithm recovers the projective transformation
H that will transform the DAC in its standard position:

KKT = Pt(HΩ∗HT)P T
t (6.26)

Assuming the camera has been calibrated, the projection matrices can be nor-
malized, Pt = K−1Pt and camera matrix is a 3×3 unity matrix, K = diag(1, 1, 1).
The model transformed and aligned with the first camera so, P0 = [I|0]. The
rectifying homography has the form

H =

[

K 0
v′ a

]

(6.27)

96

where v = −pT K, p is the normal of the plane at infinity π∞ = (pT , 1)T and a
is a scalar that can be set to 1. v is recovered from Equation 6.26. In a more
general formulation, K is assumed unknown and the DAC is recovered from 6.26
by imposing internal constraints on K.

Note that, self-calibration is not a general solution to a metric reconstruction.
Some critical motions [146] can generate degenerate solutions (e.g. planar motion
and constant internal parameters) and the constraints on the internal parameters
has to be carefully chosen depending on each real camera. Some external con-
straints on the scene (if available) like knowledge about parallel lines, angles can
improve the robustness. Metric bundle adjustment is performed as a final step.

6.4 Dynamic Textures

In traditional graphics, images are generated by texture mapping a 3D scene model.
Using computer vision structure from motion techniques a geometric model is
reconstructed from corresponding image features. Typically relatively few points
can be extracted reliably, and the scene structure is thus sparse. This leads to
significant parallax errors when a planar model facet represents a non-planar scene
surface. Additionally, misalignments in the computed corresponding image points
lead to incorrect texture coordinates and image plane errors in texture mapping.

We propose a texture-based correction [22, 25], which relaxes the accuracy
requirement on the structure estimation. This section describes how to make
the texture correctly represent the variation over different viewpoints of a poten-
tially complex underlying geometry. Using the tools of 3D warping, relief textures
provides an explicit geometric solution to adding 3D structure to a planar tex-
ture [117]. However, relief textures require a detailed a-priori depth map of the
texture element. This is normally not available in image-based modeling if only
uncalibrated camera video is used. An alternative way to represent the image mo-
tion caused by depth parallax is by modulating a spatial image basis. Previously,
this technique has been used in image (camera) plane encoding of deterministic
scene motion [73] and capturing certain quasi-periodic motions [39].

In the previous Chapter, I described how uncalibrated video can be used to ob-
tain geometric information from a scene. A structure-from-motion (SFM) method
starts with a set of m images I1 . . . Im from different views of a scene. Through
visual tracking or correspondence detection the image projection x1 . . . xn of n
physical scene points are identified in every image. From this, a structure from
motion computes a structure, represented by a set of n scene points X1 . . .Xn, and
m view projections P1 . . . Pm such that (reprojection property):

xti = PtXi i ∈ 1 . . . n, t ∈ 1 . . .m (6.28)

Independent of the geometric details and interpretation and central to image based
modeling and rendering is that this structure can be reprojected into a new virtual

97

camera and thus novel views can be rendered. Practically, the structure is divided
into K planar facets (triangles or quadrilaterals are used in the experiments) with
the points xti as node points. For texture mapping, each one of the model facets
are related by a planar projective homography to a texture image. See Figure 6.6.

6.4.1 Texture Basis

In conventional texture mapping, one or more of the real images are used as a
source to extract texture patches from, and then warped onto the re-projected
structure in the new view.

Instead of using an image as a source texture, we study how to relate and
unify all the input sample images into a texture basis. Let xT i be a set of texture
coordinates in one-to-one correspondence to each model point Xi and thus also for
each view t with the image points xti above. A texture warp function W translates
the model vertex to texture correspondences into a pixel-based re-arrangement (or
warp) between the texture space IW to screen image coordinates I.

T (x) = I(W (x; µ)) (6.29)

where µ are the warp parameters and x the image coordinates.
Common such warp functions are affine, bi-linear and projective warps. The

warp function W acts by translating, rotating and stretching the parameter space
of the image, and hence for discrete images a re-sampling and filtering step is
needed between the image and texture spaces. Details of these practicalities can
be found in [108].

Now if for each sample view t, we warp the real image It from image to texture
coordinates into a texture image Tt, we would find that in general Tt 6= Tk, t 6= k.
Typically, the closer view t is to k, the smaller is the difference between Tt and Tk.
This is the rationale for view-dependent texturing, where a new view is textured
from one to three (by blending) closest sample images [35].

Here we will develop a more principled approach, where we seek a texture basis
B such that for each sample view:

Tt = Byt, t ∈ 1 . . .m. (6.30)

We denote by T is a q × q texture image flattened into a q2 × 1 column vector.
B is a q2 × r matrix, where normally r � m, and y is a modulation vector. The
texture basis B needs to capture geometric and photometric texture variation over
the sample sequence, and correctly interpolate new in-between views. We first
derive a first order geometric model, then add the photometric variation. For
clarity we develop these applied to one texture warp (as in Figure 7.16), while in
practical applications a scene will be composed by texturing several model facets
(as in Figures 6.6 and 7.13).

98

6.4.2 Geometric Texture Variation

The starting point for developing a spatial texture basis representing small geomet-
ric variations is the well known optic flow constraint, which for small image plane
translations relates texture intensity change ∆T = Tt − Tk to spatial derivatives
∂
∂u

T, ∂
∂v

T with respect to texture coordinates x = [u, v]T under an image constancy
assumption [56].

∆T =
∂T

∂u
∆u +

∂T

∂v
∆v (6.31)

Note that given one reference texture T0 we can now build a basis for small image
plane translations B = [T0,

∂T
∂u

, ∂T
∂v

] and from this generate any slightly translated
texture T (∆u, ∆v) = B[1, ∆u, ∆v]T = By.

In a real situation, the patch is deforming in a more complex way than only
translating. This deformation is captured by the warp parameters. Given a
warp function x′ = W (x; µ) we study the residual image variability introduced
by the imperfect stabilization achieved by a perturbed warp W (x; µ̂), ∆T =
T (W (x; µ̂), t) − T (W (x; µ)). Let µ̂ = µ + ∆µ and rewrite as an approximate
image variability to the first order (dropping t):

∆T = T (W (x; µ + ∆µ)) − TW = T (W (x; µ)) + ∇T ∂W
∂µ

∆µ − TW

= ∇T ∂W
∂µ

∆µ
(6.32)

The above equation expresses an optic flow type constraint in an abstract for-
mulation without committing to a particular form or parameterization of W (µ).
In practice, the function W is usually discretized using e.g. triangular or quadri-
lateral mesh elements. Next we give examples of how to concretely express image
variability from these discrete representations.

Particularly for image based modeling and rendering we warp real source images
into new views given an estimated scene structure. Errors between the estimated
and true scene geometry cause these warps to generate imperfect renderings. We
divide these up into two categories, image plane and out of plane errors. The
planar errors cause the texture to be sourced with an incorrect warp.2. The out of
plane errors arise when piecewise planar facets in the model are not true planes in
the scene, and when re-warped into new views under a false planarity assumption
will not correctly represent parallax.

Planar texture variability

First we will consider geometric errors in the texture image plane. In most both
IBR (as well as conventional rendering) textures are warped onto the rendered
view from a source texture T by means of a affine warp or projective homography.

2Errors in tracking and point correspondences when computing the SFM, as well as projection
errors due to differences between the camera model and real camera both cause model points to
be reprojected incorrectly in the sample images

99

Affine variation Under a weak perspective (or orthographic) camera geometry,
plane-to-plane transforms are expressed using an affine transform of the form:

[

uw

vw

]

= Wa(p, a) =
[

a3 a4

a5 a6

]

p +
[

a1

a2

]

(6.33)

This is also the standard image-to-image warp supported in OpenGL. Now we
can rewrite the image variability equation 6.32 resulting from variations in the six
affine warp parameters as:

∆Ta =
∑6

i=1
∂

∂ai
Tw∆ai =

[

∂T
∂u

, ∂T
∂v

]

[

∂u
∂a1

· · · ∂u
∂a6

∂v
∂a1

· · · ∂v
∂a6

]

∆[a1 . . . a6]
T (6.34)

Let {T}discr = T be a discretized texture image flattened along the column
into a vector. Rewriting the inner derivatives to get an explicit expression of the
six parameter variability in terms of spatial image derivatives we get:

∆Ta(u, v) =
[

∂T
∂u

, ∂T
∂v

]

[

1 0 u 0 v 0
0 1 0 u 0 v

]

[y1, . . . , y6]
T =

[B1 . . .B6][y1, . . . , y6]
T = Baya

(6.35)

where [B1 . . .B6] can be interpreted as a texture variability basis for the affine
transform.
Projective variation Under a perspective camera the plane-to-plane warp is
expressed by a projective collineation or homography,

[

u′

v′

]

= Wh(xh,h) =
1

1 + h7u + h8v

[

h1u h3v h5

h2u h4v h6

]

(6.36)

Rewrite equation 6.32 with the partial derivatives of Wh for the parameters
h1 . . . h8 into a Jacobian matrix. Let c1 = 1 + h7u + h8v, c2 = h1u + h3v + h5,
and c3 = h2u + h4v + h6. The resulting texture image variability due to variations
the estimated homography is (to the first order) spanned by the following spatial
basis:

∆Th(u, v) = 1
c1

[

∂T
∂u

, ∂T
∂v

]

[

u 0 v 0 1 0 −uc2
c1

−vc2
c1

0 u 0 v 0 1 −uc3
c1

−vc3
c1

]







∆h1
...

∆h8





 =

[B1 . . .B8][y1, . . . , y8]
T = Bhyh

(6.37)

Similar expressions can be derived for other warps. E.g. in real time visual
tracking a four parameter variability from modeling image u, v translations, image
plane rotations and scale has shown to be suitable [56].

100

Non-planar parallax variation

While in image-based modeling a scene is represented as piecewise planar model
facets, the real world scene is seldom perfectly planar. In rendering this gives rise
to parallax errors. Figure 6.4 illustrates how the texture plane image T changes for
different scene camera centers C. Given a depth map d(u, v) representing the offset
between the scene and texture plane, relief texturing [117] can be used to compute
the rearrangement (pre-warp) of the texture plane before the final homography
renders the new view. In image-based methods, an accurate depth map is seldom
available. However we can still develop the analytic form of the texture intensity
variation as above. Let r = [α, β] be the angle for view Pt between the ray from
the camera center Ct to each scene point. The pre-warp rearrangement needed on
the texture plane to correctly render this scene using a standard homography warp
is then:

[

δu
δv

]

= Wp(x,d) = d(u, v)
[

tanα
tanβ

]

(6.38)

As before, taking the derivatives of the warp function with respect to a camera
angle change and inserting into equation 6.32 we get:

∆Tp(u, v) = d(u, v)

[

∂T

∂u
,
∂T

∂v

] [

1
cos2 α

0
0 1

cos2 β

]

[

∆α
∆β

]

= Bpyp (6.39)

C

ddu

1

C
m

Scene

Texture plane

Camera
plane

Figure 6.4: Texture parallax between two views

Non-rigidity

We consider only non-rigidities where the shape change is a function of some mea-
surable quantity x ∈ <n. In this paper we choose x from pose and articulation

101

parameters. Let g(x) (= [u, v]T) represent the image plane projection of the non-
rigid warp. We can then write the resulting first order image variation as:

∆Tn =
{

∑n
i=1

∂T
∂xi

∆xi

}

discr
=

{[

∂T

∂u
, ∂T

∂v

] [

∂
∂x1

g(x)∆x1, . . . ,
∂

∂xn
g(x)∆xn

]}

discr
=

[B1 . . .Bn][y1, . . . , yn]
T = Bnyn

(6.40)

6.4.3 Photometric Variation

In image-based rendering real images are re-warped into new views, hence the com-
posite of both reflectance and lighting is used. If the light conditions are same for
all sample images, there is no additional intensity variability introduced. However,
commonly the light will vary at least somewhat. In the past decade several pub-
lished both empirical studies and theoretical motivations have shown that a low
dimensional intensity subspace of dimension 5-9 is sufficient for representing the
light variation of most natural scenes [88]. Hence we introduce nine additional free-
doms in our variability model to allow for lighting. (Complex scenes may require
more, simple (convex lambertian) less).

∆Tl = [B1 . . .B9][y1 . . . y9]
T = Blyl (6.41)

6.4.4 Estimating Composite Variability

In textures sampled from a real scene using an estimated geometric structure we
expect that the observed texture variability is the composition of the above derived
planar, parallax and light variation, as well as unmodeled effects and noise ∆Te.
Hence, total residual texture variability can be written as:

∆T = ∆Th/a + ∆Tp + ∆Tn + ∆Tn + ∆Te (6.42)

Using the basis derived above we can write the texture for any sample view t, and
find a corresponding texture modulation vector yt:

Tk = [T0, Bh/a, Bp, Bn, Bl][1, y1, . . . , yk] = Byt (6.43)

Textures for new views are synthesized by interpolating the modulation vectors
from the nearest sample views into a new y, and computing the new texture
Tnew = By

Since this basis was derived as a first order representation it is valid for (reason-
ably) small changes only. In practical image-based modeling the geometric point
misalignments and parallax errors are typically within a few pixels, which is small
enough.

