Bulk Loading a Linear Hash File

Davood Rafiei and Cheng Hu

University of Alberta
drafiei,chenghu}@cs.ualberta.ca
g

Abstract. We study the problem of bulk loading a linear hash file;
the problem is that a good hash function is able to distribute records
into random locations in the file; however, performing a random disk
access for each record can be costly and this cost increases with the
size of the file. We propose a bulk loading algorithm that can avoid
random disk accesses by reducing multiple accesses to the same location
into a single access and reordering the accesses such that the pages are
accessed sequentially. Our analysis shows that our algorithm is near-
optimal with a cost roughly equal to the cost of sorting the dataset, thus
the algorithm can scale up to very large datasets. Our experiments show
that our method can improve upon the Berkeley DB load utility, in terms
of running time, by two orders of magnitude and the improvements scale
up well with the size of the dataset.

1 Introduction

There are many scenarios in which data must be loaded into a database in large
volumes at once. This is the case, for instance, when building and maintaining
a data warehouse, replicating an existing data, building a mirror Internet site
or importing data to a new DBMS. There has been work on bulk loading tree-
based indexes (e.g. quadtree [6], R-tree [3] and UB-Tree [4]), loading into an
object-oriented database (e.g. [15,2]) and resuming a long-duration load [10].
However, we are not aware of a bulk loading algorithm for a linear hash file.
This may seem unnecessary, in particular, if both sequential and random disk
accesses are charged a constant time; but given that a random access costs a
seek time and half of a rotational delay more, a general rule of thumb is that
one can get 500 times more bandwidth by going to a sequential access [5]. This
seems to be consistent with our experimental findings.

There are a few complications with loading a linear hash file which need to
be resolved. First, the file is dynamic and both the hash functions and the record
locations change as more data is loaded. Second, the final structure of a hash
file depends on factors such as data distribution, the split policy and the arrival
order of the records. Third, without estimating a target hash layout, it is difficult
to order the input based on the ordering of the buckets in the hash file.
Overview of Linear Hashing: Linear hashing is a dynamic hashing scheme
that gracefully accommodates insertions and deletions by allowing the size of
the hash file to grow and shrink [11]. Given a hash file with initially Ny buckets

and a hash function h() that maps each key to a number, hq (key) = h(key) mod
Ny is called a base hash function and h;(key) = h(key) mod 2iNy for i > 0
are called split functions where Ny is typically chosen to be 1. Buckets are split
when there is an overflow. Linear hashing does not necessarily split a bucket
that overflows, but always performs splits in a deterministic linear order. Thus
the records mapped to an overfilled bucket may be stored in an overflow bucket
that is linked to the primary area bucket.

Loading a Linear Hash: Consider loading a linear hash file with Ny = 1. the
hash file initially has a single bucket and grows in generations to 2, 4, ..., 2"
buckets. In the 0 generation, the hash file grows from a single bucket to two
buckets. Every record of the old bucket with its least significant bit (referred to
here as bit 0) set is moved to the new bucket. In the i*" generation, the hash has
2¢ buckets and grows into 2¢*! buckets in a linear order. For each record key,
the i** bit of its hash value is examined and it is decided if the record must be
moved to a newly-created bucket.

Paper Organization: Section 2 presents our bulk loading algorithm. In Sec-
tion 3, we compare and contrast our methods to caching, which can be seen as
an alternative to bulk loading. Section 4 presents and analyzes our experimental
results. Finally, Section 5 reviews the related work and Section 6 concludes the
paper and discusses possible extensions and future work.

2 Bulk Loading

Based on our analysis [13], the cost of loading can be reduced if we can reduce
or eliminate random page accesses and record movements.

2.1 Straightforward Solutions and Problems

To avoid random disk accesses in loading a hash file, a general solution is to sort
the records based on the addresses they are hashed to before loading. Unlike
static hashing where each record is mapped to a fixed location, the address of
a record in a linear hash file is not fixed and it changes as more records are
inserted or deleted. Sorting the records based on the hash values is not also an
option since there is not a single hash function.

An alternative is to estimate the number of generations a hash file is expected
to go through, say r, and sort the records based on the function h(key) mod 2"
of their key values. This solution can avoid random disk accesses if the hash file
(after all the data is loaded) is in a state right at the beginning or the end of a
generation, i.e. bucket 0 is the next bucket to split. Otherwise r, the number of
bits used for sorting, is not a natural number. Clearly one can solve the problem
using [r] bits for addressing, for the cost of an underutilized hash file. But this
can almost double the space that is really needed.

