Efficient Retrieval of Similar Time Sequences Using DFT

Davood Rafiei
drafiei@db.toronto.edu
Department of Computer Science
University of Toronto

Abstract

We propose an improvement of the known DFT-
based indexing technique for fast retrieval of stmilar
time sequences. We use the last few Fourier coeffi-
cients in the distance computation without storing
them in the index since every coefficient at the end
1s the complex conjugate of a coefficient at the be-
ginning and as strong as its counterpart. We show
analytically that this observation can accelerate the
search time of the index by more than a factor of
two. This result was confirmed by our experiments,
which were carried out on real stock prices and syn-
thetic data.

Keywords similarity retrieval, time series index-
ing

1 Introduction

Time sequences constitute a large amount of data
stored in computers. Examples include stock prices,
exchange rates, weather data and biomedical mea-
surements. We are often interested in similarity
queries on time-series data [APWZ95, ALSS95]. For
example, we may want to find stocks that behave
in approximately the same way; or years when the
temperature patterns in two regions of the world
were similar.

There have been several efforts to develop access
methods for efficient retrieval of similar time se-
quences [AFS93, FRM94, RM97, YJF98]. Agrawal
et al. [AFS93] propose an efficient index struc-
ture to retrieve similar time sequences stored in
a database. They map time sequences into the
frequency domain using the Discrete Fourier Trans-
form (DFT) and keep the first few coefficients in
the index. Two sequences are considered similar if
their Euclidean distance is less than a user-defined
threshold.

In this paper, we propose using the last few
Fourier coefficients of a time sequence in the dis-
tance computation, the main observation being that,
every coefficient at the end is the complex conju-
gate of a coefficient at the beginning and as strong
as its counterpart. This observation reduces the

The 5th International Conference on Foundations
of Data Organization (FODO’98), Kobe, Japan,
November 1998.

Alberto Mendelzon
mendel@db.toronto.edu
Department of Computer Science
University of Toronto

search time of the index by more than 50 percent
in most cases.

The rest of the paper is organized as follows. In
the next section we review some background mate-
rial on related work and on the discrete Fourier
transform. Qur proposal on the efficient use of
DFT in retrieving similar time sequences is dis-
cussed in Section 3. In the same section, we present
analytical results on the search time improvements
of our proposed method. Section 4 discusses the
performance results obtained from experiments on
real and synthetic data. Section 5 is the conclusion.

2 Background

In this section, we briefly review background mate-
rial on past related work and on the discrete Fourier
transform.

2.1 Related Work

There has been some follow-up work on the index-
ing technique proposed by Agrawal et al. [AFS93].
In an earlier work [RM97], we use this indexing
method and propose techniques for retrieving sim-
ilar time sequences whose differences can be re-
moved by a linear transformation such as mov-
ing average, time scaling and inverting. In an-
other work [Raf98], we generalize this framework to
multiple transformations. More follow-up work in-
cludes the work of Faloutsos et al. [FRM94] on sub-
sequence matching and that of Goldin et al. [GK95]
on normalizing sequences before storing them in
the index.

In this paper, we use the indexing technique
proposed by Agrawal et al.[AFS93], but in addition
to the first few coefficients we also take the last
few coefficients into account. Both our analytical
results and our experiments show that this obser-
vation accelerates the retrieval speed of the index
by more than a factor of 2. All follow-up works
described earlier benefit from this performance im-
provement.

There are other related works on time series
data. A domain-independent framework for posing
similarity queries on a database is developed by
Jagadish et al. [JMM95]. The framework has three

components: a pattern language, a transformation

rule language, and a query language. The frame-
work can be tuned to the needs of time sequences
domain. Yi et al. [YJF98] use time warping as
a distance function and present algorithms for re-
trieving similar time sequences under this function.
Agrawal et al. [APWZ95] describe a pattern lan-
guage called SDL to encode queries about “shapes”
found in time sequences. A query language for time
series data in the stock market domain is developed
by Roth [Rot93]. The language is built on top
of CORAL [RS92], and every query is translated
into a sequence of CORAL rules. Seshadri et al.
[SLR94] develop a data model and a query lan-
guage for sequences in general but do not mention
similarity matching as a query language operator.