In IBR typically, neither the dense depth needed to analytically compute Bp,
nor light and reflectance models needed for Bl are available. Instead the only

102

available source of information are the sample images I1 . . . Im from different views
of the scene, and from these, the computed corresponding textures T1 . . .Tm.

However, from the above derivation we expect that the effective rank of the
sample texture set is the same as of the texture basis B, i.e. rank[T1, . . . ,Tm] ≈ k.
Hence, from m � k (typically 100-200) sample images we can estimate the best
fit (under some criterion) rank 20 subspace using e.g. PCA, SVD, or ICA.

Briefly PCA can be performed as follows. Form a measurement matrix A =
[T1, . . . ,Tm]. The principle components are the eigenvectors of the covariance
matrix C = AAT . A dimensionality reduction is achieved by keeping only the first
k of the eigenvectors. For practical reasons, usually k � m � l, where l is the
number of pixels in the texture patch, and the covariance matrix C will be rank
deficient. We can then save computational effort by instead computing L = AT A
and eigenvector factorization L = V DV T , where V is an ortho-normal and D a
diagonal matrix. From the k first eigenvectors V̂ = [v1 . . .vk] of L we form a
k-dimensional eigenspace B̂ of C by B̂ = AV̂ . Using the estimated B̂ we can now
write a least squares optimal estimate of any intensity variation in the patch as

∆T = B̂ŷ, (6.44)

the same format as equation 6.42, but without using any a-priori information to
model B. While ŷ captures the same variation as y, it is not parameterized in
the same coordinates. For every training texture Tt we have from the orthogo-
nality of V̂ that the corresponding texture mixing coefficients are the columns of
[ŷ1, . . . , ŷm] = V̂ T . From the geometric structure we also have the corresponding
pt.

This yields an estimated texture basis B̂ and corresponding space of modulation
vectors ŷ1, . . . ŷm in one-to-one correspondence with the m sample views. From
the derivation of the basis vectors in B we know this variation will be present and
dominating in the sampled real images. Hence, the analytical B and the estimate
B̂ span the same space and just as before, new view dependent textures can now
be modulated from the estimated basis by interpolating the ŷ corresponding to
the closest sample views and modulating a new texture T = B̂ŷ. Practically
to estimate the texture mixing coefficients for intermediate poses, we first apply
n-dimensional Delaunay triangulation over the sampled poses p1, . . . ,pm. Then
given a new pose p we determine which simplex the new pose is contained in, and
estimate the new texture mixing coefficients ŷ by linearly interpolating the mixing
coefficients of the corner points of the containing simplex.

6.4.5 Interpretation of the Variability Basis

The geometric model captures gross image variation caused by large movements.
The remaining variation in the rectified patches is mainly due to:

103

1. Tracking errors as well as errors due to geometric approximations (e.g. weak
perspective camera) cause the texture to be sourced from slightly inconsis-
tent locations in the training images. These errors can be modeled as a
small deviation ∆[h1, . . . , h8]

T in the homography parameters from the true
homography, and causes image differences according to equation 6.37. The
camera approximations, as well as many tracking errors are persistent, and
a function of object pose. Hence they will be captured by B̂ and indexed in
pose x by ŷ.

2. Depth variation is captured by equation 6.39. Note that projected depth
variation along the camera optic axis changes as a function of object pose.

3. Assuming fixed light sources and a moving camera or object, the light vari-
ation is a function of relative camera-object pose as well.

From the form of Equations 6.37 and 6.39 we expect that pose variations in
the image sequence will result in a texture variability described by combinations of
spatial image derivatives. In Figure 6.5 we compare numerically calculated spatial
image derivatives to the estimated variability basis B̂.

Figure 6.5: Comparison between spatial derivatives ∂Tw

∂x
and ∂Tw

∂y
(left two texture

patches) and two vectors of the estimated variability basis [B1,B2] (right) for house
pictures.

6.5 Combining Geometric Model and Dynamic

Textures for Image-Based Rendering

In the proposed system, the approximate texture image stabilization achieved using
a coarse model reduces the difficulty of applying IBR techniques. The residual
image (texture) variability can then be coded as a linear combination of a set of
spatial filters (Figure 6.6). The main steps in obtaining and reprojecting the model
are enumerated below. Next chapter describes the implementation details for each
step.

104

New desired pose

Model New view

I1 It

y y
1 t

= =

Texture coefficients
Warped texture

Texture
basis

Structure

+ +

Training

Motion parameters

P

Sample Images

X

1 tP P

Figure 6.6: A sequence of training images I1 · · · It is decomposed into geomet-
ric shape information and dynamic texture for a set of quadrilateral patches. The
scene structure X and views Pt are determined from the projection of the structure
using a structure-from-motion algorithm. The view-dependent texture is decom-
posed into its projection y on an estimated basis B. For a given desired position, a
novel image is generated by warping new texture synthesized from the basis B on
the projected structure. On the web site is a compiled demo rendering this flower
and some captured movies

105

Training data

We capture a training sequence of images It where feature point locations xt =
[ut;vt] were tracked using visual tracking as described in [57] and Section 7.1.

Geometric model

A coarse geometric structure of the scene X and a set of motion parameters
pt = (Rt, tt) that uniquely characterize each frame is estimated from the tracked
points using structure from motion. We have shown (Sections 6.2, 6.3) that metric
structures can be reconstructed from a sequence of uncalibrated images with a
set of tracked feature points under different camera models (affine or projective).
R represents a 3D rotation and, depending of the choice of geometric representa-
tion t is a 2D translation (affine metric structure) or a 3D translation (Euclidean
structure). The reprojection of the structure given a set of motion parameters p
is obtained by

x = P (p)X (6.45)

where P (p) is the projection matrix formed using the motion params p.

Dynamic texture

The projection of the estimated structure into the sample images, xt, is divided
into Q triangular regions Ikt that are then warped to a standard shape Tkt to
generate a texture Tt.

It =
Q
∑

k=1

Ikt (6.46)

Tkt = Ikt(W(x; µ(xt))) (6.47)

Tt =
Q
∑

k=1

Tkt (6.48)

Notation µ(xt) indicate that the warp parameters are computed from the position
of the tracked points xt, that are mapped to their standard pose xT . The standard
shape xT is chosen to be the average positions of the tracked points scaled to
fit in a square region as shown in Figure 6.6. Practically, using HW accelerated
OpenGL (see Section 7.2) each frame It is loaded into texture memory and warped
to a standard shape texture Tt based on tracked positions (equations 6.46, 6.47,
6.48). Using the algorithm described in section 6.4.4 we compute a set of basis
images B that capture the image variability caused by geometric approximations
and illumination changes and the set of corresponding blending coefficients yt.

Tt = Byt + T̄ (6.49)

106

New view generation

To generate a new view from the desired pose p we compute the reprojection
x = [u;v] of the geometric model as in equation 6.45. The texture blending
coefficients y are estimated by interpolating the the nearest neighbors coefficients
from the coefficients and poses of the original training sequence. The new texture
in the standard shape is computed using equation 6.49, and finally the texture
is warped to the projected structure (inverse of equations 6.47 and 6.46). The
texture computation and rendering are performed in hardware as described in
Section 7.2.3.

107

Chapter 7

Dynamic Texture Model
Implementation and Applications

108

This chapter presents the practical implementation and performance of the dy-
namic texture model as well as its applications in tracking and predictive display.
A 3D model-based tracking algorithm uses the estimated geometric model to track
the camera motion. The algorithm was integrated in the model acquisition stage
but also used independently for tracking the position of a mobile robot. The dy-
namic texture model is more complex than the panoramic model and its different
components were integrated into a rendering system with real-time performance.
Section 7.2 presents the implementation details for each part of the system. Most
of the initial experiments were done with small objects, mainly due to the tracking
limitations. For robotics applications bigger scenes need to be captured and ren-
dered. Later experiments demonstrate the applicability of the model to a bigger
space (room and research lab). Section 7.3 presents a qualitative and quantitative
evaluation of different models created with our system. The model can be reani-
mated and rendered from any desired position, that is made use of in a predictive
display application described in Section 7.4.

7.1 3D SSD Tracking

In visual tracking pose parameters of a moving camera or object are extracted
from a video sequence. One way of classifying tracking methods is into feature
based, segmentation based and registration based.

In feature based tracking a feature detector is used to locate the image projec-
tion of either special markers or natural image features. Then a 3D pose compu-
tation can be done by relating 2D image feature positions with their 3D model.
Many approaches use image contours (edges or curves) that are matched with an
a-priori given CAD model of the object [95, 99, 41]. Most systems compute pose
parameters by linearizing with respect to object motion. A characteristic of these
algorithms is that the feature detection is relatively decoupled from the pose com-
putation, but sometimes past pose is used to limit search ranges, and the global
model can be used to exclude feature mismatches [95, 1].

In segmentation based tracking some pixel or area based property (e.g. color,
texture) is used to binarize an image. Then the centroid and possibly higher
moments of connected regions are computed. While the centroid and moments
are sufficient to measure 2D image motion, it is typically not used for precise 3D
tracking alone, but can be used to initialize more precise tracking modalities [158].

In registration based tracking the pose computation is based on directly aligning
a reference intensity patch with the current image to match each pixel intensity
as closely as possible. Often a sum-of-squared differences (e.g. L2 norm) error is
minimized, giving the technique its popular name SSD tracking. This technique
can also be used in image alignment to e.g. create mosaics [147]. Early approaches
used brute force search by correlating a reference image patch with the current
image. While this worked reasonably well for 2D translational models, it would

109

be impractical for planar affine and projective (homography) image transforms.
Instead, modern methods are based on numerical optimization, where a search
direction is obtained from image derivatives. The first such method required spatial
image derivatives to be recomputed for each frame when “forward” warping the
reference patch to fit the current image [97], while most recently, efficient “inverse”
algorithms have been developed, which allow the real time tracking for the above
mentioned 6D affine [56] and 8D projective warp [3]. A related approach [77,
53], where instead of using spatial image derivatives, a linear basis of test image
movements is used to explain the current frame, has proved equally efficient as the
inverse methods during the tracking, but suffers from much longer initialization
times to compute the basis, and a heuristic choice of the particular test movements.

We extend the registration based technique by involving a full 3D scene model,
estimated from the same uncalibrated video, and used directly in the computation
of the motion update between frames. Hence, we are able to utilize general image
patches in a general 3D scene, and directly track the rotational and translational
camera-scene motion from image differences. Some advantages of using a global 3D
model and surface patches are that only surfaces with salient intensity variations
need to be processed, while the 3D model connect these together in a physically
correct way. We show experimentally that this approach yields more stable and
robust tracking than previous approaches, where each surface patch motion is
computed individually.

The rest of this section is organized as follows: We start with a presentation
of the general tracking algorithm in Section 7.1.1, and then the details for useful
combinations of motions (3D models and 2D planar image warps) in Section 7.1.2.
The qualitative and quantitative evaluation of the algorithm is presented in Section
7.1.3.

7.1.1 General Tracking Problem formulation

We consider the problem of determining the motion of a rigid structure through
a sequence of images using image registration. A sparse 3D structure for the
model described by 3D points Yi, i = 1, N is calculated in a training stage using
uncalibrated structure from motion techniques (see Section 6.3). The structure
points define Q image regions that are tracked in the sequence. Each region Rk

is determined by a number of control points Ykj that define its geometry. For
example, a planar surface region can be specified by 4 corner points. The model
points are projected onto the image plane using a projective transformation. First
we develop the general theory without committing to a particular projection model
and denote the general 3×4 projection matrix for image It by Pt. Hence, the model
points are projected in image It using:

yti = PtYi, i = 1, N (7.1)

Let xk = {x1,x2, . . .xKk
} denote all the (interior) image pixels that define the

110

projection of region Rk in image I. We refer to I0 = T as the reference image and
to the union of the projections of the model regions in T , ∪kT (xk) as the reference
template. The goal of the tracking algorithm is to find the (camera) motion Pt

that best aligns the image template with the current image It. A more precise
formulation follows next. Refer to Figure 7.1 for an illustration of the tracking
approach.

3D Model

I tI0

Rk

P

P0 P

P = inv(P) P

k t−1

∆

k µ ∆

t−1

W(x ; (p))µ

W(x ; (p))k µ t
W(x ; (p))

t ∆ t−1

Figure 7.1: Overview of the 2D-3D tracking system. In standard SSD tracking
2D surface patches are related through a warp W between frames. In our system
a 3D model is estimated (from video alone), and a global 3D pose change ∆P is
computed, and used to enforce a consistent update of all the surface warps.