The design of a linear hash file (as discussed in the previous section) forces
the records within each bucket to have a few least significant bits of their hash
values the same. For instance, in the i*" generation, the hash values of the records

in each bucket must all have their ¢ least significant bits the same. It is clear that
there is not a unique final layout that satisfies this constraint. The final layout,
for instance, can vary with the order in which the records are inserted.

2.2 Input Ordering and Load Optimality

There are many different ways of ordering a given set of input records, and each
ordering may result into a different hash file configuration. To reduce the number
of possible hash layouts that we need to search for, we define some equivalent
classes of layouts.

Definition 1. Let R(b) denote the set of records that are stored in either the
primary bucket b or an overflow bucket linked to primary bucket b. Two linear
hash layouts 1y and ly are equivalent if (1) for every primary-area bucket by in
Iy, there is a primary-area bucket ba in I such that R(b1) = R(b2), and (2) for
every primary-ares bucket by in l2, there is a primary-area bucket by in ly such
that R(bl) = R(bz)

For the purpose of loading, two different configurations may be treated the
same if both have the same space overheads and I/O costs. On the other hand,
the construction costs of two equivalent layouts can be quite different. We de-
velop a notion of optimality which to some degree characterizes these costs.

Definition 2. Suppose a target hash file is fized and has N primary-area buck-
ets. An optimal ordering of the records is the one such that loading records in
that order into the hash file involves no bucket splits nor record movements and
no bucket is fetched after it is written.

This notion of optimality does not provide us with an actual load algorithm
but makes it clear that before a bucket is written, all records that belong to
the bucket must be somehow grouped together. Furthermore, to avoid bucket
splits and record movements, the final layout must be predicted before the data
is actually loaded. Our bulk loading algorithm is presented next.

2.3 Owur Algorithm

Suppose a final hash layout is fixed and it satisfies the user’s expectation, for
instance, in terms of the average number of I/Os per probe. Thus, we know the
number of buckets in the hash file (the details of our estimation is discussed
elsewhere [13]). For each record, r least significant bits of its hash value gives
the address of the bucket where the record must be stored. As is shown in Alg. 1,
before the split point is reached, r = [loga N'| bits. At the split point, the number
of bits used for addressing is reduced by one. Since the input is sorted based on
b least significant bits of the hash values in a reversed order, all records with
the same r1,79 < b least significant bits are also grouped together. Hence the
correctness of the algorithm follows. Furthermore, the input ordering satisfies
our optimality criteria; after sorting, the algorithm does not perform any bucket
splits or record movements and no bucket is fetched after it is written.

Algorithm 1 Bulk Loading a hash file

Estimate the number of primary buckets in the hash file and denote it with NV;

r1 = [logaN|; r2 = [loga N
Sort the records on b € [r2, mb] least significant bits of their hash values in a reversed
order, where mb is the maximum length of a hash value in bits;

Let p = N — 2" denote the next bucket that will split
r = r2; b = 0; {current bucket that is being filled}
while there are more records do
Get the next record R with the hash value Hg;
Let h be the r least significant bits of Hg;
Reverse the order of the bits in h;
if h > b {the record belongs to the next bucket} then
Write bucket b to the hash file; b + +;
if b > p {has reached the split point} then
r=r,
end if
end if
if bucket b is not full then
Insert R into bucket b;
else
Write bucket b to the hash file if it is not written;
Insert R into an overflow bucket;
end if
end while

Lemma 1. The total cost of Alg. 1 in terms of the number of I/Os is roughly
the cost of sorting the input plus the cost of sequentially writing it.

Proof See [13].

3 Caching vs. Data Partitioning

Caching the buckets of a hash file can reduce the number of I/Os and may be
an alternative to bulk loading, if it can be done effectively. The effectiveness of
caching mainly depends on the replacement policy that is chosen and the size
of the available memory. When the memory size is limited, a “good” caching
scheme must predict the probe sequence of the records and keep the buckets
that are expected to be accessed in near future in memory. However, unless the
data is ordered to match the ordering of the buckets in the hash file, the probe
sequence is expected to be random and every bucket has pretty much the same
chance of being probed. Therefore, it is not clear if any replacement policy alone
can improve the performance of the loading. If we assume the unit of transfer
between the disk and memory is a bucket, reducing the size of a bucket can
reduce unused data transfers, thus improving the cache performance at load

time (e.g. [1]). However, using a small bucket size can also increase the average
access time for searches [9].

An alternative which turns out to be more promising (see Section 4.1) is to
use the available memory for data reordering such that the probes to the same
or adjacent buckets are grouped together. As in caching, the data is scanned
once but partitioned into smaller chunks and each partition is buffered. Sorting
each partition in the buffer reorders the records so that the records in the same
partition which belong to the same or adjacent buckets are grouped together.