2.2 Discrete Fourier Transform

Let a time sequence be a finite duration signal & =
[z¢] fort =0,1,---,n— 1. The DFT of &, denoted
by X, is given by

n—1
1 —j2rtf
Xf:—g ree n f=0,1,---n—1 (1)
\/ﬁtzo

where j = /=1 is the imaginary unit. Through-
out this paper, unless it is stated otherwise, we
use small letters for sequences in the time domain
and capital letters for sequences in the frequency
domain. The energy of signal # is given by the

expression
n—1

E@) =3 |uil 2)
t=0
A fundamental observation that guarantees the
correctness of the indexing method for time series
data is Parseval’s rule [OS75], which states for a
given signal ¥ its energy remains the same after
DFT, i.e. .

where X is the DFT of Z. Using Parseval’s rule
and the linearity property of DFT (for example,
see Oppenheim and Schafer [OST75] for details), it
is easy to show that the Euclidean distance between
two signals in the time domain is the same as their
distance in the frequency domain.

D*(Z,i) = E(i—7) = E(X-Y) = D*(X,Y) (4)

3 Storage and Retrieval of Similar
Time Sequences

Given a set of time series data, we can construct an
index ([AFS93]) as follows: find the DFT of each
sequence and keep the first few DFT coefficients as
the sequence features. Let’s assume that we keep
the first k coefficients. Since all DFT coefficients
except the first one are complex numbers, keeping
the first £ DFT coefficients maps every time series

into a point in a (2k — 1)-dimensional space. These
points can be organized in a multidimensional in-
dex such as R-tree family [Gut84, BKSS90] or grid
files [NHS84]. Keeping only the first k£ Fourier coef-
ficients in the index does not affect the correctness
because the Euclidean distance between any two
points in the feature space is less than or equal
to their real distance due to Parseval’s rule and
the monotonic property of the Euclidean distance.
Thus, the index always returns a superset of the
answer set. However, the performance of the index
mainly depends on the energy concentration of se-
quences within the first & Fourier coefficients. It
turns out that a large class of real world sequences
concentrate the energy within the first few coeffi-
cients, 1.e. they have a skewed energy spectrum of
the form O(F~2%) for b > 0.5 where F' denotes the
frequency. For example, classical music and jazz
fall in the class of pink noise whose energy spec-
trum is O(F~1) ([WS90, Sch91]), stock prices and
exchange rates fall in the class of brown noise whose
energy spectrum is O(F~?) ([Man83, Cha84]), and
the water level of rivers falls in the class of black
noise for which b > 1 ([Man83, Sch91]).

To retrieve similar time sequences stored in the
index we may invoke one of the following spatial
queries:

e Range Query: Given a query point Cj and
a threshold ¢, find all points X such that the
Euclidean distance D(X,Q) < e.

e Nearest Neighbor Query: Given a query
point (j, find all points X such that the Eu-
clidean distance D()?, (j) is the minimum. Sim-
ilarly, a k-nearest neighbor query asks for the
k closest points of a given point.

e All-Pair Query: Given two multidimensional
point sets s1,s3 C S and a threshold ¢, find all
pairs of points ()?, 37) € s1 x s9 such that the
Euclidean distance D()?, }7) <.

Suppose we want to answer a range query using the
index, i.e., to find all sequences X that are within
distance ¢ of a query sequence Cj, or equivalently
D()?, Cj) < €. A common approach to answer this
query is to build a multidimensional rectangle of
side 2¢ (or a multidimensional circle of radius €)
around (j and check for overlap between the query
rectangle (circle) and every rectangle in the index.
That is, instead of checking D2()_(‘,(j) < 2, we
check |X; —Q¢|> < e for f =0,...,k— 1. The
latter is a necessary (but not sufficient) condition
for the former.

The size of the query rectangle has a strong
effect on the number of directory nodes accessed
during the search process and the number of candi-
dates which includes all qualifying data items plus
some false positives (data items whose full database

records do not intersect the query region). Our goal
here is to reduce the size of the query region, using
the inherent properties of DFT, without sacrificing
the correctness.

3.1 Owur Proposal

The following lemma is central to our proposal.

Lemma 1 The DFT coefficients of a real-valued
sequence of duration n satisfy Xn_y = X7 for f =
1,...,n—1 where the asterisk denotes complex con-
Jugation®.