Assume that the image motion in image t for each individual model region k
can be perfectly modeled by a parametric motion model W (xk; µ(Pt,Yk)) where
µ are 2D motion parameters that are determined by the projection of the region
control points ytkj = PtYkj. As an example for a planar region the corresponding
4 control points in the template image and target image t define a homography
(2D projective transformation) that will correctly model all the interior region
points from the template image to the target image t. Note that the 3D model
motion is global but each individual region has a different 2D motion warp Wk. For
simplicity, the 2D warp is denoted by W (xk; µ(pt)) where pt are the 3D motion

111

parameters that define the camera projection matrix Pt.
Under image constancy assumption [65] (e.g. no illumination change) the track-

ing problem can be formulated as finding pt such as:

∪kT (xk) = ∪kIt(W (xk; µ(pt))) (7.2)

pt = pt−1 ◦ ∆p can be obtained by minimizing the following objective function
with respect to ∆p:

∑

k

∑

x

[T (xk) − It(W (xk; µ(pt−1 ◦ ∆p)))]2 (7.3)

For efficiency, we solve the problem by an inverse compositional algorithm [3]
that switches the role of the target and template image. The goal is to find ∆p
that minimizes:

∑

k

∑

x

[T (W (xk; µ(∆p))) − It(W (xk; µ(pt−1)))]
2 (7.4)

where in this case the 3D motion parameters are updated as:

Pt = inv(∆P) ◦ Pt−1 (7.5)

The notation inv(∆P) means inverting the 3D motion parameters in a geometri-
cally valid way that will result in inverting the 3D motion, i.e. in the case when
∆P = K[R|t] is a calibrated projection matrix, the inverse motion is given by
inv(∆P) = K[R′| − R′t] (see Section 7.1.2). As a consequence, if the 2D warp W
is invertible, the individual warp update is (see Figure 7.1):

W (xk; µ(pt)) = W (xk; µ(∆p))−1 ◦ W (xk; µ(pt−1)) (7.6)

Performing a Taylor extension of equation 7.4 gives:

∑

k

∑

x

[T (W (xk; µ(0))) + ∇T
∂W

∂µ

∂µ

∂p
∆p − It(W (xk; µ(pt)))] (7.7)

Assuming that the 3D motion for the template image is zero (which can be easily
achieved by rotating the model in order to be aligned with the first frame at the
beginning of tracking), T = T (W (xk; µ(0))). Denoting M =

∑

k

∑

x ∇T ∂W
∂µ

∂µ
∂p

,
equation 7.7 can be rewritten as:

M∆p = et (7.8)

where et represents the image difference between the template regions and warped
image regions. Therefore the 3D motion parameters can be computed as the
solution of a least square problem:

∆p = (MT M)−1MT et (7.9)

The stepest descent images M =
∑

k

∑

x ∇T ∂W
∂µ

∂µ
∂p

are evaluated at p = 0 and
they are constant across iterations and can be precomputed, resulting in an efficient
tracking algorithm that can be implemented in real time (see Section 7.2.1).

112

Computing stepest descent images

We compute the stepest descent images from spatial derivatives of template in-
tensities and inner derivatives of the warp. As mentioned before, the 2D motion
parameters µ for a region k are functions of the 3D parameters p, the 3D control
points Yj and the position of the control points in the template image y0j. The
projection of the points in the current image yj = PYj are mapped to the template
image control points through the 2D warp W (µ(p)) using:

y0j = W (µ(p))(PYj), j = 1, N (7.10)

The warp W is a composed function, and its derivatives can be calculated as:

∂W

∂p
=

∂W

∂µ

∂µ

∂p

The warp derivatives with respect to the 2D motion parameters are directly com-
puted from the chosen warp expression (see Section 7.1.2 for some examples). The
explicit dependency between the 2D parameters µ and the 3D motion parameters
p is in general difficult to obtain, but equation 7.10 represents their implicit de-
pendency, so ∂µ

∂p
are computed using implicit function derivatives. Assume that

equation 7.10 can be written in the form (see Section 7.1.2 for some examples):

A(p)µ(p) = B(p) (7.11)

Taking the derivatives with respect to each component p of p:

∂A

∂p
µ + A

∂µ

∂p
=

∂B

∂p
(7.12)

For a given p value µ can be linearly computed from equation 7.11 and then ∂µ
∂p

is
computed from equation 7.12.

7.1.2 Practically Useful Motion Models

Different levels of 3D reconstruction - projective, affine, metric Euclidean - can be
obtained from an uncalibrated video sequence [59]. A projective reconstruction
gives more degrees of freedom (15 DOF) so it might fit the data better under dif-
ferent noise conditions. On the other hand, fitting a metric structure will result
in a stronger constraint, and fewer parameters can represent the model motion
(6DOF). For our tracking algorithm we will investigate two levels of geometric
models reconstructed under perspective camera assumption - projective and met-
ric. The 3D motion of the model results in 2D motion of the regions Rk on the
image plane.

As mentioned before, the 2D motion is determined through the regions’ control
points. Different motion approximations are common for the 2D-2D image warps.

113

Warps with few parameters (e.g 2D translation) are in general stable for small
regions or simple motion. To better capture the deformation of a region, more
parameters should be considered but in general tracking with these warps need
large surface area or stabilization from a 3D model. A natural parametrization,
which also correctly captures motion of planar regions, would be a homography
warp for a perspective camera model (projective or Euclidean) and an affine warp
for a linear camera model (orthographic, weak perspective, para-perspective). The
next subsections give concrete examples of how the tracking algorithm can be
applied to three types of useful combinations of motions: an Euclidean model with
small translational patches, or larger homography patches, and a projective model
with small translational patches.

Euclidean model with translational warps

A perspective calibrated camera has the following form in Euclidean geometry:

P = K[R|t] (7.13)

where the internal parameters are:

K =







au s uc

0 av vc

0 0 1





 (7.14)

R = Rx(αx)Ry(αy)Rz(αz) represents the rotation matrix and t = [tx, ty, tz]
T is the

translation vector. So the 3D motion parameters are p = [αx, αy, αz, tx, ty, tz]. A
translational warp is controlled by one model points for each region and has the
form:

W (xk; µ) = xk + µ (7.15)

where µ = [µx, µy]
T is the 2D image translation vector and is computed from the

motion of the control point Yk using:

µ(p) = y0k − K[R|t]Yk (7.16)

The inner derivatives ∂W
∂µ

and ∂µ
∂p

can be directly computed from equation 7.15,7.16
without needing the implicit function formulation.

Euclidean model with homography warps

The image motion of a planar patch can be modeled projectively using a ho-
mography warp that is determined by at least 4 control points Ykj. Denote the
projection of the control points in the current image by ytj. Note that k is dropped
as all the calculations are done for one region. With the Euclidean camera model,

114

yj = K[R|t]Yj. A homography can be represented using 8 independent parameters
µ = [µ1µ2µ3µ4µ5µ6µ7µ8]

T :

W (xk; µ) =







µ1 µ2 µ3

µ4 µ5 µ6

µ7 µ8 1





x = Hx (7.17)

The explicitly dependency of the 2D warp parameters as function of 3D motion
parameters is difficult to obtain analytically in this case, but we can apply the
method described in Section 7.1.1 to compute the inner derivatives ∂µ

∂p
using the

implicit dependency from equation 7.10:

y0j = Hyj j = 1, N (N ≥ 4) (7.18)

which can be put in the form of equation 7.11 A(p)µ = B(p) with

A(p) =



















y1
1 y2

1 1 0 0 0 −y1
1y

1
01 − y2

1y
1
01

0 0 0 y1
1 y2

1 1 −y1
1y

2
01 − y2

1y
2
01

...
y1

N y2
N 1 0 0 0 −y1

Ny1
0N − y2

Ny1
0N

0 0 0 y1
N y2

N 1 −y1
Ny2

0N − y2
Ny2

0N



















(7.19)

B(p) = [y1
01, y

2
01, . . . , y

1
0N , y2

0N]T (7.20)

where [y1
j , y

2
j , 1]T are the normalized homogeneous coordinates for yj.

Projective model with translational warp

This last example is very similar to the first one except that the 3D motion is
represented by a projective 3×4 camera matrix P with 11 independent parameters
p = [p1p2 . . . p11]

T . The 2D warp parameters µ are related to p,:

µ(p) = y0k − PYk (7.21)

The translational warp is given by equation 7.15.
This model presents difficulties in calculating a unique and numerically stable

inverse of the 3D motion, as required in equation7.5. To avoid this problem, while
we still compute a global motion update ∆p instead we update each warp inde-
pendently as in equation 7.6. This solution is closer to the original SSD tracking
algorithm [3, 56] and, as demonstrated by the experimental results, performs worse
than our new algorithm described in Section 7.1.1, but still better than the simple
unconstrained SSD tacker.

The 3D model-based tracking is incorporated into a complete tracking system,
described in Section 7.2.1 that first acquires the geometric model of the scene using
simple 2D SSD translational tracking and then continues tracking the model with
our new algorithm.

115

Figure 7.2: Top Tracking individual patches using a homography. Not all regions
can be tracked thought the whole sequence and occlusion is not handled. Bottom
Through the 3D model each region motion is rigidly related to the model, and
tracking succeeds through the whole sequence. The model also allows detection
and removal of occluded regions and introduction of new regions.

7.1.3 Experimental Results

Two important properties of tracking methods are convergence and accuracy.
Tracking algorithms based on an optimization and spatio-temporal derivatives
(equation 7.7) can fail to converge because the image difference between consec-
utive frames is too large, and the first order Taylor expansion around pt−1is no
longer valid, or some disturbance causes the image constancy assumption to be
violated.

In numerical optimization, the pose update ∆p is computed by solving an
overdetermined equation system, equation 7.8. Each pixel in a tracking patch
provides one equation, and each model freedom (DOF) one variable. The condition
number of M affects how measurement errors propagate into ∆p, and ultimately,
if the computation converges or not. In general, it is more difficult to track many
DOF. In particular, models which cause very apparent image change, such as image
plane translations are easy to track, while ones with less apparent image change
such as scaling and out-of-plane rotations are more difficult. A general plane-plane
transform such as homography contains all of these and tend to have a relatively
large condition number. By tracking a 3D model, the convergence is no longer
solely dependent on one surface patch alone, and the combination of differently
located and oriented patches can give an accurate 3D pose estimate.

In Figure 7.2 planar regions in the image sequence are tracked using an 8DOF
homography. When each patch is tracked individually (top images) the first region
is lost already after 77 frames and all lost after 390 frames. The condition number
for M varies between 5 ∗ 105 and 2 ∗ 107, indicating a numerically ill conditioned
situation. When instead the regions are related by the global 3D model, pose is

116

Figure 7.3: Top Translation tracking of individual regions. Though the video se-
quence many patches are lost. Middle A projective 3D model is used to relate the
regions, and provide more stable tracking through the whole sequence. Bottom
An Euclidean model relates the region, and also allow the introduction of new
regions.

successfully tracked through the whole sequence of 512 frames. Additionally the
model allows the detection and removal of the region on the left roof side when it
becomes occluded and the introduction of three new regions on the right roof side
and the smaller outhouse when they come into view. The condition number of the
6DOF (3 rot, 3 trans) model is 900, which is significantly better than the 8DOF
homography.

The next experiment uses a simpler 2DOF translation model to relate regions
as described in Sections 7.1.2 and 7.1.2, and either an Euclidean or Projective
global 3D model. In Figure 7.3 three cases are compared. In the first, (figure top)
no model is is used, and almost half of the region trackers are lost starting already
from frame 80. Because only 2D spatial x and y derivatives are used in M the
condition number is very low at an average 1.3. In the middle sequence, a projective
model is used to relate the regions. This stabilizes the tracking until about frame
400, where one tracker is slightly off target and further about 430 some are lost

117

due to occlusion. The projective model has 11 DOF and the condition number
is quite high at 2 ∗ 104. In the final (figure bottom) sequence a Euclidean model
relates the trackers, and provides handling of occlusions. The condition number is
a reasonable 600, and the whole 512 frame sequence is successfully tracked.

Figure 7.4: Accuracy experiment. Left Scene image. Right current image and
template superimposed indicate accurate alignment

In the final experiment we evaluate the accuracy by tracking four sides of a cube
textured with a calibration pattern, see Figure 7.4. For each frame we superimpose
the warped image onto the template, displaying each using separate color channels.
Hence any misalignment can be seen as color bands between the white and black
squares. We measured the width of these bands and found that for the Euclidean
model with homography warps misalignments were less than 1 pixel on average ,
and worst case over several hundred frames was 2 pixels. The 3D model constrain
the relative location of the regions, and inaccuracies in the estimated model cause
the (small) misalignments we observed. In the case of no 3D model and tracking
with homography warps alone, the regions would eventually lose track (as in the
previous house sequence). However, for the frames that did converge alignment
was very good, with an error significantly less than a pixel. This is to be expected
since the homography parameters allow exactly the freedoms needed to warp planar
surfaces into any camera projection.

