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Abstract

We study similarity queries for time series data where similarity is defined, in a fairly
general way, in terms of a distance function and a set of affine transformations on the
Fourier series representation of a sequence. We identify a safe set of transformations
supporting a wide variety of comparisons and show that this set is rich enough to
formulate operations such as moving average and time scaling. We also show that
queries expressed using safe transformations can efficiently be computed without prior
knowledge of the transformations. We present a query processing algorithm that uses
the underlying multidimensional index built over the data set to efficiently answer
similarity queries. Our experiments show that the performance of this algorithm is
competitive to that of processing ordinary (exact match) queries using the index, and
much faster than sequential scanning. We propose a generalization of this algorithm
for simultaneously handling multiple transformations at a time, and give experimental
results on the performance of the generalized algorithm.

Keywords: Similarity Queries, Time Series Retrieval, Indexing Time Series Fourier Transform.

1 Introduction

Time-series data are of growing importance in many new database applications, such as
data mining or data warehousing. A time series is a sequence of real numbers, each number
representing a value at a time point. For example, the sequence could represent stock or com-
modity prices, sales, exchange rates, weather data, biomedical measurements, etc. We are
often interested in similarity queries on time-series data [APWZ95, ALSS95]. For example,
we may want to find stocks that behave in approximately the same way (or approximately
the opposite way, for hedging); or products that had similar selling patterns during the last
year; or years when the temperature patterns in two regions of the world were similar. In
queries of this type, approximate, rather than exact, matching is required.

*This work was done when the author was a graduate student in Computer Science Department of the
University of Toronto.



A simple approach to determine a possible similarity between two time series is to com-
pute the Euclidean distance (or any other distance, such as the city-block distance) between
the two series, and call the two series similar if their distance is less than some user-defined
threshold.

However, the notion of similarity is often more complex and cannot be expressed using a
distance function. The meaning of a similarity comparison may vary from one data domain
to another data domain and different users may have different perceptions of a similarity
comparison; for example, one may consider two stocks similar if they have almost the same
price fluctuations, even though one stock might sell for twice as much as the other. Consider
the following motivating examples.
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Figure 1: (a) Time series §7 = [36,38,40,38,42,38,36, 36,37,38,39,38,40,38,37], (b) time series
$5 = [40,37,37,42,41,35,40,35,34,42,38,35,45,36,34], (c) the 3-day moving average of s7, and
(d) the 3-day moving average of $5

Example 1.1 Consider time series §7 = [36, 38,40, 38, 42, 38, 36, 36, 37, 38, 39, 38, 40, 38, 37|
and $5 =]40,37,37,42,41, 35,40, 35, 34,42, 38, 35, 45, 36, 34], for example corresponding to
the closing prices of two stocks. Looking at Figure 1(a),(b), the sequences do not appear
very similar. This is justified by the high Euclidean distance D(si, $3) = 11.92 between
them. However, if we look at the three-day moving averages of the two sequences (Figure 1
(c),(d)), they do look quite similar. The Euclidean distance between the three-day moving
averages of the two sequences is 0.47.

Moving averages are widely used in stock data analysis (for example, see [EM69]). Their
primary use is to smooth out short term fluctuations and depict the underlying trend of a
stock. The computation is simple; the [-day moving average of a sequence §= [vy,...,v,] is
computed as follows: the mean is computed for an /-day-wide window placed over the end of
the sequence; this will give the moving average for day n — |[/2]; the subsequent values are
obtained by stepping the window through the beginning of the sequence, one day at a time.
This will produce a moving average of length n — [ + 1. We use a slightly different version
of moving average which is easier to compute in our framework. We circulate the window



to the end of the sequence when it reaches the beginning. This gives us a moving average of
length n. It turns out that when the length of the window is small enough compared to the
length of the sequence, which is usually the case in practice, both averages are almost the
same.
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Figure 2: (a)Time series § = [20, 20, 21, 21, 20, 20, 23, 23| (b)time series 7 = [20, 21, 20, 23]