Proof: See Oppenheim and Schafer [OS75, page
25]. m

This means the Fourier transform of every real-
valued sequence is symmetric with respect to its
middle. A simple implication of this lemma is
| Xn_f| = |X¢|, 1.e. every amplitude at the begin-
ning except the first one appears at the end.

Observation 1 In the class of (real-valued) time
sequences that have an energy spectrum of the form
O(F~2) for b > 0.5, the DFT coefficients are not
only strong at the beginning but also strong at the
end.

This means if we do our distance computations
based on only the first k& Fourier coefficients, we
will miss all the information carried by the last &
Fourier coefficients which are as important as the
former. However, the next observation shows that
the first k£ Fourier coefficients are the only features
that we need to store in the index.

Observation 2 The first [(n + 1)/2] DFT coeffi-
cients of every (real-valued) time sequence contain
the whole information about the sequence.

The point left to describe now is how we can
take advantage of the last k Fourier coefficients
without storing them in the index. We can write
the Euclidean distance between two time sequences
¥ and ¢, using equations 4 and 2, as follows:

D*(Z,q) = D*(X, :Z|XI_QI|2 (5)

where X and (j are respectively DFTs of Z and ¢.

Since |Xp—f| = |X¢| and |Qn- f| = |Qy| for
f=1,...,n—1, we can write DQ(X Q) as follows:
D*(X,Q) = |Xo - Qo|” +
SrLT Xy - QP+
| X0 /2 —Qn/2|2 for even n (6)
Zn 1/22|Xf Q¢|?> for odd n

Ha+bj)* = (a — bj)

A necessary condition for the left side to be less
than ¢? is that every magnitude on the right side
be less than €?. For the time being and just for the
purpose of presentation, we assume time sequences
are normalized ? before being stored in the index.
In general, time sequences may be normalized be-
cause of efficiency reasons [GK95] or other useful
properties [Raf98]. Since the first Fourier coeffi-
cient 1s zero for normalized sequences, there is no
need to store it in the index. In addition, since k is
usually a small number, much smaller than n, we
can assume that the (n/2)th coefficient is also not
stored in the index. Now the condition left to be
checked on the index is

20X — Qs> < e® for f=1,...,k

or, equivalently

€
X5 — < —

| f Qf| \/i

A common approach to check this condition is

to build a search rectangle of side ?—E = /2¢ (or

a circle of diameter \/Ze) around Q and check for
an overlap between this rectangle (circle) and ev-
ery rectangle in the index. The search rectangle
still guarantees to include all points within the Eu-
clidean distance ¢ from é, but there is a major drop
in the number of false positives. The effect of re-
ducing the size of the search rectangle on the search
time of a range query is analytically discussed in
the next section.

The symmetry property can be similarly used
to reduce the size of the search rectangle even if
sequences are not normalized. The only difference
is that one side of the search rectangle (the one
representing the first DFT coefficient®) is 2¢ and
all other sides are v/2c¢.

We can show that all-pair queries also benefit
from the symmetry property of DFT. Suppose we
want to answer an all-pair query using two R-tree
indices, i.e., to find all pairs of sequences that are
within distance ¢ form each other. A common ap-
proach for processing this query is to take pairs
of (minimum bounding) rectangles, one rectangle
from each index, extend the sides of one by 2e¢
and check for a possible overlap with the other.
However, the symmetry property implies that if
we extend every side by 1/2e, the result is still
guaranteed to include all qualifying pairs though
the number of false positives is reduced.

for f=1,...k

3.2 Analytical Results on the Search Time
Improvements

There are two factors that affect the search time
of a range query, if we assume the CPU time to

2A sequence is in normal form if its mean is 0 and its
standard deviation is 1.
3Note that the first DFT coefficient is a real number.

be negligible; one is the number of index nodes
touched by the query rectangle and the other is
the number of data points inside the search rect-
angle (or candidates). Both factors can be approx-
imated by the area of the search rectangle, if we
assume data points are uniformly distributed over a
unit square, and the search rectangle is a rectangle
within this square . Thus, to compare the search
time of a rectangle of side v/2¢ to that of a one of
side 2¢, we compare their areas.