7.1.4 Discussion on the Tracking Algorithm

We have shown how a 3D scene model, estimated from images alone, can be inte-
grated into SSD region tracking. The method makes tracking of a-priori unknown
scenes more stable and handles occlusions by removing and introducing tracking
regions as appropriate when new views become available.

In combining different types of 3D global models and 2D region warps we found
that

118

• Tracking planar regions using an 8DOF homography without a 3D model
is unstable due to the many DOF estimated, but limited image signature
available from geometric change of only one planar patch.

• On the other hand, using the estimated 3D model we constrain multiple
individual patches to move in a consistent way and achieve very robust and
stable tracking of full 3D pose over long sequences.

• With some loss in generality and magnitude of maximum trackable pose
change, the 8DOF homography can be replaced by simple 2DOF translational
trackers. Each such individual tracker has to use only a small image region
since it doesn’t deform projectively, but instead many regions can be used.
Using 2DOF regions and either an Euclidean or projective 3D model this
gives almost as good tracking as the homography + 3D model, and makes
execution somewhat faster.

Convergence in the last case (translational only warp) over large angular changes in
camera viewpoint can be improved by using a few view-dependent templates, each
associated with a smaller angular range, and switch these in and out depending
on the current angular pose computed from the 3D model. While this introduces
a risk for drifts and errors from the templates being slightly offset, in practice we
have found it works well using 5-10 different templates over the visible range of a
patch.

Visual tracking has many applications in e.g. robotics, HCI, surveillance and
model building. Tracking and modeling are interrelated in that (as we have shown)
a model improves tracking, and tracking can also be used to obtain the image
correspondences needed for a model. In unstructured environments this used to
present a chicken-and-egg problem: Without a model it was difficult to track, and
without tracking one couldn’t obtain a model. Our method integrates both into a
system which is started by defining regions to track in only a 2D image. First 2D
tracking is used over an initial video segment with moderate pose change to obtain
point correspondences and build a 3D model from image data. After the model is
built, the system switches to 3D tracking and is now ready to handle large pose
changes and provide full 3D pose (rotation, translation) tracking.

A main feature of our method is that 3D pose change ∆P is computed directly
from image intensity derivatives w.r.t. P . Note that this guarantees the best 3D
pose update available from the linearized model (here using L2 norm, but other
e.g. robust norms are also possible [56]). This is unlike the more common approach
of first tracking 2D image correspondences, and then computing a 3D pose from
points, where each 2D point location is first committed, based on a locally optimal
image fit but without regards to the global 3D constraints.

119

7.2 IBR System Implementation

This section presents the practical implementation aspects for putting together the
rendering system. The IBR system, as described in Section 6.5 consists of three
main parts:

1. A real-time tracking program interfaces to a digital camera and uses XVision
real time tracking and our 3D model-based tracking algorithm to maintain
point correspondences in the video sequence. It also grabs sample frames of
intensity images.

2. A structure and texture editor is used to view and verify the geometric model,
as well as provide an interface to control the texture selection and generation.

3. A real-time renderer takes a processed models and renders it under varying
virtual camera pose controlled by mouse input.

7.2.1 Video Capture and Tracking

The model training data consists of an image sequence and tracked feature lo-
cations. We use XVision [56, 57] to set up a video pipeline and implement real
time tracking. The tracking program can connect to either consumer IEEE 1394
standard web cams in yuv422 mode or to higher quality machine vision cameras,
(we use Basler A301fc) in raw Bayer pattern mode. To initiate tracking, the user
selects a number (about a dozen or more) high-contrast regions through a user
interface as illustrated in Figure 7.5. The regions are grabbed, and tracked by
estimating affine image variability from the input video images. Most scenes are
difficult to tile fully with trackable regions that are required to be close to planar,
while it is possible to successfully track small subparts. For the dynamic texture
model, larger quadrilaterals are formed over the whole scene. From these quadri-
laterals, the textures are sampled at rates from 2 to 5 Hz, while the trackers run
in the background at about 30Hz (for up to 20 trackers).

For capturing larger objects and scenes, trackers can easily become occluded.
The 3D model based tracking system presented in Section 7.1 was integrated with
the model acquisition to control the trackers’ appearance/disappearance. The
system initializes the model from 2D image tracking over a limited motion in an
initial video segment and then switches to track and refine the model using 3D
model based tracking. The main steps in the implemented method are:

1. Several salient surface patches are selected in a non-planar configuration from
a scene image and tracked for about 100 frames using standard (planar)
XVision SSD trackers.

2. From the tracked points a 3D model is computed using structure from motion
and the stratified uncalibrated approach (as in Section 6.3).

120

Figure 7.5: Video capture and tracking user interface

3. The 3D model is related to the start frame of 3D tracking using the 2D
tracked points and camera matrix computed using resection (non-linear for
accuracy) from 2D-3D correspondences. Then the model based tracking algo-
rithm is initialized by computing the stepest descent images at that position.
The tracking is now continued with the 2D surface patches integrated in the
3D model that enforces a globally consistent motion for all surface patches.

4. New patches visible only in new views are added by first tracking their image
projection using 2D tracking then computing their 3D coordinates through
intersection in n ≥ 2 views then incorporate them in the 3D model. In
the current implementation the user specifies (clicks on) the image control
points that will characterize the new surfaces but in the future we plan to
automatically select salient regions.

7.2.2 Structure and Texture Editor

We designed an user interface that assists the geometric model generation. The
editor has three modes - structure editing, texture coordinates editing and a blue-
screening.

The first mode, presented in Figure 7.6 assists model building. The editor is
designed for both projective or affine reconstruction. The accuracy of the cap-
tured geometry can be evaluated by comparing the tracked points (blue circles
and numbers) to the reprojected points (green circles), while stepping through the
captured images by clicking or dragging the image slider at the bottom. If they
differ significantly (as marked in magenta in the editor), the likely cause is that

121

Figure 7.6: Structure editor mode

the real time tracking lost the point for some frames. The editor allows correcting
or deleting the erroneous points in one or a range of frames. After getting a robust
structure new points can be added through intersection by clicking in a number of
frames (5-10) equally spread through a selected set of frames. We implemented
an additional mode for adding points that introduces a new points by moving an
existing one along a line defined by that point and an additional selected point.
This might be useful when the user wants to introduce a point that does not have
a distinctive signature in the image. If a point was not tracked in a number of
frames but is still visible, its image position can be added by reprojection. In some
situations, a point lost track but it was reintroduced by the user in the subsequent
frames. The tracking program will consider it a new point. Using the editor the
point can be merged with the original one and considered the same model point.

In the second mode, the triangulation used to extract and represent the dy-
namic texture can be modified, Figure 7.7. A captured structure is initially tri-
angulated using standard Delauney triangulation. This triangulation often does
not put triangles to best correspond to the real scene surfaces. In the triangula-
tion editor unfortunate triangles can be deleted and new triangles can be added
by clicking on three points. Additionally, the resolution or relative area of texture
given to a particular triangle can be modified by clicking and dragging the triangles
in the “texture editor” window. The “opengl” window shows the actual texture
representation for the image frame selected.

In the third mode, a blue screen color can be selected by clicking in the image.
Pixels with this (or close) color will be made transparent. This is useful when

122

Figure 7.7: The triangulation and texture editor

123

rendering objects without the original background. A useful application [24] , not
presented in this thesis is an augmented reality system when captured objects are
inserted into real scenes.

7.2.3 Real-time Texture Blending

To render the dynamic texture we use the texture blending features available on
most consumer 3D graphics cards. These graphics accelerators can blend textures
very efficiently, however they are very restrictive in terms of the types textures that
can be used, making it somewhat complicated to hardware accelerate this type of
rendering.

Unsigned Basis

The rendering hardware used is designed for textures containing positive values
only, while the spatial basis, equation 6.44 is a signed quantity. We rewrite this as
a combination of two textures with only positive components:

Iw(t) = B+y(t) − B−y(t) + T̄

Where B+ contains only the positive elements from B (and 0 in the place of
negative elements) and B− contains the absolute values of all negative elements
from B. When blending, some textures will be added, and others subtracted.

Quantization

Graphics cards generally require textures to be represented as bytes in the range 0-
255, and after each blending operation (addition or subtraction of a basis texture)
values are clipped to this range. This can be problematic since neither our basis
textures nor the intermediate values when combining basis textures are will have
values within the required range. The only guarantee is that the final result will
be within that range. We scale the basis textures and coefficients to fit within this
range as follows:

B̃+ = 255B+ζ−1

B̃− = 255B−ζ−1

ỹ = 255−1ζy

Where ζ is a diagonal matrix of the maximum absolute values from the columns
of B. (ζ = diag(max |B|))

Now B̂+ and B̂− are both in the range 0-255, and can be used as textures in
hardware. The problem regarding overflow in intermediate blending stages cannot

124

be completely solved, but by drawing the mean image first, and then alternately
adding and subtracting scaled eigenvectors, overflow is avoided in most cases.

Rendering of each frame is performed as in the following pseudo-code.

// draw the mean

BindTexture(Ī);

DrawTriangles();

// add basis textures

for(each i)

{
SetBlendCoefficient(|ỹi(t)|);

BindTexture(B̃+
i);

if(ỹi(t) > 0) SetBlendEquation(ADD);

else SetBlendEquation(SUBTRACT);

DrawTriangles();

BindTexture(B̃−

i);

if(ỹi(t) > 0) SetBlendEquation(SUBTRACT);

else SetBlendEquation(ADD);

DrawTriangles();

}

Using the HW accelerated implementation we can obtain a frame rate of about
50 Hz using a 2 year old GeForce 3 graphics card, and about 25-30 Hz running on
a basic GeForce 2-to-go in a 1GHz laptop.

The real time renderer reads several files from the current directory, and starts
a glut window, where the scene or object viewpoint can be interactively varied
using the mouse.

7.3 Model Evaluation and Examples

This section presents a qualitative as well as quantitative evaluation of the geo-
metric model with dynamic texture. First, the two geometric models presented in
Section 6.2 (affine metric model) and Section 6.3 (Euclidean model for a perspec-
tive projection) are compared. Next we present some examples of renderings for
different objects as well as part of a room, followed by a quantitative evaluation of
the dynamic texture performance.

125

7.3.1 Geometric Model Accuracy

For evaluating the model reconstruction accuracy for affine and projective case, we
built a synthetic room structure with 3 walls and 240 feature points and generated
about 200 images from different camera positions shown with red for position and
green line for viewing direction in Figure 7.8. The images are cropped to an image
plane of 240 × 320 pixels.

Figure 7.8: Synthetic room data and camera positions. Red dots indicate the
camera positions and green lines indicate viewing direction

In the first experiment we vary the focal length. Figure 7.9 shows the recon-
structed geometry for the affine case (top) and projective case (bottom) with focal
length respectively of 50, 100 and 200 pixels. The numerical results for reprojection
error and range of motion recovered are summarized in Table 7.1. The affine SFM
algorithm recovers only an image plane translation that cannot be compared with
the original 3D translation. As expected, the affine structure accuracy improves
(Figure 7.9 top right) when increasing the focal length, but it is still far from the
original structure. The reprojection error is reasonable (4 pixels for f = 200) that
indicates that the model fits the image data but by not being constrained to an Eu-
clidean structure it is not straight. Note that the range of the recovered horizontal
rotation is very small compared to the original motion. By contrast, the projec-
tive model fits the data almost perfect and the recovered structure and motion is
also close to the original ones, and is not dependent on the focal length. From a
rendering point of view, only the reprojection points meters, and if the structure is
visualized through the same type of camera geometry in a motion range similar to
the recovered one, it will “look good”. Therefore, if the affine structure is loaded
into a traditional graphics rendering program that assumes that the structure is
Euclidean and it projects it with a perspective camera it will appear deformed.
The same arguments also holds for a robotic application. In most situations, the
robot has to be controlled in a metric space, so the projective structure would be
more appropriate.

126

Figure 7.9: Reconstructed affine (top) and projective upgraded to Euclidean (bot-
tom) structure under varying focal length. f = 50 (left), f = 100 (middle), f = 200
(right)

 0 2 4 6 8 10
0

20

40

60

80

100

Noise level in image features (picels)

S
tr

uc
tu

re
 r

ep
ro

je
ct

io
n

er
ro

r
(p

ix
el

s)

Affine struct
Proj struct

 0 5 10 15 20 25 30
0

1

2

3

4

5

Percentage of noisy image features

S
tr

uc
tu

re
 r

ep
ro

je
ct

io
n

er
ro

r
(p

ix
el

s)

Affine struct
Proj struct

Figure 7.10: Accuracy of reconstructed affine and projective Euclidean structure
as dependent of noise level with 10% outliers (top) and number of outliers with a
noise level of 2 pixels (bottom).