For testing and comparison, both caching and partitioning can be integrated
into Berkeley DB which supports linear hashing through its so-called extended
linear hash [14]. The database does use caching to boost its performance. When
a hagh file is built from scratch, all buckets are kept in memory as long as there
is room. The size of the cache can be controlled manually. Berkeley DB provides
a utility, called db_load, for loading but the utility does not do bulk loading.
Our partition-based approach can be implemented within db_load (as shown in
Alg. 2) by allocating a buffer for data reordering. Alg. 2 is not a replacement for
Alg. 1 but it is good for incremental updates, after an initial loading and when
the hash file is not empty.

Algorithm 2 Modified db_load with data partitioning

Initialize the memory buffer
while there are more records do
Read a record R from the dataset and add it to the buffer
if the buffer is full then
Sort the records in the buffer based on their reversed hash values
Insert all the records in the buffer into the hash table
Clear the buffer
end if
end while

Obviously, the size of the buffer can directly affect the loading performance.
The larger the buffer, the more records will be grouped according to their posi-
tions in the hash table. If we assume the size of the available memory is limited,
then the space must be somehow divided between a cache and a sort buffer. Our
experiments in the next section shows that a sort buffer is more effective than a
cache of the same size.

4 Experiments

We conducted experiments comparing our bulk loading to both the loading in
Berkeley DB and our implementation of a naive loading. Our experiments were
conducted on a set of URLs, extracted from a set of crawled pages in the Internet
Archive [7]. Attached to each URL was a 64-bit unique fingerprint which was

produced using Rabin’s fingerprinting scheme [12]. We used as our keys the
ascii character encoding of each fingerprint; this gave us a 16-bytes key for each
record. Unless stated otherwise, we used a random 100-bytes charter string for
data values. We also tried using URLs as our keys but the result was pretty
much the same and were not reported. All our experiments were conducted on
a Pentium 4 machine running Red Hat 9, with a speed of 3.0GHz, a memory of
2GB, and a striped array of three 7200 RPM IDE disks. We used the version
4.2.52 of Berkeley DB, the latest at the time of running our experiments.

For our experiments with Alg. 1, we set b = mb, except for the experiments
reported at the end of Section 4.1; this made the sorting independent of the
layout estimation and had a few advantages: (1) external sorting could be used,
(2) the data read by our layout estimation could be piped to sorting, avoiding an
additional scan of the data. There was not also much improvement in running
time when the number of bits used for sorting was less. For instance, external
sorting 180 million 130-byte records based on 16 bits took 85 minutes whereas a
sort based on 64 bits took 87 minutes. Our timings reported for Alg. 1 include
the times for both sorting and layout estimation. For sorting, the Linux sort
command was used.

4.1 Performance Comparison to Loading in Berkeley DB

As a baseline comparison, we used the native db_load utility in Berkeley DB and
compared its performance to that of our bulk loading. db_load had a few param-
eters that could be set at load time including the fill factor (h_ffactor) and the
number of records (h_nelem). In particular, when h_nelem was set, db_load did a
layout estimation and built the entire empty hash table in advance. We played
with these parameters, trying to find the best possible settings. In our experi-
ments, however, we did not notice any performance improvements over default
settings, except in those cases where the input followed a specific ordering as dis-
cussed at the end of this Section. Otherwise, the performance even deteriorated
when the parameters were explicitly set. Therefore, unless stated otherwise, we
used the default settings of the db_load utility.

Scalability with the size of the dataset To test the scalability of our
algorithms and to compare caching (in Berkeley DB) with our partitioning, we
varied the size of the dataset from 1 million to 20 million records and measured
the running time for Alg. 1, Alg. 2 and the native db_load. The size of the sort
buffer in Alg. 2 was set to 300MB (our next experiment shows how the buffer
size can affect the load performance). If we included the 1IMB I/O cache which
was automatically allocated by Berkeley DB, the total memory allocated to Alg.
2 was 301MB. To make a fair comparison, we also set the I/O cache of the native
db_load utility to 301MB. All other parameters were set to their default values
in Berkeley DB.

The result of the experiment is shown in Fig. 1-a. When the dataset is small
(less than 5 million records), all three methods perform very well and their
performances are comparable. This is because both the I/O cache of the native
db_load and the sort buffer of Alg. 2 are large enough to hold a major fraction of

data. When the dataset size is 5 million records (i.e. 590MB), half of the input
data cannot fit in the sort buffer of Alg. 2 or the I/O cache of the native db_load
utility, and Alg. 2 improves upon the native db_load by a factor of 1.5. When the
dataset contains more than 10 million records, our experiment shows that Alg. 2
outperforms the native db_load utility by at least a factor of 3. The performance
of our bulk loading algorithm is better than the other two approaches. It takes
only 10 minutes and 23 seconds to load the dataset with 20 million records while
native db_load utility in Berkeley DB requires 1682 minutes and 1 seconds.