Since a search rectangle has 2k sides, the area
(or the volume) of a search rectangle of side v/2¢
is (\/ie)% = 92k¢2k This is one 2¥th of the area
(or the volume) of a rectangle of side 2e¢ which is
(2¢)%* = 2262k Thus under the assumptions we
have made, using a search rectangle of side \/2¢
instead of a one of side 2¢ should reduce the search
time by (1—1/2%)%100 percent. For example, using
a rectangle of side v/2¢ on an index built on the
first two non-zero DFT coefficients should reduce
the search time by 75 percent.

However, for the class of time sequences that
have an energy spectrum of the form O(F~2%), the
amplitude spectrum follows O(F~?). In particular
for b > 0, the amplitude reduces as a factor of fre-
quency and points get denser in higher frequencies.
If we assume that the first non-zero DFT coefficient
(for every data or query sequence) is uniformly
distributed within a unit square, the ith DFT coef-
ficient (for ¢ = 1,..., k) must be distributed uni-
formly within a square of side i7%. Thus keep-
ing the first k& Fourier coefficients maps sequences
into points which are uniformly distributed within
rectangle R = (< 0,1 >,< 0,1 >, < 0,27% >,
<0,270> ..., <0,k7" > <0,k >).

In addition, a search rectangle built on an arbi-
trarily chosen query point @ (inside or on R) is not
necessarily contained fully within R. If (} happens
to be a central point of R, the overlap between the
two rectangles reaches its maximum. We refer to
this query as ‘the worst case query’ since it requires
the largest number of disk accesses. On the other
hand, if (j happens to be a corner point of R,
the overlap between the two rectangles reaches its
minimum. We call this query ‘the best case query’.
Thus the area of the overlap between the search
rectangle and R, and as a result the search time, is
not only a factor of € but also a factor of Cj

To compare the search time of a query rectangle
of side v/2¢ to that of one of side 2¢, we can com-
pare their area of overlap with R. The projection
of the overlap between a search rectangle of side
2¢ and R to the ith DFT coefficient plane is a
square of side min(i~?, 2¢) for the worst case query
and a square of side min(i=?, ¢) for the best case
query. Thus the area of the overlap between the
search rectangle and R for the worst case query

4We relax our assumptions later in this section.

o : the best case query point

* * theworst case query point

¢ ®
is Hle(min(i_b, 2¢))? and that for the best case
query is Hle(min(i_b,e))z.

To eliminate the effect of the size of R in our
estimates, we divide the area of the overlap by the
area of R, l.e. Hle(i_b)z, to get what we call
the query selectivity. The query selectivity for the
worst case query using a search rectangle of side 2¢
can be expressed as follows:

[T:_, (min(i=*, 2¢))?
[1i (i70)?

(min (i7", 2¢)i%)2.

S(b, k,2¢) =

(7)

I
'::l”

i=1

The term min(i~°, 2¢)i® is 1 for i7% < 2¢ (or i >

(26)_1/6) , and it is 2ei® for i7% > 2¢ (or i <
(2¢)=1/%). Thus the query selectivity can be ex-
pressed as
min(k,|(2¢)71/%])
S(b, k,2¢) = (2¢%)? (8)

=1

It can be easily shown that S(b, &, €) gives the query
selectivity for the best case query using the same
search rectangle. If we employ the symmetry prop-
erty of the DFT, i.e. use a search rectangle of
side v/2¢, the query selectivities for the worst and
the best case queries would be S(b,k,/2¢) and
S(b, k, %) respectively.

Figure 1 shows the worst case query selectiv-
ity per search rectangle and k varying the query
threshold for Brownian noise data (b = 1). As is
shown, using the symmetry property reduces the
query selectivity by 50 to 75 percent for &k = 2 and
€ < 0.5. If we keep the first three non-zero DFT
coefficients (k = 3), using the symmetry property
reduces the selectivity by up to 87 percent. In
general, taking the symmetry property into account
reduces the selectivity and as a result the search
time in the worst case by 50 to (1 — 1/2%) x 100
percent for & > 2 and ¢ < 0.5.

