
Answer Typing for Information Retrieval

Christopher Pinchak
Dept. of Computing Science

Univesity of Alberta
Edmonton, Alberta, Canada
pinchak@cs.ualberta.ca

Davood Rafiei
Dept. of Computing Science

Univesity of Alberta
Edmonton, Alberta, Canada
drafiei@cs.ualberta.ca

Dekang Lin
Google, Inc.

1600 Amphitheatre Parkway
Mountain View, California
lindek@google.com

ABSTRACT
Answer typing is commonly thought of as finding appropri-
ate responses to given questions. We extend the notion of
answer typing to information retrieval to ensure results con-
tain plausible answers to queries. Identification of a large
class of applicable queries is performed using a discrimina-
tive classifier, and discriminative preference ranking meth-
ods are employed for the selection of type-appropriate terms.
Experimental results show that type-appropriate terms iden-
tified by the model are superior to terms most commonly as-
sociated with the query, providing strong evidence that an-
swer typing techniques can find meaningful and appropriate
terms. Further experiments show that snippets containing
correct answers are ranked higher by our model than by the
baseline Google search engine in those instances in which a
query does indeed seek a short answer.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Informa-
tion Search and Retrieval; I.2.7 [Artificial Intelligence]:
Natural Language Processing

General Terms
Algorithms, Experimentation, Measurement, Performance

1. INTRODUCTION
The tasks of question answering (QA) and information re-

trieval (IR) both provide a means of locating information rel-
evant to a request, albeit in slightly different ways. QA pro-
vides a natural question and answer interface that reduces
the amount of information returned, but requires additional
work on the part of the system to find correct answers. This
additional work has led to QA systems being deployed on a
much smaller scale than IR systems. IR systems are often
only aware of questions in a limited sense, such as answer-
ing only questions matching a certain pattern, and exhibit
reduced performance on other questions.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’09, November 2–6, 2009, Hong Kong, China.
Copyright 2009 ACM 978-1-60558-512-3/09/11 ...$10.00.

In this paper, we seek to apply the QA notion of answer
typing to generate better responses to queries. Specifically,
we wish to identify type-appropriate terms for these queries
such that standard IR responses (such as snippets) include
terms that satisfy the user’s information needs. To take
advantage of typeability we introduce methods to 1) iden-
tify queries that can benefit from typing, 2) identify type-
appropriate terms for these queries, and 3) use these terms
to promote results.

Experimental results show that snippet terms scored by
our model are preferred nearly twice as often as the most
frequent terms shared by the top 100 snippets. Further ex-
periments show that snippets containing answers are ranked
higher by our model than by the Google baseline for those
cases in which queries have a complete or partial short an-
swer. An increase of 0.05 in mean reciprocal rank (MRR) is
observed, resulting in a MRR value of of 0.567. This MRR
value is quite high, especially considering the fact that mul-
tiple results are displayed to a judge.

Information retrieval is a central component of many QA
systems [5, 15]. Although IR techniques have been investi-
gated with the specific goal of QA in mind [14], the applica-
tion of QA techniques specifically with IR in mind has been
largely unexplored. However, because document retrieval
(the IR component of QA) can benefit from increased aware-
ness of the question [23, 2], certain aspects of the QA process
have been transplanted into document retrieval. Although
the application of Natural Language Processing (NLP) tech-
niques to the IR task is not a new concept [22, 9], ours is
one of the few works that seeks to transfer the notion of an
automatically-detected answer type into IR or document re-
trieval. However, work on templated queries [10] allows for
the incorporation of type information specified by the user.

Answer typing is a central component for many QA sys-
tems (e.g., [3, 5]). In the context of QA, answer typing
seeks to identify those candidate answers that are plausible
or appropriate as responses to the question. Answer typing
is most often performed by assigning one or more answer
type classes to the question, either via rules or via question
classification such as that performed by the system of Li
and Roth [12]. The work we follow for answer typing in this
paper is that of Pinchak et al. [20] in which answer typing
is performed without the use of answer type classes.