Example 1.2 Consider two time series § = [20, 20, 21, 21, 20, 20, 23, 23] and ' = [20, 21, 20, 23]
that are sampled with different frequencies (Figure 2). For example, § could be the closing
price of a stock taken every day, and p'could be the closing price of another stock taken every
other day. A typical query is “is p’ similar to § ?”. The sequence § is twice as long as p, so
they cannot be compared directly. The Euclidean distance between p"and any subsequence
of length four of s is more than 1.41. If the time dimension of p'is scaled by 2, i.e., every
value “v;” is replaced by “v;,v;”, the resulting sequence will be identical to 5. This operation
is a special kind of time warping (for example, see [SK83]), often called time scaling, which
can be expressed within our framework.

We propose a class of transformations that can be used in a query language to express
similarity in a fairly general way, handling a wide variety of comparisons including cases like
the two examples above. We show that the query evaluation for similarity comparisons can
be efficiently implemented on top of a point-based access method such as R-tree [Gut84]
without a prior knowledge of transformations. For example, we demonstrate that an index
structure for moving average can be constructed on the fly from an existing index (built on
the original sequences) and the query evaluation engine can benefit from the new index in
the same way as it does from the original index with no extra disk overhead. To the best of
our knowledge, this is the first indexing method that can handle moving average and time
scaling in the context of similarity queries.

To apply this framework to time series data, we need to make some choices on how
we compare two sequences and also how we do indexing. We have chosen the Euclidean
distance to compare two sequences mainly because: (a) it easily corresponds to the cross
correlation (Eq.13); (b) it is frequently used [AFS93, FRM94]; (c) it remains the same under
orthonormal transforms !. There are several multidimensional indexes (such as R-tree family

L A transformation, denoted with matrix M, is orthonormal if MT.M = I where M denotes the transpose
of matrix M and I represents the identity matrix.



[Gut84, BKSS90, SK96|, the k-d-B-tree [L.S90] or the grid file [NHS84]) that can be used
to do indexing on sequences. All these indexes reduce to sequential scanning in higher
dimensions due to a phenomenon known as the curse of dimensionality. A solution to avoid
this problem is to choose a few important features, those that can approximately differentiate
one sequence from another, and only keep those features in the index. The approximation
introduces a few false hits when sequences are being compared. However, the false hits can
be easily removed in a postprocessing step.

For feature extraction, we use the Discrete Fourier Transform (DFT) to map sequences
into the frequency domain and only keep the first few DFT coeflicients for each sequence. The
reason for choosing DFT is mainly because: (a) for a large class of time series (often referred
as colour noise data), it concentrates the energy in a few lower frequency coefficients, so those
coefficients can make a key for indexing purposes; (b) it is an orthonormal transform, so the
Euclidean distance is unchanged under the DFT; (c¢) the class of transformations proposed
in this paper (see Section 2) can express an interesting class of operations if applied in the
frequency domain. In general, one can use any orthonormal transform such as the Discrete
Cosine Transform (DCT), the Harr transform, the wavelet transform, etc. For a broad class
of feature selection methods see, for example, the online bibliography maintained at the
National Research Council Canada site [NC].

The organization of the rest of the paper is as follows: In the rest of the current section
we provide some background material on the discrete Fourier transform and also review the
related work. Our definition of similarity queries is discussed in Section 2. In Section 3 we
use R-tree indexes and develop algorithms for efficiently evaluating queries expressed within
our framework. In Section 4 we briefly describe how our algorithms can be implemented
using the grid file and the k-d-B-tree. Section 5 presents experimental performance results.
We conclude in Section 6.