Figure 2 shows the best case query selectiv-
ity per search rectangle and k varying the query
threshold again for the Brownian noise data. As is
shown, taking the symmetry property into account
reduces the selectivity by at least 75 percent for
all values of ¢ < 0.5, if we keep only the first
two non-zero DFT coefficients. In general, taking

Figure 2: Query selectivity per search rectangle
and k varying the threshold for the best case query
on Brownian noise data

4 Experiments

To show the performance gain of our proposed method,

we implemented it using Norbert Beckmann’s Ver-
sion 2 implementation of the R*-tree [BKSS90] and
compared it to the original indexing method pro-
posed by Agrawal et al. [AFS93]. All our exper-
iments were conducted on a 168MHZ Ultrasparc
station. We ran experiments on the following two
data sets:

1. Real stock prices data obtained from the FTP
site “ftp.ai.mit.edu/pub/stocks/results”. The
data set consisted of 1067 stocks and their
daily closing prices. Every stock had at least
128 days of price recordings.

2. Random walk synthetic sequences each of the
form ¥ = [z] where 2y = @;_1 + 2z: and z is
a uniformly distributed random number in the
range [—500,500]. The data set consisted of
20,000 sequences.

We first transformed every sequence to its nor-
mal form, and then found its DFT coefficients. We
kept the first & DFT coefficients as the sequence
features. Since a DFT coefficient was a complex

number, a sequence became a point in a 2k-dimensional

space. But the first DFT coefficient was always
zero for normalized sequences, and we did not need
to store it in the index; instead, we stored the mean
and the standard deviation of a sequence along with
its K — 1 DFT coefficients. In our experiments we
used the polar representation for complex numbers.

To do the performance comparison, we used both
range and all-pair queries. For range queries, we
ran each experiment 100 times and each time we
chose a random query sequence from the data set
and searched for all other sequences within distance
€ of the query sequence. We averaged the execution
times from these runnings. Our all-pair queries
were spatial self-join queries where we searched the
data set for all sequence pairs within distance ¢ of
each other.

4.1 Varying the query threshold

Our first experiment was on stock prices data con-
sisting of 1067 time sequences each of length 128.
Our aim was to make a comparison between aver-
age case query selectivities obtained experimentally
and the extreme case query selectivities computed
analytically. We fixed the number of DFT coeffi-
cients to 2, but we varied the query threshold from
1% MaxAmp to 0.24 x MaxAmp where MaxAmp
was the maximum amplitude of the first non-zero
DFT coefficient over all sequences in the data set.
Under this setting, a threshold € * MazAmp in
our experiments was equivalent to threshold € in
our analytical results. The average output size for
€ = 1+ MaxAmp was 75 out of 1068 and that

Range Queries

Range Queries

©
o

G—O:'index
¥—%*: index (sym)

o
o

o
[

Running time (seconds)
o
N

0.4 0.6 0.8 1
Threshold / MaxAmp

0 0.2

Figure 3: Both query selectivities and running times for range queries varying the query threshold

1 -)
G—oO: index
*—%: index (sym)
0.8}
2
3]
9
% 0.4}
0.2
0 L L L L
0 0.2 04 0.6 0.8 1
Threshold / MaxAmp
for ¢ = 0.24 x MaxAmp was zero, so we didn’t

try smaller thresholds. Since query points were
chosen randomly, we expected the query selectivity
for every threshold ¢ ¥ MaxAmp to fall between
the two extreme selectivities (the worst case and
the best case) computed analytically for e. As is
shown in Figure 3, for ¢/MaxzAmp < 0.5, using the
symmetry property reduces the query selectivity by
53 to 64 percent and the search time by 70 to 74
percent. It is consistent with our analytical results.
For 0.5 < ¢/MazxAmp < 1, as the figure shows,
using the symmetry property reduces the query
selectivity by 45 to 64 percent and the running time
by 62 to 74 percent.

4.2 Varying the number of DFT coefficients

Our next experiment was again on stock prices
data, but this time we fixed the query threshold for
range queries to 0.95 x MaxAmp and that for all-
pair queries to 0.32% M ax Amp. This setting gave us
average output sizes of 30 and 203 respectively for
range and all-pair queries. We varied the number
of DFT coefficients kept in the index from 1 to
4. Figure 4 shows the running times per query for
range and all-pair queries. Taking our observations
into account reduces the search time of the index
by 66 to 72 percent for range queries and by 61 to
72 percent for all-pair queries.