2. IDENTIFYING QUERIES
Before we can apply answer typing to queries, we must

first identify those queries that are naturally amenable to
typing. A query stream, such as the one found in the AOL

Table 1: Identification feature templates
Pattern Description

LHSw
root noun to the left of the
preposition

LHSc cluster of the root noun

RHSw
preposition and the root of the
prepositional attachment

RHSc
preposition and cluster of the
root of the prep. attachment

has picture
query contains the word “picture”
or “photo”

has map query contains the word “map”
initial the query starts with the word “the”

rearranged
find a non-prepositional wording
of this query in the AOL data set

query logs [17], contains a wide variety of queries searching
for different kinds of information. Queries can be roughly
divided into short-answer informational, long-answer infor-
mational, navigational, and definition. Informational queries
are seeking some piece of information about a subject, and
the response may be short-answer (e.g., “cities in Canada”)
or long-answer (e.g., “causes of WWII”). In contrast to in-
formational queries, navigational queries are seeking some
specific page (e.g., “Google image search”) and definition
queries are looking for some comprehensive source of infor-
mation on a subject (e.g., the Wikipedia page for Britney
Spears).

Lapata and Keller [11] describe a task of compound noun
interpretation in which some compound noun phrases, such
as “war stories,” can be rearranged or rewritten as preposi-
tional queries, such as “stories about war.” Many queries en-
countered in a query stream are compound noun phrases and
so we wish to develop techniques that cover these queries.
Therefore, we propose that compound noun queries can be
normalized by transforming them into their most likely prepo-
sitional rewriting thus simplifying our task to considering
only those queries that already contain prepositions.

Although the set of prepositional queries is homogeneous
in structure, we must further filter the queries to remove
those unlikely to benefit from a notion of answer type. For
this task, we make use of large-margin discriminative learn-
ing as implemented by a Support Vector Machine (SVM)
classifier [7] for which we identify the set of useful features
summarized in Table 1. Because we only consider prepo-
sitional queries, we can break each query into a left-hand
side (LHS) and right-hand side (RHS). The LHS contains
only the root noun of the query. The RHS includes both the
preposition and the root of the prepositional attachment.
Cluster information is used to increase the amount of over-
lap between queries that are not identical.

The purpose of our SVM is to identify queries that benefit
from our notion of typing. To provide training data, the first
author of this paper labeled a set of 2000 queries according
to whether or not the answer typing methods described next
are likely to be of benefit to the query. A single annotator
was used because of the high degree of subjectivity of the
task; it is not always clear what exactly defines a typeable
query and some familiarity with the answer typing method is
required to identify cases where typing is likely to help. Ex-

Table 2: Answer typing feature templates
Pattern Description

E(t, c)
Expected count of term t
in context c

C(t, c)
Observed count of term t in
context cP

t′ C(t′, c) Count of context c in the corpusP
c′ C(t, c′) Count of term t in the corpus

W (t)
Estimated depth of t in the
WordNet hierarchy

S(t)
Count of the times t occurs
in the candidate list

LHS(t, q)
Flag for when the LHS of query q
is a substring of t

U(t)
Flag for when t contains
capitalized letters

T (t)
Number of terms comprising
candidate t

periments on a small test set of 200 queries show an accuracy
of 87.5% for the query identification model (25 errors), with
errors being divided according to the proportion of positive
and negative examples (one-third and two-thirds, respec-
tively). Our experiments in Section 5 show that this level
of performance produces results comparable to our baseline
approach, and assuming perfect accuracy leads to clear im-
provements over the baseline.

3. PREFERENCE RANKING
Answer typing for QA typically takes the form of assigning

one or more pre-defined type categories to a given question
[6, 12]. Pinchak and Lin [20] approach the problem of an-
swer typing for QA by directly modeling the probability of
a candidate answer being appropriate to a given question
without the use of an intermediary type category. Following
this work, we make use of discriminative preference rank-
ing to order a given list of candidate answers according to
how appropriate they are to a given question. Because Pin-
chak et al. [20] use support vector machines (SVMs), we use
the SVMlight package [8] to perform discrimitive preference
ranking.