1.1 The Discrete Fourier Transform

In this section, we briefly review the Discrete Fourier Transform and its properties. Let a
time sequence be a finite duration signal = [x;] for ¢t = 0,1,---,n — 1. The DFT of &,
denoted by X, is given by
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where ¢ = y/—1 is the imaginary unit. Throughout this paper, unless it is stated otherwise,
we use small letters for sequences in the time domain and capital letters for sequences in the
frequency domain. The inverse Fourier transform of X gives the original signal, i.e.,

xtz—ZXféT t=0,1,---,n—1 (2)

Some books define the DFT with no constant in front and the inverse DFT with constant 1/n
in front or vice versa. Following some earlier conventions [AFS93, FRM94|, we have 1/4/n



in front of both Equations 1 and 2 for it simplifies the upcoming Parseval relation without
changing any properties of the DFT. The energy of signal & is given by the expression

n—1
E@) =) | [. (3)
t=0
The convolution of two signals & and ¥ is given by
n—1
COTL’U(SE,:J)]' = Zxkyj—k jzoala"'an_l (4)
k=0

where j — k is computed modulo n. This convolution is usually called circular convolution.
Equations 3 and 4 are unchanged in the frequency domain.

The following properties of DFT can be found in any signal processing textbook (for
example, see [OS75]). The symbol < denotes a DFT pair.

Linearity if 7 & X and 7y < 17', then
ai +bj < aX +bY (5)
for arbitrary constants a and b,
Convolution-Multiplication if # < X and § < Y, then
conv(Z,7) & X «Y (6)
where X * Y is the element-to-element multiplication of two vectors X and 17',
Symmetry if ¥ & X for a real-valued sequence ¥ of length n, then
| Xn—fl = |X¢| for f=1,...,n—1, (7)
and
Parseval’s Relation if 7 & X , then

E(Z) = E(X). (8)

Using Parseval’s relation and the linearity, it is easy to show that the Euclidean distance
between two signals in the time domain is the same as their distance in the frequency domain.

DX(&,5) = E(F - §) = B(X - ¥) = DX, ¥) (9)



1.2 Related Work

An indexing technique for the fast retrieval of similar time sequences is proposed by Agrawal
et al. [AFS93|. The idea is to use Discrete Fourier Transform (DFT) to map time sequences
(stored in a database) into the frequency domain. Keeping only the first £ Fourier coefficients,
each sequence becomes a point in a k-dimensional feature space. To allow a fast retrieval,
the authors keep the first £ Fourier coefficients of a sequence in an R-tree index. There have
been several extensions and improvements to this technique. An extension for subsequence
matching is proposed by Faloutsos et al. [FRM94]. None of the aforementioned work allows
the expression of a query that uses some transformations in its expression of similarity.
Goldin et al. [GK95] show that the similarity retrieval will be roughly invariant to simple
translations and scales if sequences are normalized before being stored in the index. The
authors store in the index both the translation and the scale factors, in addition to normalized
sequences, and also allow those factors to be queried using range predicates. In our earlier
work [Raf98, RM98]|, we have shown that the last few Fourier coefficients of a sequence (those
corresponding to lower negative frequencies) are as important as the first few coefficients due
to the symmetry property of DFT for real-valued sequences. We have also shown that this
observation can be used to reduce the size of the search rectangle in the indexing method
of Agrawal et al. [AFS93| and its extensions [FRM94, GK95] without really storing the last
few Fourier coefficients in the index. This leads to a search time improvement of more than a
factor of 2. In this paper, we use this improved version of the index for efficiently evaluating
queries that use transformations in their expressions of similarities.

Jagadish et al.[JMM95] develop a domain-independent framework to pose similarity
queries on a database. The framework has three components: a pattern language P, a
transformation rule language T, and a query language L. An expression in P specifies a set
of data objects. An object A is considered similar to an object B, if B can be reduced
to it by a sequence of transformations defined in 7. The query language proposed in the
paper is an extension of relational calculus with predicates that test whether an object A
can be transformed into a member of the set of objects described by expression e using the
transformation ¢, at a cost bounded by c. As a specialization of this work to real-valued
sequences [FJMMO97], the same authors describe how the search can be performed over se-
quence signatures instead of the original sequences. Our work here can also be seen as a
specialized variation of this general framework where transformations are restricted to affine
transformations.