T T T T T T T T T
—— db_load with caching D\
o0 -o- db_load with partitioning (Alg.2) d 100f|
—— our bulk loading (Alg.1)

1400

1200

1000

Time in minutes
Loading time (in minutes)

-

g 8 1Ao 12 14 16 20 0 1430 2(‘)0 3430
Number of records in millions

(a) (b)

Fig. 1. Running time varying (a) the number of records, (b) the buffer size

Buffer size As discussed in the previous section, when the dataset cannot
be fully loaded into memory, the sort buffer is always more effective than an
I/0 cache of the same size. In another experiment to measure the effect of the
sort, buffer size on the performance, we fixed the size of the dataset to 10 million
records and varied the sort buffer size in Alg. 2 from 100MB to 1GB. Each
record contained a 16-bytes key and a 50-bytes data field. The default I/O cache
size of db_load was 1MB. The result in Fig. 1-b shows that allocating a modest
size buffer for sorting (in this case less than 50MB) sharply reduces the running
time. Clearly allocating more buffer helps but we don’t see a significant drop in
running time. This is a good indication that our partitioning can be integrated
into other applications with only a small buffer overhead.

Sorting data in advance In an attempt to measure the effect of input
ordering alone (without a layout estimation), we sorted the records based on i
least significant bits of their hash values with ¢ varied from 0 to 32, where 32 was
the length of a hash value in bits. As is shown in Fig. 2-a for 10 million records
of our URL dataset, the loading time was the worst when data was not sorted
or the sorting was done on the whole hash value. Increasing ¢ from 0 toward
32 reduced the running time until 7 reached a point (here called an optimal

point) after which the running time started going up. The optimal point was
not fixed; it varied with both the size of the dataset and the distribution of the
hash values. However, if we reversed the bit positions before sorting, increasing
1 from 0 toward 32 reduced the running time until ¢ reached its optimal point
after which the running time almost stayed the same'. Clearly sorting improves
the performance when data is sorted either on the reversed hash values or on

the original order but using an optimal number of bits.

We could not do our layout estimation in Berkeley DB but could pass the
number of records and let Berkeley DB do the estimation. In another experiment
we sorted the data and also passed the number of records as a parameter to the
load utility. Fig. 2-b shows the loading time for the same 10 million record dataset
when the number of records is passed as a parameter and the number of bits

used for sorting, 4, is varied from 1 to 32. A layout estimation alone (i.e. when

i = 0) did not improve the loading time; this was consistent with our experiments

reported earlier in this section. Comparing the two graphs in Fig. 2 leads to the
conclusion that the best performance is obtained when sorting is combined with
a layout estimation (here the layout estimation is done in Berkeley DB).

N
b
3

— % — Original order
—+— Reversed order

n
8
3

running time (minutes)
g g

@
8

~e--4

%

15 2‘0 . 2‘5
number of bits

(a)

N
Q
3

n
S
3

running time (minutes)
5 g
8 g

— ¢ - Original bit order
—+— Reversed bit order

TS /
- -9
L e S ———

5 10 30

15 20 . 2‘5
number of bits

(6)

35

Fig. 2. Loading sorted data using db_load (a) without the number of records set, (b)

with the number of records set

4.2 Performance Comparison to Naive Loading

We could not run Berkeley DB for datasets larger than 20 million records as it
was either hanging up or taking too long 2. Therefore we decided to implement
our own loading, here called naive loading, which as in Berkeley DB inserted

! Increasing ¢ may slightly increase the time for sorting, but this increase (as discussed
at the beginning of this section) is negligible.
% For instance, loading 20 million records took over 26 hours (see Fig. 1-a).

one record at a time but did not have the Berkeley DB overheads due to the
implementation of ACID properties. To compare the performance of this naive
loading to that of our bulk loading (Alg. 1), we varied the size of the dataset from
1 million to 50 million records and measured the loading time. We couldn’t run
the naive loading for larger datasets; it was taking already more than 55 hours
to run it with 50 million records. The full result of the comparison could not be
presented due to space limitations, but loading 10 million records, for instance,
using our bulk loading algorithm took 3 minutes and 16 seconds whereas it took
129 minutes and 55 seconds to load the same dataset using the naive algorithm.
For 50 million records, using our bulk loading algorithm took 27 minutes and 4
seconds whereas naive algorithm needed 3333 minutes and 18 seconds. Generally
speaking, our bulk loading algorithm outperforms the naive loading by two orders
of magnitude, and its performance even gets better for larger datasets.