4. TYPING IR RESULTS
We begin by considering only those prepositional queries

identified as typeable by the model discussed above in Sec-
tion 2. From the queries, we generate query contexts from
the LHS and from the combination of LHS with RHS. For
example, the query “cities in Canada” generates the context
“X is a city” from the LHS and “X is a city in Canada” from
the combination of LHS and RHS. Here X is a placeholder
for the expected appropriate term.

Given that these queries were originally intended for infor-
mation retrieval, we submit them as-is to the popular Google
search engine and obtain a ranked list of results along with
their snippets. The top 100 snippets are tagged [19] and
chunked [18] to extract a set of candidates that are then
ranked by the model. These ranked candidates form an or-
dered candidate list.

Table 3: Top 20 Terms SxS
Total queries 996
Our terms preferred 365 (37%)
Most frequent terms preferred 194 (19%)
Both good 83 (8%)
Both bad 108 (11%)
Indeterminate 246 (25%)

A discriminative preference ranking model grants us the
flexibility of using many diverse features. The feature tem-
plates we use are in Table 2. As the basis of the model, we
rely on an expected value of candidate answer t appearing
in context c. This value is calculated using a list of similar
words along with their similarity values. To balance these
expected counts, we include the actual observed counts of
candidate t in context c, C(t, c), along with the individual
counts of the candidate t and context c in our corpus [1].

To these basic counts, we add five additional kinds of fea-
tures that do not rely on query contexts. The first, denoted
by W (t), is the estimated depth of the candidate t in the
WordNet hierarchy [4]. Should the candidate not appear in
WordNet, we estimate the depth of the candidate by aver-
aging the depth of words with high similarity (t′) accord-
ing to the clusters of Pantel and Lin [16]. We include a
feature for the number of times t occurs on the candidate
list, S(t). Through our extraction of candidates from snip-
pets, appropriate candidates are often repeated a number
of times. LHS(t, q) is simply a flag that fires whenever the
LHS of a query (such as “city” in “cities in Canada”) appears
as part of the candidate. We also include a flag that fires
when a candidate contains one or more capitalized letters,
U(t), and the integer number of space-delineated words in
the candidate, T (t).

For training data, two annotators identified appropriate
candidates in the top 20 snippets returned for each query
from a total of 200 queries randomly selected from the posi-
tive training examples used for query identification (Section
2). We observed an inter-annotator agreement (kappa) of
0.68, which is relatively low. Because of this relatively low
level of agreement, we chose to train on the intersection of
the labels.

Once the candidates have been ordered according to our
preference ranking model, we select the top 20 candidates
for scoring snippets. The score of a snippet s is calculated
as the average number of candidates per fragment :

score(s) =

P
t∈top20 in(t, s)

frag(s)
(1)

where in(t, s) = 1 if snippet s contains candidate t (0 oth-
erwise) and frag(s) is the number of fragments delineated
by “. . . ” in the snippet. Fewer fragments indicates a more
cohesive snippet; highly-fragmented snippets require more
appropriate candidates to receive a high score.

Given that Google often performs well at returning rel-
evant results, we do not wish to venture too far from the
Google ordering without good reason. To this end, we use
an interpolated model most often employed for smoothing
[13]. Our final score for a snippet is therefore:

inter(s) = α×MRRscore(s) + (1− α)×MRRorig (2)

Table 4: Top-5 MRR
Ranking method MRR

Original Google order 0.514
Reranked by our model 0.567

5. EXPERIMENTS
The primary goal of applying answer typing techniques to

IR queries is to improve the relevance of results returned to
the user. Given that results will be rescored based in part on
the terms they contain, we propose two different experiments
to evaluate the quality of this reordering. These experiments
make use of an α parameter of 0.4, determined using a held-
out development set. When looking at snippets, we examine
only the top five snippets.