There is other work on time series data. Yi et al. [YJF98] use time warping as a distance
function and present algorithms for retrieving similar time sequences under this function.
Chu et al. [CW99] show how similar sequences can be efficiently searched irrespective of
differences in simple translations and scales. A hierarchical sequence matching algorithm
based on the correlation between sequences is proposed by Li et al. [LYC96]. Agrawal et al.
[APWZ95] describe a pattern language called SDL to encode queries about “shapes” found
in time sequences. The language allows a kind of blurry matching where the user specifies
the overall shape instead of the specific details, but it does not support any operations or
transformations on sequences. A method for approximately representing sequences in terms
of some functions and processing queries over such a representation is described by Shatkay



and Zdonik [SZ96]. A query language for time series data in the stock market domain is
developed by Roth [Rot93]. The language is built on top of CORAL [RS92], and every query
is translated into a sequence of CORAL rules. Seshadri et al. [SLR94| develop a data model
and a query language for sequences in general but do not mention similarity matching as a
query language operator.

2 Similarity Queries

Time series often have differences that need to be removed or reduced before comparing them
to each other. One way to remove those differences is to apply some transformations to them.
We are interested in a set of transformations which fulfills the following two requirements:
(a) it expresses a large class of useful transformations on time series, (b) queries expressed
using this set of transformations can be efficiently processed. The set of affine transforma-
tions seems to be a good candidate for its members can express any combination of four
important transformations in space: translation, scaling, rotation and shear. Furthermore,
any affine transformation preserves two basic features namely collinearity (i.e., all points ly-
ing on a line initially still lie on a line after transformation) and ratios of distances (e.g., the
midpoint of a line segment remains the midpoint after transformation). To fulfill the second
requirement, we limit our transformations to translation and scaling (along all dimensions)
only. Specifically, we define a transformation in an n-dimensional space, denoted by (@, 5),
as a pair of vectors where d specifies a stretch and b represents a translation. We will show
that this class can express a large class of useful transformations on time series; at the same
time, queries expressed using this class can be efficiently processed.

=,

Definition 1 The transformation (@, b) applied to a point Z in an n-dimensional space maps
Ztod*T+b.
Transformations may be associated with costs. Given a set of transformations 7', and

the cost of applying each transformation, a measure of distance (dissimilarity) between two
time series can be defined as follows:

DO (fa g)
minger (cost(t) + D(H(Z), §))
D(Z, ) = min ¢ minger(cost(t) + D(Z,t(7))) (10)
ming, t,er(cost(ti) + cost(ts)
+D(t:(Z), t2(¥)))

where Dy(Z,¥) is a base distance (such as the Euclidean distance) between ¥ and .
Next we propose an extension of multidimensional similarity queries where similarity is
defined on the basis of both a distance function and a set of transformations.

2.1 Queries with Single Transformations

Transformations can be seen as a way to remove certain variations before aligning two se-
quences. Although many kinds of variations may be present in each sequence, we consider

7
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Figure 3: Applying transformations to time series

only those that can be removed using the limited form of affine transformations on the
Fourier series representation of the sequence (Figure 3). We first consider queries that use
a single transformation to remove such variations. To gain some insight into this class of
queries, we give some examples from real stock data. The data was obtained from the FTP
site “ftp.ai.mit.edu/pub/stocks/results/”.

Example 2.1 Figure 4 shows the daily closing price for The Bombay Co. (BBA) starting
from October 25th, 1994 for 128 days, and that for Zweig Total Return Fund Inc. (ZTR)
starting from July 20th, 1995 for 128 days. The Euclidean distance between the two series
is 16.16. The mean for BBA is 9.51, and the mean for ZTR is 8.64. If we do not care about
this variation in our comparison, we can vertically shift the mean of both series to zero, i.e,
subtract the mean of each series from everyday closing price. Now the Euclidean distance
between the two sequences reduces to 12.78. The closing price of ZTR fluctuates in a smaller
range than that of BBA; the standard deviation of ZTR is 0.10 while the standard deviation
of BBA is 1.18. Again if we do not care about the scale in our comparison, we can scale both
series, for example by the inverse of their standard deviation. The resulting series are often
called the normal forms of the original series [GK95]. Figure 4 shows that the Euclidean
distance between the normal forms of the two series is still 11.10; ZTR is more volatile than
BBA. To remove this variation, we need to smooth out short term fluctuations, for example
by computing the 20-day moving average of the two series. The Euclidean distance between
the two series after applying the 20-day moving average drops to 2.75.