127

Model f (pix) Reproj. err. Range rot. (deg) Range tr.
x y z x y z

original 60 20 0 297 293 293
afine 50 8.46 1.46 0.38 0.2

100 7.87 12.94 9.37 0.4
150 7.83 7.91 12.46 0.5
200 4.12 3.20 22.94 0.2

proj. 50 0.35 57.23 19.44 0.24 308.47 277.30 295.03
100 0.34 57.33 17.65 0.63 301.18 290.91 289.57
150 0.37 59.00 19.43 0.35 299.84 295.97 288.59
200 0.34 58.74 19.29 0.8 306.53 279.91 296.84

Table 7.1: Pixel reprojection error (pixels) and recovered motion range (degrees for
rotation and original structure units for translation). The affine SFM algorithm
recovers only an image plane translation that cannot be compared with the original
3D translation.

In the second experiment we studied the influence of image feature noise on
the reconstructed structure accuracy. There are two aspects that were considered:
the number of outliers (noisy features) and the level of noise. Figure 7.10 shows
the results. It was found that the projective upgraded to Euclidean structure is
more sensitive to noise level than the affine structure (figure top). This is probably
due to the number of constraints imposed to the Euclidean structure and therefore
the difficulty to fit a noisy data. For this, in case when it is known that the data
has outliers, a robust estimator (RANSAC) is recommended. When increasing the
number of outliers the accuracy of both structures decreased.

In a real situation, when the structure is reconstructed from camera images,
there are more errors that can decrease structure accuracy (calibration errors,
quantization errors, tracking errors) and the reconstructed model is only the best
fit to the given data. Figure 7.11 shows an example of the reconstructed struc-
tures for a dinning room. The top pictures show two examples from the training
images overlapped with the triangulated structure. On the middle row is shown
the reconstructed affine structure and on the last row the reconstructed projective
structure. Next section shows how the dynamic texture is correcting geometric
mistakes and compensating for the sparsity of the model (see Figure 7.15).

7.3.2 Dynamic Texture Rendering Examples

We have tested our method both qualitatively and quantitatively by capturing
various scenes and objects and then reanimating new scenes and motions using
dynamic texture rendering.

Many man-made environments are almost piece-wise planar. However, instead
of making a detailed model of every surface, it is more convenient to model only

128

Figure 7.11: Illustration of recovered structure from real data. (top) two of the
original images overlapped with a Delaunay triangulation of the projected struc-
ture. (middle) recovered affine structure (same triangulation); (bottom) recovered
projective Euclidean structure.

129

the large geometric structure, e.g. the walls and roofs of houses, and avoid the
complexity of the details, e.g. windows, doors, entry ways, eaves and other trim.
But, when using automatic image point tracking and triangulation the resulting
triangles sometimes do not correspond to planar house walls (Figure 7.12 left).
Using standard texture mapping on this geometry we get significant geometric dis-
tortions (Figure 7.12 right). In Figure 7.13 these errors have been compensated for
by modulating the texture basis to correct for the parallax between the underlying
real surfaces and texture triangles.

Figure 7.12: Left: Delauney triangulation of a captured house model. Note that
triangles don’t correspond well to physical planes. Right: Static texturing of
a captured house produces significant errors. Especially note the deformations
where the big and small house join due to several triangles spanning points on
both houses.

Figure 7.13: Rendered novel views of a house by modulating a texture onto a coarse
captured geometric model. Note the absence of geometric distortions compared to
the previous figure.

Unlike man-made scenes, most natural environments cannot easily be decom-
posed into planar regions. To put our method to test, we captured a flower using a

130

very simple geometry of only four quadrilaterals. This causes a significant residual
variability in the texture images. A training sequence of 512 sample images from
motions with angular variation of r = [40, 40, 10] degrees around the camera u-
v- and z-axis respectively. A texture basis of size 100 was estimated, and used to
render the example sequences seen in Figure 7.14.

Figure 7.14: Flower sequence: (left most) One of the original images and the
outline of the quadrilateral patches

A more complex model that we capture is the dinning room model presented in
Figure 7.11. The affine model (figure top) has big distortions that cannot be totally
compensated by the dynamic texture especially when the position is far from the
original samples (figure top left). The projective model (figure bottom) captures
the true geometry of the room better and, despite the sparsity of the geometric
model, it generates good renderings for almost all viewing angles. The geometry
of the scene was not concurrently visible but built by incrementally adding more
points/views through camera intersection/resection to an initial model. In process-
ing the texture for the model, it was divided in three regions to avoid compressing
null texture when not necessary.

Quantitative comparison

In order to quantitatively analyze how modulating a texture basis performs com-
pared to standard view dependent texturing from a close real image, we produced
three image sequences. The first image sequence are 80 real scene images of a
wreath viewed under different camera poses from straight on to approximately 50
degrees off axis. The second image sequence is a synthesized rendering of those
same poses from the texture basis (Figure 7.16). The third is the same rendering
using standard view dependent textures from 30 sample textures quite close (at
most a few degrees from) the rendered pose. The average image intensity error
per pixel between rendered and real images was calculated for sequence two and
three. It was found that for most views modulating a basis texture we can achieve
about half the image error compared to standard view dependent texturing. This
error is also very stable over all views, giving real time rendering a smooth nat-
ural appearance. The view dependent rendering from sample images did better
only when a rendered frame is very close to a sample image, and otherwise gave a

131

Figure 7.15: Examples of renderings for dinning room model from Figure 7.11.
(top) example renderings of the affine model (bottom) example renderings of the
projective model

jumpy appearance where the error would go up and down depending on the angu-
lar distance to a sample view. The error graph for 14 of the 80 views is shown in
7.17.

In animation there are global errors through the whole movie that are not
visible in one frame but only in the motion impression from the succession of the
frames. One important dynamic measurement is motion smoothness. When using
static texture we source the texture from a subset of the original images (k +1 if k
is the number of texture basis) so there is significant jumping when changing the
texture source image. We tracked a point through a generated sequence for the
pattern in the two cases and measure the smoothness of motion. Table 7.2 shows
the average pixel jitter.

Vertical jitter Horizontal jitter

Static texture 1.15 0.98
Dynamic texture 0.52 0.71

Table 7.2: Average pixel jitter

132

Figure 7.16: Texturing a rotating quadrilateral with a wreath. Top: by warping a
flat texture image. Bottom: by modulating the texture basis B and generating a
continuously varying texture which is then warped onto the same quad. Demo on
web site

0 5 10 15
0

1

2

3

4

5

6

View

M
ea

n
er

ro
r

Modulated texture
View texture

Figure 7.17: Pixel intensity error when texturing from a close sample view (red)
and by modulating the texture basis. For most views the texture basis gives a
lower error. Only when the rendered view has the same pose as the one of the
three source texture images (hence the IBR is a unity transform) is the standard
view based texturing better

133

7.4 Tracking and Predictive Display for a Indoor

Robot Environment

In order to demonstrate the usability of uncalibrated model capture, tracking and
rendering, the model based tracking algorithm presented in Section 7.1 was incor-
porated into a predictive display system designed for generating synthetic images
of the current robot view for a remote operator (Figure 7.18). The system is similar
to the one presented in Section 5.4 and can be summarized as follows:

(1) initialize robot pose

for each time step

robot site:

(2) track robot pose p = (αx, αy, αz, tx, ty, tz)
(3) send position to operator site

user remote site:

(4) add current operator motion command

(5) project geometric model in new location

x = K[R(αx, αy, αz)|t(tx, ty, tz)]X
(6) compute the dynamic texture T for the new location

(7) warp texture onto the projected structure and display to operator

(8) send motion command to robot site

end for

The dynamic model (geometry and dynamic textures) is stored at both robot
and operator site. At the beginning (step 1), the operator selects the model’s
point/patch locations in the initial view in order to calculate the starting position
with respect to the model position. In subsequent frames, the position is automat-
ically tracked using the 3D SSD tacking algorithm (step 2). As the robot is con-
trolled in an Euclidean space, we used the Euclidean 3D model with a translational
or homography warp (Sections 7.1.2). The current robot location is transmitted to
the operator site (step 3), where the current operator motion command is added
(step 4) and a synthesized view is computed using the rendering algorithm de-
scribed in Section 6.5 (step 5-7). The new desired position is transmitted back
to the robot site and converted into motion commands that will move the robot
toward the desired view (step 8).

7.4.1 Experimental Results

To evaluate the tracking with predictive display system, we captured a model of
a research lab. We used the model based tracking algorithm from Section 7.1 to
recover camera location along two motion trajectories.

The first trajectory was a straight line in the horizontal plane of about 1m.
Figure 7.19 (left) illustrates the recovered trajectory. For measuring the accuracy
of the tracking algorithm we calibrated the 3D room model assuming some given

134

Robot site Operator site

Render view

Control robot

Robot view

OperatorPredicted view

Robot pose

Geometric model

Dynamic texture

Scene model

Model tracking

Figure 7.18: Overview of the tracking with predictive display system.

135

real dimensions (e.g. the size of the monitor) so we could get the translation in
actual metric measurements (m). We found that the trajectory had about 0.95 cm
mean deviation from a line and 5.1 cm mean deviation from the horizontal plane.
The recovered line length was about 1.08 m, that result in an error of 0.08 m with
respect to the measured ground truth. There was no camera rotation along the
first trajectory, that corresponded to the measured rotation (error was less than 1
degree on average).

We tracked the second trajectory along two perpendicular lines in the horizontal
plane. In this experiment, the physical motion was not particularly smooth and
the recorded data somehow jumpy. We measured the angle between the two lines
fitted to the recovered positions (see Figure 7.19) as 82◦. Hence it had an error of
about 8◦ with respect to the ground truth.

The experiments shown that the accuracy of the measurements connected to
properties that are not directly related to calibrated properties of the structure
(e.g. deviation from lines, planes, angles) is higher that the accuracy in measured
distances. This is probably due to the difficulty in calibrating a projective struc-
ture. Overall the results were much better than the ones from the previous model
(panorama with range data) from Section 5.3. For example in the case of the
panoramic model the deviation from line was about 2 cm.

−20 0 20 40 60 80 100 120
−2

0

2

4

6

8

10

−3

−2

−1

0

1

2

3

Recovered position
Fitted line

−120
−110

−100
−90

−80
−70

−60
−10

−8

−6

−4

−2

0

2

−4

−2

0

2

Recovered positions
Fitted lines

Figure 7.19: Recovered positions for the straight line trajectory (left) and the 2
perpendicular lines trajectory (left). The red line are the fitted 3D lines to each
line segment.

For each recovered position we generated the view predicted from the model.
Figure 7.20 (top row) shows examples of rendered views along the two trajectories
using the dynamic texture model. Comparing them with the real views (bottom

136

row), we notice that the dynamic texture model produces good quality renderings
that could replace the actual images. The limited field of view is due to the viewing
frustum defined in the original training sequence that was uses for building the
model.

Figure 7.20: Examples of predictive views (top row) and the corresponding actual
images (bottom row)

137

Chapter 8

Conclusions and Future Work

138

Capturing and modeling scenes is a challenging problem in the fields of computer
vision, graphics, and robotics. The traditional geometry based approach recon-
structs a detailed 3D model of the space. This has proven to be difficult and in
many cases requires a lot of manual work. Image-Based Modeling and Rendering
(IBMR), is a relatively new field at the intersection between computer graphics and
computer vision. It investigates ways of capturing models directly from images.
This new methods offer practical alternatives to traditional geometry-based model-
ing techniques. This thesis investigates the applicability of image-based models in
mobile robotics more precisely in mapping for robot navigation. Mapping involves
acquiring a model of the navigation space that is used for e.g. tracking robot’s
position or controlling the robot. We studied the applicability of image-based mod-
eling in this new field and the level of calibration that the model should have in
order to fulfill the accuracy needs for robotics applications. Used as a navigation
map, the image-based model does not only need the capability of generating new
renderings but also a way to relate the robot current view with the model. To
solve this problem we combine a sparse geometric model with image information
to generate hybrid geometric and image-based models.

We developed two types of models - a calibrated panoramic mosaic registered
with depth data and an uncalibrated sparse geometric model that uses a special
view dependent texture - dynamic texture.

8.1 Image-Based Models

The first image-based model is formed by a calibrated panoramic mosaic augmented
with depth information. The mosaic was built by rotating a camera around the
optical center, and stitching together images at every 5 − 10◦. The depth was
acquired using either a trinocular stereo vision system or a laser range-finder, and
registered with the intensity data. For the stereo vision based system, depth is
generated from intensity images so no extra registration is needed. This is not the
case with the laser range-finder where the intensity and range data are acquired
using separate sensors. This leads to the first important contribution of this thesis:

• A new image-based algorithm for registering range and intensity information
from separate sensors.

Traditionally, data registration involves recovering the rigid transformation be-
tween the sensors. This is in general a nonlinear problem and requires a good
initial estimate to converge. We investigated alternative methods where instead a
2D-2D affine warp is used to align the sensors. Being only an approximation of
the physical displacement this approach will only give an approximate alignment,
but for applications like robot navigation has proven sufficient. Besides, it is faster
and guaranteed to converge, that makes it suitable for real-time applications. We
performed a comparative study of registration algorithms [30] and found that the

139

image-based type alignments perform well when there is little variation in the 3D
data or when the sensors are close (which is the case of our configuration for gen-
erating the panorama with depth - Section 4.4). The exact geometric alignment is
more suitable for application that require high precision - such as medical applica-
tions. When a camera has significant lens distortion and thus cannot be modeled
as a projective camera, the image-based approach can still be applied to locally
recover the transformation for portions of the data set.