5.1 Candidate Ranking
Our candidate ranking experiment is meant to measure

the quality of terms selected to rerank snippets in compari-
son with terms that are frequent. For this task, we introduce
a side-by-side (SxS) experiment in which results from two
alternatives are compared next to one another. Annotators
are then asked to choose which side provides a better result.
Displaying a list of appropriate terms does not conform to
the task of IR, but allows us to determine whether or not
our model can find relevant results.

Annotations for this experiment are collected from the
Amazon Mechanical Turk (AMT) system.1 AMT results,
when averaged, have been shown to have high agreement
with expert annotators [21] even though Turkers are not
experts. We take advantage of this by requiring a minimum
of five judgements on any one set of query responses. One
side is preferred over the other if and only if we observe a
majority of votes (i.e., ≥ 3) for that side.

Table 3 shows the results of comparing our terms with the
most frequent terms for a set of 996 queries judged as ty-
peable by the query identification model of Section 2. This
set of queries includes queries erroneously identified as an-
swerable because useful terms can exist for queries that are
not answerable by short answers alone. The results in Ta-
ble 3 show the clear advantage of our model over the most
frequent terms indicating that our model is able to identify
terms appropriate to this particular subset of queries.

5.2 Snippet Reranking
The encouraging results of the previous section lead to a

further experiment in which snippets are reranked according
to our model and compared with the original Google order-
ing. This experiment deals only with those queries for which
there exists some short answer. Of the 996 queries used in
the prior SxS experiment, 331 are strictly determined to be
short-answerable. Snippets provide additional information
and context for answers and are the expected response to
IR queries. As a result, snippets that include a short an-
swer to the query allow a user to find desired information
along with some context without having to visit additional
external Web pages.

Annotators were asked to identify the position of the first
snippet containing a short answer to the query. Two anno-
tators were used instead of Amazon Mechanical Turk due to

1http://www.mturk.com/

the attention to detail required to identify short answers in
snippet text. The answer was allowed to be partial to cover
cases in which a list of answers is sought or for which more
than one answer is correct. Only the top 5 snippets of our
two systems were presented to the annotators to produce a
measure of top-5 reciprocal rank. The results for both sys-
tems are presented in Table 4. The two annotators agree on
over 80% of the queries, indicating high confidence in these
values.

The results of Table 4 show a slight improvement over the
high performance of Google-ranked snippets. Given the al-
ready high performance of Google, we conclude that Google
offers relatively few opportunities for which we can improve
results. The fact that we show a significant improvement
for this set of queries means that we are able to capitalize
on those rare situations in which Google provides an overly
general response.

Given the fact that Google performs well at finding cor-
rect answers for our set of queries, it is worthwhile to ex-
amine how often our model has an opportunity to improve
performance. We observed that 176 (53%) of queries are
answered by the first or second snippet provided by Google.
This subset of queries offers only a slight opportunity for
improvement. In spite of this fact, we observe a significant
improvement in the number of queries correctly answered by
the first two snippets provided by our interpolated model,
up from 176 (53%) to 217 (66%). This means that a cor-
rect answer exists in the first two snippets for 2/3 of the
queries that are identified as strictly answerable. Placing
such snippets high in a ranked list is very important for an
IR system, and our model successfully increases the number
of queries that can be answered by considering only the first
two snippets provided by our model.

6. CONCLUSIONS
Incorporating a notion of type-awareness into information

retrieval is desirable for those queries that can benefit from
typing. We have presented here a simple method by which
such queries can be identified along with a means of identi-
fying terms that are type-appropriate for a query. On their
own, these terms are much better than common terms found
in results; if a user is searching for one or a few specific in-
stances then these terms may well satisfy their information
needs. When these terms are used to rerank snippets, we ob-
serve a slight but significant improvement in finding correct
answers to queries.

7. REFERENCES
[1] The AQUAINT Corpus of English News Text.

Linguistic Data Corporation, 2002.