Example 2.2 Figure 5 shows in normal form the daily closing prices of stocks of Pacific Gas
and Electric Co. (PCG) and Plum Creek Timber Co. (PCL) both starting from November
2nd, 1994 for 128 days. The Euclidean distance between the two normalized time series is
11.34. One way to compare the change rates of two stocks is to compare their “momenta”,
which are obtained for every stock by subtracting the price at time ¢ from the price at time
t+1 (or, in general, t+n for some n). The Euclidean distance between the two momenta is
13.01. The series representing the price of PCG has a spike on February 7th while the series
of PCL has a spike on February 8th. If we horizontally shift the series of PCL one day to the
left, then the spikes will overlap. The Euclidean distance between the two normalized time
series after the horizontal shift drops to 8.91. The horizontal shifting reduces the distance
between the momenta of the two series to 5.62.

The momentum of a time series describes the rate at which its value (such as the price
in the preceding example) is rising or falling and it is seen as a measure of strength behind

8
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Figure 4: From left to right, top to bottom: the daily closing price of The Bombay Co.
(BBA) starting from “94/10/25” for 128 days, the daily closing price of Zweig Total Return
Fund Inc. (ZTR) starting from “95/07/20” for 128 days, the two stocks put together, both
vertically translated, both vertically scaled, and both smoothed using the 20-day moving
average (D denotes the Euclidean distance).
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Figure 5: The daily closing price of Pacific Gas and Electric Co. (PCG) and that of Plum
Creek Timber Co. (PCL), both starting from 94/11/02 for 128 days, represented in normal
forms and their momenta.

upward or downward movements. On the other hand, shifting a sequence horizontally before
comparing it to another sequence removes any possible delay between the two sequences
which can arise, for example in the stock market domain because of different reactions of
two stocks to the same piece of news or recording errors.

As in the examples, we often specify a sequence of transformations to be applied to a
time series. Given transformations ¢; = (al,bl) and ty = (aQ, bg) for example respectively
corresponding to “I1-day shift” and “10-day mowving average’, suppose we want to apply
t1 followed by t,, which we denote by ¢5(¢1), to sequence X. We can construct the new
transformation as follows:

to(t1 (X)) = 3 (di % X +b1) + by (11)
= a}*a]*)?—l—a}*b;%—b;
Transformation t5(¢;) equivalently can be expressed as t3 = (d3, b;) where a3 = d3 * d] and
b3 = 0,2 * b1 + b2
We now show how we can express some of these transformations in our framework. Sup-

pose we want to express the 3-day moving average in our transformation language. Let us de-

note the Fourier transform of § by S and the Fourier transform of m3 = [;, ;, é, 0,0,0,0,0,0,
0,0,0,0,0,0] by Mg Now consider the transformation t,,4,93 = (Z\Z;;,O) where 0 is a zero

vector of the same size as M3 If we apply the transformation #,,4,43 to S ie.,
tmavg3(s) = S * M3 + 0 = S * M3

we get the 3-day moving average of §'in the frequency domain. If we transform the right hand
side back to the time domain using the convolution-multiplication relation (Equation 6), we
get conv(8, m3) which is the 3-day moving average of § in the time domain.

10



In general, the m-day moving average of a series of length n can be expressed by ¢409 =

—

(@,0) where
a= [w17w27 '7wm70707"'70] (12)

v
m

~ >

~
n

and 0 is a zero vector of size n. Transformation tmavg May be applied several times to get
successive moving averages. The weights wy,---,w,, are not necessarily equal. For trend
prediction purposes, for example, the weights at the end are usually chosen to be higher
than those at the beginning. Whereas for normal smoothing purposes, weights are equal, or
those at the center are larger than those at the endpoints. Both momentum and horizontal
shifting can also be formulated as affine transformations over the Fourier representation of
a sequence. See Appendixes B and C for details.

Another transformation of special interest is normalization, which can be applied to time
series before storing them in an index. Given a time series of mean y and standard deviation
o, the normal form of the series is obtained by first vertically shifting the series by p and
then scaling it by 1/0. The equivalent transformation can be expressed in the frequency
domain as (m, [—u/0,0,0,...]).