4.3 Varying the number of sequences

In our next experiment, we fixed the number of
DFT coefficient to 2 and the sequence length to
128, but we varied the number of sequences from
100 to 1067. The experiment conducted on stock
prices data set. We again fixed the query threshold
for range queries to 0.95 * MazxAmp and that for

all-pair queries to 0.32 x MazAmp. Figure 5 shows
the running times per query for range and all-pair
queries. QOur observation reduces the search time
of the index by 63 to 71 percent for range queries
and by 64 to 72 percent for all-pair queries.

4.4 Varying the length of sequences

Range Queries

G—O: index
10t *—*:index (sym)

Execution time (seconds)
(o))

300 400 500
Sequence length

O L
100 200 600

Figure 6: Running times for range queries varying
the length of sequences

Our last experiment was on synthetic data where
we fixed the number of DFT coefficients to 2 and
the number of sequences to 20,000, but we varied
the sequence length from 128 to 512. The size of
the data file was in the range of 40 Mbytes (for se-
quences of length 128) to 160 Mbytes (for sequences
of length 512). We fixed the query threshold to

o o o

o

Execution time (seconds)

o

o o o

o

Execution time (seconds)

o

Range Queries All-Pair Queries

<
>

0.8 140 - -
G—>O :index
7t %\ 120¢ *¥—* :index (sym)
fa) ra) C
6y v v 3 100}
9
5| G—O: index o 80}
¥—%* : index (sym) £
- 601
i)
X
2’\% - w 20t % %
0.1 : : 0 : :
1 2 3 4 1 2 3 4
Number of DFT coefficients Number of DFT coefficients

Figure 4: Running times for range and all-pair queries varying the number of DFT coefficients

o
\‘

o
w

Range Queries All-Pair Queries
; ; 70 ; ;
gl O-©rindex =60} G- index
—: index (sym) 2 *—*: index (sym)
5t S50}
Q
)
Ar o 407
E
< 30t
je)
2y 3201
0]
X
1t w10t
0 : ' 0 : '
0 500 1000 1500 0 500 1000 1500
Number of sequences Number of sequences

Figure 5: Running times for range and all-pair queries varying the number of sequences

0.44 * MaxAmp and, based on our analytical re-
sults, we expected using the symmetry property to
reduce the search time by 50 to 75 percent. Fig-
ure 6 shows the running times per query for range
queries. Our proposed method reduces the search
time of the index by 73 to 77 percent. The search
time improvement is slightly more than our ana-
lytical estimates mainly because of the CPU time
reduction for distance computations which is not
accounted for in our analytical estimates. Because
of the high volume of data, experiments on all-pair
queries were very time consuming. For example,
doing a self-join on sequences of length 512 did not
finish after 12 hours of overnight running. For this
reason, we did not report them.

5 Conclusions

We have proposed using the last few Fourier co-
efficients of time sequences in the distance com-
putation, the main observation being that every
coefficient at the end is the complex conjugate of
a coefficient at the beginning and as strong as its
counterpart. Our analytical observation shows that
using the last few Fourier coefficients in the dis-
tance computation accelerates the search time of
the index by more than a factor of two for a large
range of thresholds. We also evaluated our pro-
posed method over real and synthetic data. Our
experimental results were consistent with our ana-
lytical observation; in all our experiments the pro-
posed method reduced the search time of the index
by 61 to 77 percent for both range and all-pair
queries.

Acknowledgements

This work was supported by the Natural Sciences
and Engineering Research Council of Canada and
the Information Technology Research Centre of On-
tario.

References
[AFS93] Rakesh Agrawal, Christos Faloutsos,

and Arun Swami. Efficient similarity
search in sequence databases. In Pro-
ceedings of the 4th International Con-
ference on Foundations of Data Orga-
nizations and Algorithms (FODO 93),
pages 69-84, Chicago, October 1993.