The aligned depth and intensity data is then segmented into planar patches
that can be reprojected in new positions. Due to limitations in extracting depth
data from stereo (small baseline - 10 cm - relative to a room size of about 7-10 m),
we could not use it directly for segmenting planar patches. We designed:

• A planar patch segmentation algorithm that integrates both depth and in-
tensity data provided by the trinocular vision system.

This algorithm offers a good solution for segmenting indoor environments where
planes (e.g. doors, walls, cabinets) have either regular or no texture, but they
are visually distinctive in the intensity image. For a more complex environment
robust estimators applied to depth data (e.g. RANSAC type algorithms) could
offer further improvements.

The second model is composed of a sparse geometry calculated from uncali-
brated images using structure from motion techniques. We experimented two types
of geometries structure - an affine and a projective model. Both were upgraded to
a metric model applicable in robotics applications. We found that the affine model
works well for capturing small objects but failed to capture a more complex room
(3 walls) - Section 7.3. This is due to the weak perspective camera assumption that
is a good approximation when the depth variation in the image points is small com-
pared to distance from the camera to the scene. The projective model fits better
data in most situations but it is more computationally demanding to estimate and
sensitive to outliers. Forcing the models to a metric space introduces additional
constraints that decrease the accuracy of reconstruction, but in many cases a met-
ric structure can be valuable. In mobile robotics is almost always required (except
in visual servoing approaches) as robot motion is commonly specified in metric co-
ordinates. One of the major drawbacks of our system for capturing the geometric
structure was the sparsity of available points. We used real time visual tracking
for keeping correspondences and typically relatively few points could be robustly
tracked over a whole sequence. We are planning to develop an automatic way of
getting more corresponding points that would refine the geometric structure.

The model is then bundle adjusted and reprojected into original images to
acquire surface appearance. Surface appearance is represented by:

• A new type of view dependent texture - dynamic texture - that represents
surface appearance not using a single traditional texture, but rather by mod-
ulating a basis which captures the view dependency of the surface.

140

We mathematically formulated texture variability for different geometric (nonpla-
narities, tracking inaccuracies) and photometric variations. This formulation was
experimentally proven. Some might argue there is a gap between the theory and
the actual way of estimating the texture from statistics of the sample images.
The theory shows that such a basis exist and depending on different variabilities
present in a sequence we can estimate the number of basis images needed, but there
is no formal proof that the actual estimated basis is a combination of the theoret-
ically derived one. We plan, as future work to acquire a calibrated sequence (with
known depth and reflectance model) that allows computation of both analytical
and estimated basis and see their relation.

To render new poses, the correct texture is modulated from the texture basis
and then warped back to the projected geometry. The texture generation and
blending is performed in real time on hardware graphics accelerators.

8.2 Applications in Mobile Robotics

We demonstrate the use of our two models as navigation maps in mobile robotics
with specific applications in localization, tracking and predictive display. The
calibrated panoramic model registered with depth data was integrated into:

• Localization algorithms that from a single image compute the camera posi-
tion.

The first algorithm uses two panoramic mosaics with manually selected correspond-
ing vertical line features for absolute robot localization [26]. A second global lo-
calization algorithm, with automatic feature detection and matching was designed
for the panorama with depth from stereo [28, 21]. We found that for a global
localization algorithm, the feature matching problem becomes very difficult and
strong characteristics should be associated with each feature to make it globally
distinct. In our case, we used planar patches and a matching score that combines
relative distance in 3D and image space with difference in average intensity. For
an incremental localization or tracking algorithm the search space is limited by
knowing the previous position and assuming a smooth motion. For the panorama
with depth from laser we implemented an incremental localization algorithm that
uses vertical lines as features [31]. The image information contained in the model
was used for robust feature matching.

The uncalibrated geometric model was incorporated into:

• A region-based tracking algorithm that relates spatial and temporal image
derivatives to update the 3D camera position.

The geometry of the scene is both estimated from uncalibrated video and used for
tracking. The method makes tracking of a-priori unknown scenes more stable and
handles occlusions by removing and introducing tracked regions when new views

141

become available. Tracking planar regions using a 8DOF homography without
a 3D model is unstable due to the many DOF estimated, from a limited image
signature. The model constrains individual patches to move in a consistent way
and achieve stable tracking of full 3D pose over long sequences.

As a last application, we integrated the image-based model’s ability to gen-
erate novel views from any position with the developed localization and tracking
algorithms in:

• A predictive display system where synthesized immediate visual feedback
replaces the delayed video from a remote scene.

A main consideration in designing robotic tele-operation systems is the quality
of sensory feedback provided to the human operator. For effective tele-operation
the operator must get the feeling of being present in the remote site and get im-
mediate visual feedback from his or her motion commands. While in consumer
applications of image rendering, the most important criterion may be the subjec-
tive pleasantness of the view, for accurate robot control the geometric precision of
the rendered viewpoint is more important than minor errors in scene surfaces or
textures. The localization and tracking algorithms provide precise position infor-
mation that is used for generating a synthesized view from the image-based model.
By also adding the current operator motion command to the pose estimate, local
predictive display is synthesized immediately in response to operator command.

In general, we found that for calibrated models the reconstruction accuracy
depends on the calibration accuracy and precision of feature selection. The uncal-
ibrated models give more flexibility and are easier to acquire. A less constrained
model like the projective model will better fit the data than an Euclidean model.
The choice of model depends on the level of information and accuracy required by
the application.

8.3 Future Work

This thesis investigated the applicability of two type of image-based models (cali-
brated and uncalibrated) in mobile robotics. Improvements and future directions
to the work are connected to both the models and applications.

For the geometry of dynamic texture model, we are planning to further improve
the tracking by automatically detecting interest features in the image and initialize
them as new trackers. This will eliminate the need for the user to manually inter-
vene the tracking process to select new trackers. As mentioned before, we also plan
to have an automatic way to refine the estimated structure by adding new feature
points (e.g. using a robust correlation based approach) as well as a way to handle
occlusions (maybe by using the model estimated till that point). For the dynamic
texture, we plan to formulate a dynamic texture to capture the spatio-temporal
statistics of non-static scenes that exhibits quasi periodicity (e.g. wind, water,

142

clouds, fluttering leaves, creasing cloth). A major problem with the image-based
models that makes them difficult to incorporate in a scene as graphics objects,
because they will carry the lighting of the original capture sequence. Another ex-
tension would be to develop an algorithm that separates light from texture. The
dynamic texture model can have many applications besides a navigation map. We
have already investigate the model applicability in augmented reality [24]. We are
planning to elaborate this application and have full scenes composed using models
captured using our method.

One of the main drawbacks of all the localization algorithms applied to the
calibrated models stem from not introducing feature estimation uncertainty. The
robustness of these algorithms could be improved by considering a probabilistic
approach when estimating the position, or estimate both position and refine the
model at every step (SLAM type approach). The image information contained in
the model is a powerful tool for solving data association problem that might be
considered still unsolved for the current SLAM approaches.

Our models directly relate geometric robot pose and image views, and this also
can support control interfaces where the motion goal is specified in image space
instead of robot motor space. The predictive display system could incorporate an
image-based motion control. One such possible intuitive interaction paradigm is
tele-operating the robot by “pointing” in the image space or by “dragging” the
model viewpoint to obtain the desired next view, and then have the robot move
to this location using visual servo control.

Overall, this work indicates the benefit of combining ideas from different fields.
The field we draw upon, computer vision, robotics and graphics have evolved
separately for decades, but recently come to a confluence in research such as image-
based rendering and visual servoing. the future is bound to offer more exciting
results from such cross-disciplinary fertilization.

143

Bibliography

[1] M. Armstrong and A. Zisserman. Robust object tracking. In Second Asian
Conference on Computer Vision, pages 58–62, 1995.

[2] N. Ayache and O. D. Faugeras. Maintaining representation of the environ-
ment of a mobile robot. IEEE Transactions on Robotics and Automation,
5(6):804–819, 1989.

[3] S. Baker and I. Matthews. Lucas-Kanade 20 Years On: A Unifying Frame-
work. Technical Report CMU-RITR02-16, 2002.

[4] J. Baldwin, A. Basu, and H. Zhang. Panoramic video with predictive win-
dows for telepresence applications. In Int. Conf. on Robotics and Automation,
1999.

[5] R. Barsi, E. Rivlin, and I. Shimshoni. Visual-homing: surfing the epipoles.
In Proc. of 1998 6th Int. Conf. on Compute Vision, pages 863–869, 1998.

[6] R. Barsi, E. Rivlin, and I. Shimshoni. Image-based robot navigation under
the perspective model. In Proc. of 1999 IEEE Int. Conf. on Robotics and
Automation, pages 2578–2583, 1999.

[7] M. Barth, T. Burkert, C. Eberst, N.O. Stöffler, and G. Färber. Photo-
realistic scene prediction of partially unknown environments for the compen-
sation of time delays in presence applications. In Int. Conf. on Robotics and
Automation, 2000.

[8] A. Bartoli and P. Sturm. Constrained structure and motion from n views
of a piecewise planer scene. In International Symposium on Virtual and
Augmented Architecture, pages 195–206, 2001.

[9] T. Beier and S. Neely. Feature-based image methamorphosis. In Computer
Graphics (SIGGRAPH’92), pages 35–42, 1992.

[10] A. K. Bejczy, W. S. Kim, and S. C. Venema. The phantom robot: predictive
displays for teleoperation with time delay. In Proc. of the IEEE Int. Conf.
on Robotics and Automation, pages 546–551, 1990.

[11] J. Borenstein, H. R. Everett, and L. Feng. Where am I?”- Systems and meth-
ods for mobile robot positioning. Technical Report, University of Michigan,
1996.

144

[12] J. Borestein and Y. Koren. Histogramic in-motion mapping for mobile robot
obstacle avoidance. IEEE Journal on Robotics and Automation, 7(4):535–
539, 1991.

[13] C. Bregler, A. Hertzmann, and H. Biermann. Recovering non-rigid 3D shape
from image streams. In IEEE Conference Computer Vision and Pattern
Recognition (CVPR00), 2000.

[14] C. Buehler, M. Bosse, L. McMillan, S. Gortler, and M. Cohen. Unstructured
lumigraph rendering. In Computer Graphics (SIGGRAPH 2001), 2001.

[15] J. Canny and B. Donald. Simplified voronoi diagrams. Autonomous Robot
Vehicles, pages 272–290, 1990.

[16] J. A. Castellanos, J.M.M. Montiel, J. Neira, and J.D. Tardos. The spmap:
a probabilistic framework for simultaneous localization and map building.
IEEE Transactions on Robotics and Automation, 15(5):948–952, 1999.

[17] C.-F. Chang, G. Bishop, and A. Lastra. Ldi tree: a hierarchical represen-
tation for image-based rendering. In Computer Graphics (SIGGRAPH’99),
1999.

[18] S. Chen. Quicktime VR - an image-based approach to virtual environment
navigation. In Computer Graphics (SIGGRAPH’95), pages 29–38, 1995.

[19] S. Chen and L. Williams. View interpolation for image synthesis. In Com-
puter Graphics (SIGGRAPH’93), pages 279–288, 1993.

[20] D. Cobzas and M. Jagersand. A comparison of non-euclidean image-based
rendering. In Proceedings of Graphics Interface, 2001.

[21] D. Cobzas and M. Jagersand. Cylindrical panoramic image-based model for
robot localization. In Proceedings of IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 1924–1930, 2001.

[22] D. Cobzas and M. Jagersand. Tracking and rendering using dynamic textures
on geometric structure from motion. In European Conference on Computer
Vision (ECCV 2002), 2002.

[23] D. Cobzas and M. Jagersand. A comparison of viewing geometries for aug-
mented reality. In Proc. of Scandinavian Conference on Image Analysis
(SCIA 2003), 2003.

[24] D. Cobzas, M. Jagersand, and K. Yerex. Editing real world scenes: Aug-
mented reality with image-based rendering (poster). In IEEE Virtual Reality,
2003.

[25] D. Cobzas, K. Yerex, and M. Jagersand. Dynamic textures for image-based
rendering of fine-scale 3d structure and animation of non-rigid motion. In
Eurographics, 2002.

[26] D. Cobzas and H. Zhang. 2d robot localization with image-based panoramic
models using vertical line features. In Proceedings of Vision Interface, 2000.

145

[27] D. Cobzas and H. Zhang. Using image-based panoramic models for 2d robot
localization. In Proceedings of Western Computing Graphics Symposium,
pages 1–7, 2000.