Although it is not required by the algorithms given in this paper, we assume time se-
quences are normalized and for every sequence, its normal form along with its mean and
standard deviation are stored in a relation. This is mainly because of efficiency, as is noted
by Goldin and Kanellakis [GK95], and the following two attractive properties of the normal
form which are not mentioned by these authors.

1. It minimizes the Euclidean distance with respect to translation, i.e. D(X — Sg, Y — Sy)
has its minimum when s, and s, respectively are chosen to be the means of Z and ¥ 2.

2. The Euclidean distance between two normalized sequences is directly related to their
cross-correlation ®. The cross-correlation is a statistic measure to find out if two random
variables (such as the crops harvested and the rain level) are linearly correlated. A
value of cross-correlation near 0 often indicates that the variables are independent,
while a value near 1 or -1 indicates a strong positive or negative correlation.

D*(X,¥) = 2(n—1)(1 - p(X, V) (13)

Equation 13 can be derived by expanding the Euclidean distance formula and replacing
the mean and the standard deviation respectively by 0 and 1 in both the Euclidean
distance and the cross-correlation formulas.

The second property can be quite useful in formulating similarity queries or translating
one query to another. Since the Euclidean distance between two sequences can range from
zero to infinity, it is usually difficult to specify a threshold for this distance. Instead, we
can specify a threshold for cross-correlation which is between -1 and 1 and plug it into
Equation 13 to find a threshold for the Euclidean distance. Using Equation 13, we can

2This can be verified by taking the first derivatives of D w.r.t. s, and s, and equating them to zero.
3p(f,?) _ HR.9—HZ-Hy

0')2.0'17
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also translate any expression that uses the cross-correlation in a query to one that uses the
Euclidean distance or vice versa.

Transformations can also be defined to stretch the time dimension (Example 1.2). Details
are given elsewhere [RM97].

2.2 Queries with Multiple Transformations

It is often desirable to specify a set of transformations in a query. This is particularly useful
if there are different ways of removing variations and one is not sure which one should be
used. Given a distance function D and a set of transformations denoted by 7', the semantics
of D(T'(Z), %) for arbitrary data points # and 7 is defined as follows:

D(T(Z),y) = min{ D(t(Z),9) | t € T} (14)
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Figure 6: On the top from left to right, daily closings of Dow Jones 65 Composite Vol-
ume (COMPYV) index, NYSE Volume (NYV) index and both put together, normalized and
smoothed using 9-day moving average. On the bottom from left to right, again daily closings
of COMPYV index, NYSE Declining Issues (DECL) index and both put together, normalized
and smoothed using 19-day moving average.

Example 2.3 Figure 6 shows daily closings of three indices: Dow Jones 65 Composite
Volume (COMPYV), NYSE Volume (NYV) and NYSE Declining Issues (DECL). It is difficult
to see any similarity between these sequences. The Euclidean distance between closes of
COMPYV and NYYV is 2873 and that between COMPYV and DECL is 12939. On the other
hand, if we normalize the closes of COMPV and NYV and compare their 9-day moving
averages, they look very similar. The Euclidean distance between the 9-day moving averages
of the normalized closes of COMPV and NYV is less than 3. Similarly, if we normalize the
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closes of COMPV and DECL and compare their 19-day moving averages, they also look
quite similar. In fact, ‘19-day moving average’ is the shortest moving average that reduces
the Euclidean distance between normalized closes of COMPV and DECL to less than 3.
To identify these similarities, a query may specify a set of moving averages to be applied
to sequences. Although it may seem that if two sequences are similar w.r.t. n-day moving
average, they should be similar w.r.t. (n+ 1)-day moving average, this is not true in general.
For a counter example see Lemmas 6 and 7 in Appendix A.