[ALSS95] Rakesh Agrawal,
King-Ip Lin, Harpreet S. Sawhney, and
Kyuseok Shim. Fast similarity search
in the presence of noise, scaling, and
translation in time-series databases. In
Proceedings of the 21st International
Conference on Very Large Data Bases

(VLDB ’95), pages 490-501, Zurich,

[APWZ95]

[BKSS90]

[Chag4]

[FRM94]

[GK95]

[Gut84]

[TMM95]

[Mang83]

[NHS84]

September 1995. Morgan Kaufmann
Publishers.

R. Agrawal, G. Psaila, E. L. Wim-
mers, and M. Zait. Querying shapes
of histories. In Proceedings of the
21st International Conference on Very
Large Data Bases (VLDB ’95), pages
502-514, Zurich, September 1995.

N. Beckmann, H.-P. Kriegel, R. Schnei-
der, and B. Seeger. The R* tree: an
efficient and robust index method for
points and rectangles. In Proceedings
of the ACM SIGMOD International
Conference on Management of Data
(SIGMOD °90), pages 322-331, At-
lantic City, May 1990.

Christopher Chatfield. The Analysis of
Time Sertes: an Introduction. Chap-
man and Hall, fourth edition, 1984.

C. Faloutsos, M. Ranganathan, and
Y. Manolopoulos. Fast subsequence
matching in time-series databases. In
Proceedings of the ACM SIGMOD
International Conference on Manage-
ment of Data (SIGMOD °94), pages
419-429, Minneapolis, May 1994.

D. Q. Goldin and P. C. Kanellakis.
On similarity queries for time-series
data: constraint specification and im-
plementation. In 1st Intl. Conf. on the
Principles and Practice of Constraint
Programming, pages 137-153. LNCS
976, Sept. 1995.

Antonin Guttman. R-trees: a dynamic
index structure for spatial searching.
In Proceedings of the ACM SIGMOD
International Conference on Manage-
ment of Data (SIGMOD °84), pages
47-57, Boston, June 1984.

H. V. Jagadish, A. O. Mendelzon, and
T. Milo. Similarity-based queries. In
Proceedings

of the 14jth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of
Database Systems (PODS ’95), pages
36-45, San Jose, May 1995.

B. Mandelbrot. Fractal Geometry of
Nature. W.H. Freeman, New York,
1983.

J. Nievergelt, H. Hinterberger, and
K. C. Sevcik. The grid file: an adapt-
able, symmetric multikey file structure.
ACM Transactions on Database Sys-
tems, 9(1):38-71, March 1984.

[0S75]

[Raf98]

[RM97]

[Rot93]

[RS92]

[Sch91]

[SLR94]

[WS90]

[YIF98]

A. V. Oppenheim and R. W. Schafer.
Digital Signal Processing. Prentice-
Hall, Englewood Cliffs, N.J., 1975.

Davood Rafiei. On similarity-based
queries for time series data. Submitted
for publication, 1998.

Davood Rafiei and Alberto Mendelzon.
Similarity-based queries for time series
data. In Proceedings of the ACM
SIGMOD International Conference on
Management of Data (SIGMOD °97),
pages 13-24, Tucson, Arizona, May
1997.

William G. Roth. MIMSY: A system
for analyzing time series data in the
stock market domain. University of
Wisconsin, Madison, 1993. Master
Thesis.

Raghu Ramakrishnan and Divesh Sri-
vastava. CORAL: Control, relations
and logic. In Proceedings of 18th In-
ternational Conference on Very Large
Data Bases (VLDB ’92), pages 238-
250, Vancouver, August 1992. Morgan
Kaufmann.

Manfred Schroeder. Fractals, Chaos,
Power Laws: Minutes from an Infinite
Paradise. 'W.H. Freeman, New York,
1991.

P. Seshadri, M. Livny, and R. Ramakr-
ishnan. Sequence query processing.
In Proceedings of the ACM SIGMOD
International Conference on Manage-
ment of Data (SIGMOD °94), pages
430-441, Minneapolis, May 1994.

B.J. West and M. Shlesinger. The
noise in natural phenomena. American

Scientist, 78:40—45, Jan-Feb 1990.

Byoung-Kee Yi, H. V. Jagadish, and
Christos Faloutsos. Efficient retrieval
of similar time sequences under time
warping. In Proceedings of the 14th
International Conference on Data En-
gineering (ICDE ’98), pages 201-208,
Orlando, February 1998.