5 Related Work

Closely related to our bulk loading is the incremental data organization of Ja-
gadish et al. [8] which delays the insertions into a hash file. They collect the
records in piles and merge them with the main hash only after enough records
are collected. Data in each pile is organized as a hash index and each bucket of
the index has a block in memory. This idea of lazy insert is similar to our Alg. 2.
A difference is that we use sorting, thus the records that are mapped to the same
location in the hash file are all adjacent. This may provide a slight benefit at
the load time. Qur Alg. 1 is different and should be more efficient. The entire
data is sorted in advance using external sorting which is both fast and scalable
to large datasets; it is also shown that the total cost of the algorithm is roughly
equal to the cost of sorting. On a dataset with 20 million records, Alg. 1 is 50
times faster than our partition-based algorithm (Alg. 2) which is comparable to
a lazy insertion of Jagadish et al. [8].

To the best of our knowledge, hash indexes are not currently supported in
DB2, Sybase and Informix; this may change as these databases provide more
support for text and other non-traditional data. Hash indexes are supported in
Microsoft SQL Server, Oracle (in the form of hash clusters), PostgreSQL and
Berkeley DB (as discussed earlier), but we are not aware of any bulk loading
algorithm for these indexes.

6 Conclusions

Hash-based indexes are quite attractive for searching large data collections, be-
cause of their low cost complexity, however the initial time for loading is a major
factor in the adoption of a hash-based index in the first place. Our work, mo-
tivated by our attempt to load a snapshot of the Web into a linear hash file,
presents a few algorithms for efficiently loading a large dataset into a linear
hash file. Our analysis of these algorithms and our experiments show that our

algorithms are near-optimal, can scale up for large datasets and can reduce the
loading time by two orders of magnitude.

Acknowledgments

The authors would like to thank Margo Seltzer and Keith Bostic for answering
many of our questions about Berkeley DB and comments on our earlier draft
and Paul Larson for the discussions. This work is supported by Natural Sciences
and Engineering Research Council of Canada.

References

10.

11.

12.

13.

14.

15.

. Ailamaki, A., DeWitt, D.J., Hill, M.D., Skounakis, M.: Weaving relations for cache

performance. In: Proceedings of the VLDB Conference, Rome, Italy (2001) 169-180
Amer-Yahia, S., Cluet, S.: A declarative approach to optimize bulk loading into
databases. ACM Transactions on Database Systems 29(2) (2004) 233-281

Bohm, C., Kriegel, H.: Efficient bulk loading of large high-dimensional indexes. In:
International Conference on Data Warehousing and Knowledge Discovery. (1999)
251-260

Fenk, R., Kawakami, A., Markl, V., Bayer, R., Osaki, S.: Bulk loading a data ware-
house built upon a ub-tree. In: Proceedings of of IDEAS Conference, Yokohoma,
Japan (2000) 179-187

Gray, J.: A conversation with Jim Gray. ACM Queue 1(4) (2003)

Hjaltason, G.R., Samet, H., Sussmann, Y.J.: Speeding up bulk-loading of
quadtrees. In: Proceedings of the International ACM Workshop on Advances in
Geographic Information Systems, Las Vegas (1997) 50-53

Internet Archive: (http://www.archive.org)

Jagadish, H.V., Narayan, P.P.S., Seshadri, S., Sudarshan, S., Kanneganti, R.: In-
cremental organization for data recording and warehousing. In: Proc. of the VLDB
Conference, Athens (1997) 16-25

Knuth, D.: The Art of Computer Programming: Vol III, Sorting and Searching.
Volume 3rd ed. Addison Wesley (1998)

Labio, W., Wiener, J.L.; Garcia-Molina, H., Gorelik, V.: Efficient resumption of
interrupted warehouse loads. In: Proc. of the SIGMOD Conference, Dallas (2000)
46-57

Larson, P.: Dynamic hash tables. Communications of the ACM 31(4) (1988)
446-457

Rabin, M.O.: Fingerprinting by random polynomials. Technical Report TR-15-81,
Department of Computer Science, Harvard University (1981)

Rafiei, D., Hu, C.: Bulk loading a linear hash file: extended version. (under
preparation)

Seltzer, M., Yigit, O.: A new hashing package for unix. In: USENIX, Dallas (1991)
173-184

Wiener, J.L., Naughton, J.F.: OODB bulk loading revisited: The partitioned-list
approach. In: Proceedings of the VLDB Conference, Zurich, Switzerland (1995)
3041