[28] D. Cobzas and H. Zhang. Mobile robot localization using planar patches
and a stereo panoramic model. In Proceedings of Vision Interface, pages
7–9, 2001.

[29] D. Cobzas and H. Zhang. Planar patch extraction with noisy depth data. In
Proceedings of Third International Conference on 3-D Digital Imaging and
Modeling, pages 240–245, 2001.

[30] D. Cobzas, H. Zhang, and M. Jagersand. A comparative analysis of geometric
and image-based volumetric and intensity data registration algorithms. In
Proc. of ICRA, pages 2506–2511, 2002.

[31] D. Cobzas, H. Zhang, and M. Jagersand. Image-based localization with
depth-enhanced image map. In Proc. of ICRA, 2003.

[32] S. Coorg and S. Teller. Extracting textured vertical facades from controlled
close-range imagery. In Proc. of the IEEE Int. Conf. on Pattern Recognition
(CVPR’99), pages 625–632, 1999.

[33] I. J. Cox. Blanche: position estimation for an autonomous robot vehi-
cle. In Proc. of IEEE/RSJ International Workshop on Robots and Systems
(IROS’98), pages 432–439, 1989.

[34] I. J. Cox and Editors G. T. Wilfong. Autonomous Robot Vehicles. Springer-
Verlag, 1990.

[35] P. E. Debevec, C. J. Taylor, and J. Malik. Modeling and rendering architec-
ture from phtographs. In Computer Graphics (SIGGRAPH’96), 1996.

[36] F. Dellaert, D. Fox, W. Burgard, and S. Thrun. Monte carlo localization
for mobile robots. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), 1999.

[37] G. N. DeSouza and A. C. Kak. Vision for mobile robot navigation: A
survey. IEEE Transactions on Pattern Analysis and Machine Intelligence,
24(2):237–267, 2002.

[38] M. Dissanayake, P. Newman, S. Clark, and H. Durrant-Whyte. A solution
to the simultaneous localization and map building. IEEE Transactions on
Robotics and Automation, 17(3):229–241, 2001.

[39] G. Doretto and S. Soatto. Editable dynamic textures. In ACM SIGGRAPH
Sketches and Applications, 2002.

[40] F. Dornaika and R. Chung. Image mosaicing under arbitrary camera motion.
In Asian Conference on Computer Vision, Taipei, Taiwan, 2000.

[41] T. Drummond and R. Cipolla. Real-time visual tracking of complex struc-
tures. PAMI, 24(7):932–946, July 2002.

146

[42] S. F. El-Hakim, P. Boulanger, F. Blais, and J. A. Beraldin. Sensor-based
creation of indoor virtual models. In Proc. Virtual Systems and Multimedia
- VSMM’97, 1997.

[43] A. Elfes. Sonar-based real-world mapping and navigation. IEEE Journal on
Robotics and Automation, 3(3):249–265, 1987.

[44] A. Hoover et al. An experimental comparison of range image segmentation
algorithm. IEEE Trans. PAMI, 18(7):637–689, 1996.

[45] O. Faugeras. Camera self-calibration: theory and experiments. In ECCV,
pages 321–334, 1992.

[46] O. Faugeras, B. Hotz, H. Mathieu, P. Fua Z. Zhang, E. Theron, L. Moll,
G. Berry, J. Vuillemin, P. Bertin, and C. Proy. Real time correlation-based
stereo algorithm, implementations and applications. INRIA Technical Report
No. 2013, 1993.

[47] O. D. Faugeras. Three Dimensional Computer Vision: A Geometric View-
point. MIT Press, Boston, 1993.

[48] O. D. Faugeras. Stratification of 3D vision: Projective, affine, and metric
representations. Journal of the Optical Society of America, A, 12(7):465–484,
1995.

[49] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes. Computer Graphics:
Principles and Practice. Addison-Wesley, 1997.

[50] J. Forsberg. Mobile Robot Navigation Using Non-Contact Sensors. 1998.

[51] G. Giralt, R. Sobek, and R. Chatila. A multi level planning and navigation
system for a mobile robot; a first approach to hilare. In International Joint
Conference on Artificial Intelligence, volume 1, pages 335–337, 1979.

[52] J. Givant and E. Nebot. Optimization of the simultaneous localization and
map building for real time implementation. IEEE Transactions on Robotics
and Automation, 2001.

[53] M. Gleicher. Projective registration with difference decomposition. In
CVPR97, pages 331–337, 1997.

[54] R. C. Gonzalez and R. E. Woods. Digital Image Processing. Addison-Wesley
Publishing Company, 1993.

[55] S. J. Gortler, R. Grzeszczuk, and R. Szeliski. The lumigraph. In Computer
Graphics (SIGGRAPH’96), pages 43–54, 1996.

[56] G.D. Hager and P.N. Belhumeur. Efficient region tracking with parametric
models of geometry and illumination. PAMI, 20(10):1025–1039, October
1998.

[57] G.D. Hager and K. Toyama. X vision: A portable substrate for real-time
vision applications. CVIU, 69(1):23–37, January 1998.

147

[58] R. Hartley. Multilinear relationships between coordinates of corresponding
image points and lines. In Sophus Lie Symposium,Norway, 1995.

[59] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision.
Cambridge University Press, 2000.

[60] R. Held, A. Efstathiou, and M. Greene. Adaptation to displaced and delayed
visual feedback from the hand. J. Exp Psych, 72:871–891, 1966.

[61] A. Heyden. Projective structure and motion from image sequances using
subspace methods. In SCIA, pages 963–968, 1997.

[62] A. Heyden. Algebraic varieties in multiview geometry. In ICCV, pages 3–19,
1998.

[63] A. Heyden and K. Åström. Eucledian reconstruction from image sequances
with varying an unknown focal length and principal point. In CVRP, 1997.

[64] J. Hong, X. Tan, B. Pinette, R. Weiss, and E. Rseman. Image-based homing.
IEEE Control Systems, pages 38–44, 1992.

[65] B.K.P. Horn. Computer Vision. MIT Press, Cambridge, Mass., 1986.

[66] S. L. Horowitz and T. Pavlidis. Picture segmentation by a direct split and
merge procedure. In Proc. of 2nd International Conference on Pattern Recog-
nition (ICPR’74), pages 424–433, 1974.

[67] D. Huttenlocher, D. Klanderman, and A. Rucklige. Comparing images using
the Hausdorff distance. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 15(9):850–863, September 1993.

[68] M. Irani, P. Anandan, and S. Hsu. Mosaic based representation of video se-
quences and their applications. In Proc. of the Fifth International Conference
on Computer Vsion, pages 605–611, 1995.

[69] H. Ishiguro, T. Miyashita, and S. Tsuji. T-net for navigating a vision-guided
robot in a real world. In Proc. of the IEEE Int. Conf. on Robotics and
Automation, pages 1068–1073, 1995.

[70] H. Ishiguro and S. Tsuji. Image-based memory of the environment. In Proc.
of IEEE International Workshop on Robots and Systems (IROS’96), pages
634–639, 1996.

[71] D. Cobzas M. Jagersand and H. Zhang. A panoramic model for remore
robot environment mapping and predictive display -under review -. Acta
Press: International Journal of Robotics and Automation.

[72] D. Cobzas M. Jagersand and H. Zhang. A panoramic model for robot pre-
dictive display. In Proc. of Vision Interface, 2003.

[73] M. Jagersand. Image based view synthesis of articulated agents. In Computer
Vision and Pattern Recognition, 1997.

148

[74] X. Y. Jiang and H. Bunke. Fast segmentation of range images into planar
regions by scan line grouping. Machine Vision and Applications, 7(2):115–
122, 1994.

[75] M. Jogan and A. Leonardis. Panoramic eigenimages for spatial localization.
In Proc. Computer Analysis of Images and Patterns (CAIP’99), 1999.

[76] J.-M. Jolion, P. Merr, and S. Bataouche. Robust clustering with application
in computer vision. IEEE Trans. PAMI, 13(8):791–802, 1991.

[77] F. Jurie and M. Dhome. Hyperplane approximation for template matching.
PAMI, 24(7):996–1000, July 2002.

[78] S. B. Kang. A Survey of Image-Based Rendering Techniques. Technical
Report CRL 97/4, Cambridge Research Laboratory, 1997.

[79] S. B. Kang, A. Johnson, and R. Szeliski. Extraction of Concise and Real-
istic 3-D Models from Real Data. Technical Report CRL 95/7, Cambridge
Research Laboratory, 1995.

[80] S.B. Kang and R. Szeliski. 3D scene data recovery using omnidirectional
multibaseline stereo. In Proc. of the IEEE Int. Conf. on Computer Vision
and Pattern Recognition (CVPR’96), pages 364–370, 1996.

[81] R. Koch, M. Pollefeys, B. Heigl, L. Van Gool, and H. Niemann. Calibra-
tion of hand-held camera sequences for plenoptic modeling. In International
Conference on Computer Vision (ICCV 99), pages 585–591, 1999.

[82] J. Kostkova, J.Cech, and R.Sara. Dense stereomatching algorithm perfor-
mance for view prediction and structure reconstruction. In Proc. of the 13th
Scandinavian Conference on Image Analysis (SCIA2003), pages 101–107,
2003.

[83] B. J. Kuipers and Y.T. Byun. A robotic exploration and mapping startegy
based on a semantic hierarchy of spatial representations. Journal of Robotics
and Autonomous Systems, 8:47–630, 1991.

[84] C. Kunz, T. Willeke, and I. R. Nourbakhsh. Automatic mapping of dy-
namic office environments. In Proc. of the IEEE Int. Conf. on Robotics and
Automation, pages 1681–1687, 1997.

[85] R. Kurazume, M. D. Wheeler, and K. Ikeuchi. Mapping textures on 3d geo-
metric model using reflectance image. In Proc. of the Data Fusion Workshop
in IEEE, ICRA), 2001.

[86] K. Kutulakos and S. Seitz. A theory of shape by shape carving. International
Journal of Computer Vision, 38:197–216, 2000.

[87] S. Laveau and O.D. Faugeras. 3-D representation as a collection of images.
In Proc. of the IEEE Int. Conf. on Pattern Recognition (CVPR’97), pages
689–691, Jerusalem,Israel, 1994.

149

[88] K.-C. Lee, J. Ho, and D. Kriegman. Nine points of light: Acquiring subspaces
for face recognition under variable lighting. In Computer Vision and Pattern
Recognition, 2001.

[89] J. J. Leonard and H. F. Durrant-Whyte. Mobile robot localization by track-
ing geometric beacons. IEEE Transactions on Robotics and Automation,
7(3):376–382, 1991.

[90] M. Levoy and P. Hanrahan. Light field rendering. In Computer Graphics
(SIGGRAPH’96), pages 31–42, 1996.

[91] M. Lhuiller and L. Quan. Image interpolation by joint view triangulation. In
Proc. of the IEEE Int. Conf. on Computer Vision and Pattern Recognition
(CVPR’99), pages 139–145, 1999.

[92] S. Li and S. Tsuji. Qualitative representation of scenes along route. Image
and Vision Computing, 17:685–700, 1999.

[93] D. Liebowitz, A. Criminisi, and A. Zisserman. Creating architectural models
from images. In EUROGRAPHICS, 1999.

[94] Y. Liu, R. Emery, D. Chakrabarti, W. Burgard, and S. Thrun. Using EM
to learn 3D models with mobile robots. In Proceedings of the International
Conference on Machine Learning (ICML), 2001.

[95] D.G. Lowe. Fitting parameterized three-dimensional models to images.
PAMI, 13(5):441–450, May 1991.

[96] F. Lu and E. Milios. Globally consistant range scan alignment for environ-
ment mapping. Autonomous Robots, 4:333–349, 1997.

[97] B. Lucas and T. Kanade. An iterative image registration technique with an
application to stereo vision. In Int. Joint Conf. on Artificial Intelligence,
1981.

[98] R. A. Manning and C. R. Dyer. Interpolating view and scene motion by
dynamic view morphing. In Proc. of the IEEE Int. Conf. on Computer
Vision and Pattern Recognition (CVPR’99), pages 388–394, 1999.

[99] E. Marchand, P. Bouthemy, and F. Chaumette. A 2d-3d model-based ap-
proach to real-time visual tracking. IVC, 19(13):941–955, November 2001.

[100] M. J. Mataric. A Distributed Model for Mobile Robot Environment Learning
and Navigation. Technical Report AITR-1228, MIT, 1990.

[101] L. Mathies and A. Elfes. Integration of sensor and stereo range data using
a grid based representation. In Proc of IEEE Int. Conf. on Robotics and
Automation, pages 727–733, 1988.

[102] Y. Matsumoto, M. Inaba, and H. Inoue. Visual navigation using view-
sequenced route representation. In Proc. of the IEEE Int. Conf. on Robotics
and Automation, pages 83–88, 1996.

150

[103] W. Matusik, C. Buehler, R. Raskar, S. Gortler, and L. McMillan. Image
based visual hulls. In Computer Graphics (SIGGRAPH’2000), pages 367–
374, 2000.