[2] M. Bilotti, P. Ogilvie, J. Callan, and E. Nyberg.
Structured Retrieval for Question Answering. In
Proceedings of SIGIR 2007, 2007.

[3] E. Brill, J. Lin, M. Banko, S. Dumais, and A. Ng.
Data-Intensive Question Answering. In Proceedings of
TREC 2001, Gaithersburg, Maryland, 2001.

[4] C. Fellbaum. WordNet: An Electronic Lexical
Database. MIT Press, Cambridge, MA, 1998.

[5] S. Harabagiu, D. Moldovan, C. Clark, M. Bowden,
A. Hickl, and P. Wang. Employing Two Question
Answering Systems in TREC-2005. In Proceedings of
TREC-2005, 2005.

[6] A. Ittycheriah, M. Franz, and S. Roukos. IBM’s
Statistical Question Answering System – TREC-10. In
Proceedings of TREC-10, 2001.

[7] T. Joachims. Making Large-Scale SVM Learning
Practical. In B. Schölkopf, C. Burges, and A. Smola,
editors, Advances in Kernel Methods - Support Vector
Learning. MIT-Press, 1999.

[8] T. Joachims. Optimizing Search Engines Using
Clickthrough Data. In Proceedings of KDD-2002.
ACM, 2002.

[9] B. Katz and J. Lin. Selectively Using Relations to
Improve Precision in Question Answering. In
Proceedings of EACL 2003 Workshop on Natural
Language Processing for Question Answering, pages
43–50, 2003.

[10] G. Kumaran and J. Allan. Information Retrieval
Techniques for Templated Queries. In Proceedings of
RIAO 2007, 2007.

[11] M. Lapata and F. Keller. Web-based Models for
Natural Language Processing. ACM Transactions on
Speech and Language Processing, 2(1):1–30, Feb. 2005.

[12] X. Li and D. Roth. Learning Question Classifiers. In
Proceedings of COLING 2002, pages 556–562, 2002.

[13] C. Manning and H. Schütze. Foundations of Statistical
Natural Language Processing. The MIT Press, 1999.

[14] C. Monz. From Document Retrieval to Question
Answering. PhD thesis, University of Amsterdam,
2003.

[15] E. Nyberg, R. Frederking, T. Mitamura, M. Bilotti,
K. Hannan, L. Hiyakumoto, J. Ko, F. Lin, L. Lita,
V. Pedro, and A. Schlaikjer. JAVELIN I and II
Systems at TREC 2005. In Proceedings of
TREC-2005, 2005.

[16] P. Pantel and D. Lin. Document Clustering with
Committees. In Proceedings of SIGIR 2002, pages
199–206, 2002.

[17] G. Pass, A. Chowdhury, and C. Torgeson. A Picture of
Search. In Proceedings of the First International
Conference on Scalable Information Systems, 2006.

[18] X. Phan. CRFChunker: CRF English Phrase
Chunker. http://crfchunker.sourceforge.net/, 2006.

[19] X. Phan. CRFTagger: CRF English POS Tagger.
http://crftagger.sourceforge.net/, 2006.

[20] C. Pinchak, D. Lin, and D. Rafiei. Flexible Answer
Typing with Discriminative Preference Ranking. In
Proceedings of EACL 2009, pages 666 – 674, 2009.

[21] R. Snow, B. O’Connor, D. Jurafsky, and A. Ng. Cheap
and Fast – But is it Good? Evalating Non-Expert
Annotations for Natural Language Tasks. In
Proceedings of the EMNLP 2008, pages 254–263, 2008.

[22] T. Strzalkowski, L. Guthrie, J. Karlgren,
J. Leistensnider, F. Lin, J. Pérez-Carballo,
T. Straszheim, J. Wang, and J. Wilding. Natural
Language Information Retrieval: TREC-5 Report. In
Proceedings of TREC-5, 1996.

[23] J. Tiedemann. Improving Passage Retrieval in
Question Answering using NLP. In Proceedings of the
12th Portuguese Conference on Artificial Intelligence
(EPIA), 2005.