[104] D. K. McAllister, L. Nyland, V. Popescu, A. Lastra, and C. McCue. Real-
time rendering of real world environments. In Proc. of Eurographics Work-
shop on Rendering, Spain, June 1999.

[105] L. McMillan. An Image-Based Approach to Three-Dimensional Computer
Graphics. Ph.D. Dissertation. UNC CS TR97-013, University of North Car-
olina, 1997.

[106] L. McMillan and G. Bishop. Plenoptic modeling: Am image-based rendering
system. In Computer Graphics (SIGGRAPH’95), pages 39–46, 1995.

[107] M. Meng and A. C. Kak. Neuro-nav: A neurol network-based architecture
for vision guided mobile robot navigation using non-metrical models of the
environment. In Proc. of IEEE Int. Conf. on Robotics and Automation, pages
750–757, 1993.

[108] T. Möller and E. Haines. Real-time Rendering. A.K. Peterson, 2002.

[109] M. Montemerlo, W. Whittaker, and S. Thurn. Fastslam: A factored solution
to the simultaneous localization and map building. submitted for publication.
2002.

[110] H. P. Moravec. Obstacle Avoidance and Navigation in the Real World by
Seeing a Robot Rover. PhD thesis, Stanford University, 1980.

[111] H. P. Moravec and A. Elfes. High resolution maps from wide angle sonar. In
Proc. of 1985 IEEE Int. Conf. on Robotics and Automation, pages 116–121,
1985.

[112] D. Murray and C. Jennings. Stereo vision based mapping and navigation for
mobile robots. In Proc. of 1999 IEEE Int. Conf. on Robotics and Automation,
pages 1694–1699, 1997.

[113] E. Natonek. Fast range image segmentation for servicing robots. In Proc. of
the IEEE Int. Conf. on Robotics and Automation, pages 406–411, 1998.

[114] S. Nayar. Catadioptric okmnidirectional camera. In Proc. of the IEEE Int.
Conf. on Computer Vision and Pattern Recognition (CVPR’97), pages 482–
488, 1997.

[115] M. Oliveira. Image-Based Modeling and Rendering Techniques: A Survey.
Technical Report , Instituto de Informatica, UFRGS, Porto Alegre, Brasil,
2002.

[116] M. Oliveira and G. Bishop. Image-based objects. In ACM Symposium on
Interactive 3D Graphics, pages 191–198, 1999.

[117] M. Oliviera, Gary Bishop, and David McAllister. Relief texture mapping. In
Computer Graphics (SIGGRAPH’00), 2000.

151

[118] C. F. Olson and L. H. Matthies. Maximum likelihood rover localization by
matching range maps. In Proc. of the IEEE Int. Conf. on Robotics and
Automation, pages 272–277, 1998.

[119] B. Parvin and G. Medioni. Segmentation of range images into planar surfaces
by split and merge. In Proc. of International Conference on Computer Vision
and Pattern Recognition (CVPR’86), pages 415–417, 1986.

[120] S. Peleg and M. Ben-Ezra. Stereo panorama with a single camera. In
Proc. of the IEEE Int. Conf. on Computer Vision and Pattern Recognition
(CVPR’99), 1999.

[121] S. Peleg and J. Herman. Panoramic mosaics by manifold projection. In
Proc. of the IEEE Int. Conf. on Computer Vision and Pattern Recognition
(CVPR’97), pages 338–343, 1997.

[122] J. S. Perrier, G. Agam, and P. Cohen. Physically valid triangulation of
scarcely matched images using texture information: application to view-
synthesis. In Proc. of Vision Interface (VI’2000), pages 233–240, 2000.

[123] C. Poelman and T. Kanade. A paraperspective factorization method for
shape and motion recovery. In ECCV, pages 97–108, 1994.

[124] C. J. Poelman and T. Kanade. A paraperspective factorization method for
shape and motion recovery. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 19(3):206–218, 1997.

[125] M. Pollefeys, L Van Gool, and M. Proesmans. Eucledian 3d recinstruction
from image sequances with variable focal length. In ECCV, pages 31–42,
1996.

[126] M. Pollefeys and L.Van Gool. Self-calibration from the absolute conic on the
plane at infinity. LNCS 1296, pages 175–182, 1997.

[127] M. Pollyfeys. Tutorial on 3D Modeling from Images. Lecture Nores, Dublin,
Ireland (in conjunction with ECCV 2000), 2000.

[128] W. H. Press, B.P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical
Recipies in C: The Art of Scientific Computing. Cambridge University Press,
Cambridge, England, 1992.

[129] P.W. Rander, P.J. Narayanan, and T. Kanade. Virtualized reality: Con-
structing time varying virtual worlds from real world events. In IEEE Visu-
alization, 1997.

[130] C. Rasmussen. Visual Servoing and Mobile Robot Navigation. Technical
Report, John Hopkins University, 1995.

[131] Point Grey Research. http://www.ptgrey.com.

[132] S. Sarkar. Lola edge detection and linking code.
http://marathon.csee.usf.edu/ sarkar/vision html/lola code/.

152

[133] F. Schmitt and X. Chen. Fast segmentation of range images into planar re-
gions. In Proc. of International Conference on Computer Vision and Pattern
Recognition (CVPR’91), pages 710–711, 1991.

[134] S. Se, D. Lowe, and J. Little. Vision-based mobile robot localization and
mapping using scale-invariant features. In Proceedings of the IEEE Inter-
national Conference on Robotics and Automation (ICRA), pages 2051–2058,
2001.

[135] S. M. Seitz and C. R. Dyer. View morphing. In Computer Graphics (SIG-
GRAPH’96), pages 21–30, 1996.

[136] S. M. Seitz and C. R. Dyer. Photorealistic scene reconstruction by voxel
coloring. In Proc. of the IEEE Int. Conf. on Computer Vision and Pattern
Recognition (CVPR’97), pages 1067–1073, 1997.

[137] J. Shade, S. Gortler, L. He, and R. Szeliski. Layered depth images. In
Computer Graphics (SIGGRAPH’98), 1998.

[138] T. B. Sheridan. Space teleoperation through time delay: Review and prog-
nisis. IEEE Tr. Robotics and Automation, 9, 1993.

[139] J. R. Shewchuk. Triangle-a two-dimensional quality mesh generator and
delaunay triangulator. http://www.cs.cmu.edu/ quake/triangle.html.

[140] H.-Y. Shum and L.-W. He. Rendering with concentric mosaics. In Computer
Graphics (SIGGRAPH’99), pages 299–306, 1999.

[141] H.-Y. Shum and R. Szeliski. Panoramic image mosaics. Technical Report
MSR-TR-97-23, Microsoft Research, 1997.

[142] R. Sim and G. Dudek. Learning and evaluating visual features for pose
estimation. In ICCV, pages 1217–1222, 1999.

[143] R. C. Smith and P. Cheeseman. On the representation and estimation of
spatial uncertainty. Technical Report, TR 4760 & 7239, SRI, 1985.

[144] I. Stamos and P. K. Allen. Integration of range and image sensing for photore-
alistic 3d modeling. In Proc. of IEEE Int. Conf. on Robotics and Automation,
pages 1435–1440, 2000.

[145] P. Sturm and B.S. Triggs. A factorization based algorithm for multi-image
projective structure and motion. In ECCV (2), pages 709–720, 1996.

[146] P.F. Sturm. Critical motion sequences for the self-calibration of cameras and
stereo systems with variable focal length. IVC, 20(5-6):415–426, March 2002.

[147] R. Szeliski. Video mosaics for virtual environments. IEEE Computer Graph-
ics and Applications, pages 22–30, March 1996.

[148] R. Szeliski and H.-Y. Shum. Creating full view panoramic image mosaics and
environment maps. In Computer Graphics (SIGGRAPH’97), pages 251–258,
1997.

153

[149] C. Taylor and D. J. Kriegman. Structure and motion from line segments
in multiple images. IEEE Transactions on Pattern Analysis and Machine
Intelligence, November 1995.

[150] S. Thrun. Learning maps for mobile robot navigation. Artificial Intelligence,
99(1):21–71, 1998.

[151] S. Thrun. Robotic Mapping: A Survey. Technical Report CMU-CS-02-111,
Carnegie Mellon University, 2002.

[152] S. Thrun, A. Buecken, W. Burgard, D. Fox, T. Froehlinghaus, D. Henning,
T. Hofmann, M. Krell, and T. Schmidt. AI-based Mobile Robots: Case Stud-
ies of Successful Robot Systems, chapter Map Learning and High-Speed Nav-
igation in RHINO. MIT Press, 1998.

[153] S. Thrun, D. Fox, and W. Burgad. A probabilistic approach to concurrent
mapping and localization for mobile robots. Machine Learning, 31:29–53,
1998.

[154] S. Thurn, W. Burgard, and D. Fox. A real-time algorithm for mobile robot
mapping with applications to multi-robot and 3d mapping. In Proc. of the
IEEE Int. Conf. on Robotics and Automation, 2000.

[155] C. Tomasi and T. Kanade. Shape and motion from image streams under
orthography: A factorization method. International Journal of Computer
Vision, 9:137–154, 1992.

[156] P. Torr. Motion segmentation and outliers detection. PhD thesis, University
of Oxford, 1995.

[157] P. Torr and A. Zisserman. Robust parametrization and computation of the
trifocal tensor. Image and Visual Computing, 15:591–605, 1997.

[158] K. Toyama and G.D. Hager. Incremental focus of attention for robust vision-
based tracking. IJCV, 35(1):45–63, November 1999.

[159] W. Triggs. The geometry of projective reconstruction i: Matching constraints
and the joint image. In ICCV, pages 338–343, 1995.

[160] W. Triggs. Auto-calibration and the absolute quadric. In CVRP, pages
609–614, 1997.

[161] R. Y. Tsai. A versitile camera clibration technique for high-accuracy 3D
machine vision metrology using off-the-shelf tv cameras and lenses. IEEE
Transactions and Robotics and Automation, 3(4):323–344, 1987.

[162] M.Urban T.Werner, T.Pajdla. Practice of 3d reconstruction from multiple
uncalibrated unorganized images. In Czech Pattern Recognition Workshop,
2000.

[163] I. Ulrich and I. Nourbakhsh. Appearance-based place recognition for topo-
logical maps. In Proc. of the IEEE Int. Conf. on Robotics and Automation,
pages 1023–1029, 2000.

154

[164] S.-C. Wei, Y. Yagi, and M. Yachida. Building local floor map by use of
ultrasonic and omni-directional vision sensor. In Proc. of 1999 IEEE Int.
Conf. on Robotics and Automation, pages 2548–2553, 1998.

[165] D. Weinshall and C. Tomasi. Linear and incremental aquisition of invariant
shape models from image sequences. In Proc. of 4th Int. Conf. on Compute
Vision, pages 675–682, 1993.

[166] M. Wilczkowiak, E. Boyer, and P. Sturm. 3d modelling using geometric
constraints: A parallelepiped based approach. In European Conference on
Computer Vision (ECCV 2002), pages 221–236, 2002.

[167] N. Winters and J. Santo-Victor. Mobile robot navigation using omnidi-
rectional vision. In Proc. 3rd Irish Machine Vision and Image Processing
Conference (IMVIP’99), 1999.

[168] D. Wood, D. Azuma, W. Aldinger, B. Curless, T. Duchamp, D. Salesin, and
W. Stuetzle. Surface light fields for 3d photography. In Computer Graphics
(SIGGRAPH 2000), 2000.

[169] D. N. Wood, A. Finkelstein, J. F. Hughes, C. E. Thayer, and D. H. Salesin.
Multiperspective panoramas for cell animation. In Computer Graphics (SIG-
GRAPH’97), 1997.

[170] Y. Yagi, S. Fujimura, and M. Yachida. Route representation for mobile robot
navigation by omnidirectional route panorama fourier transform. In Proc. of
the IEEE Int. Conf. on Robotics and Automation, pages 1250–1255, 1998.

[171] Y. Yagi and M. Yachida. Environmental map generation and egomotion
estimation in a dynamic environment for an omnidirectional image sensor.
In Proc. of 1999 IEEE Int. Conf. on Robotics and Automation, pages 3493–
3498, 2000.

[172] B. Yamauchi and P. Langley. Place recognition in dynamic environments.
Journal of Robotic Systems, Special Issue on Mobile Robots, 14(2):107–120,
1997.

[173] B. Yamauchi, A. Schultz, and W. Adams. Mobile robot exploration and
map-building with continuous localization. In Proc. of 1999 IEEE Int. Conf.
on Robotics and Automation, 1998.

[174] Z. Zhang and O. Faugeras. A 3d world model builder with a mobile robot.
International Journal of Robotics Research, 11(4):269–285, 1992.

[175] J. Y. Zheng and S. Tsuji. Panoramic representation for route recognition by
a mobile robot. International Journal of Computer Vision, 9(1):55–76, 1992.

155