Similar to the way we did for single transformations, we can compose two sets of transfor-
mations. Given two transformation sets 77 and Ty, for example respectively corresponding
to “s-day shift” for s =0,...,10 and “m-day moving average” for m = 1,...,40, we can
construct transformation set T3 = T5(77), which corresponds to a “s-day shift” followed by
an “m-day moving average” for all possible values of s and m, as follows:

Ty ={ts = ta(t1) | t1 € T1, 12 € 15} (15)

where t5(t1) is defined by Equation 11. Using Equations 11 and 15, we can simplify a query
by replacing any expression that uses a sequence of transformations with one that uses only
a single or a set of transformations. We can process the resulting query using the techniques
proposed in Section 3.2.

2.3 Safety of Transformations

Time series data can be easily stored in a multidimensional index and be efficiently retrieved
using simple similarity queries. However, to the best of our knowledge, no prior work has
been done on using these access methods for efficiently evaluating queries that use transfor-
mations in their expression of similarity. To achieve this goal, we define a notion of safety for
transformations. We show in Section 3 that any query that only uses safe transformations
in their expression of similarity can be efficiently supported using multidimensional indexes.

Definition 2 An affine transformation is safe if it maps every j-axis-parallel line segment
in (R",R™), for j=1,...,n, to a j-azis-parallel line segment.

Lemma 1 An affine transformation t is safe iff it can be expressed as t = (d, 5) where
@be R

Proof: For the clarity of the presentation, we give the proof in a 2-dimensional space.
The extension of the result to an arbitrary n-dimensional space is straightforward.

(if) Suppose t can be expressed as t = ([ag,ay], [bg, by]). Let ([z1,y1], [T2,92]) be an
arbitrary axis-parallel line segment. If the line segment is parallel to the x axis, i.e. y; = ys,
then it will remain parallel to the x axis after the transformation because a,.y; + by, =
ay.y2 + by. Similarly if the line segment is parallel to the y axis, then it will remain parallel
to the y axis after the transformation. Thus ¢ is safe.

(only if) Suppose t is safe. We show that ¢ can be expressed as ([as, ayl, [bs, by]). Let
([#1, 1], [72, y2]) be an arbitrary axis-parallel line segment and ([z], y}], [z, y5]) be its image
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under t. We can find a,, ay, by, b, such that 2} = a,.21 + by, yi = ay.y1 + by, 25 = a;.22 + by,
Yy, = ay.y2 + b,. For instance, if the original line segment is parallel to the z axis, then
Y1 = Yo, Yy = Y4 and there will be three equations with four unknown variables to be solved.
The rest is straightforward. g

Since we use the Fourier series representation of time series data as our features, and
a Fourier coefficient, in general, is a complex number, we need to do a mapping before
we can show the safety of transformations. If we decompose a complex number into its
real and imaginary components, then we can represent a vector of k£ Fourier coefficients
with a point in R?*. We denote this mapping from the complex plane to the real plane by
M,ec;. Alternatively, we can decompose a complex number into its components in the polar
coordinate system where a complex number is represented by a magnitude and a phase angle.
We denote this mapping from the complex plane to the real plane by M,,. We use Re(x),
Im(zx), Abs(x), and Angle(z) to denote respectively the real, the imaginary, the magnitude,
and the phase angle of a complex number x. We now show that the transformations described
for time series data in previous sections are safe.

Definition 3 Let @ and b be vectors of complex numbers and @ and U be respectively their

images under a mapping Mfrom the complex plane to the real plane. Transformation t =
(@,b) is safe w.r.t. M ift' = (a',b) is safe.

Lemma 2 Let d be a vector of real numbers, and b be a vector of complex numbers; the
transformation t = (a,b) is safe w.r.t. Myec.

Proof: Without loss of generality, we assume the real and the imaginary components of

the complex coordinate j (for j = 1,-- -, k) are respectively mapped to the coordinates 25 —1
and 2j of the real plane. Suppose 7 is a k-dimensional vector of complex numbers and #, a
2k-dimensional vector, is its image under M,.;. We have z; = x9;_1 + zo;¢ for j =1,---, k.

If we apply transformation ¢ to Z, we get 2/ = t(2) = @%Z+ b. We can rewrite this as follows:

!

Z; = aj* (Ty-1 + 3251) + (Re(by) + Im(b))i)
= (a;j * w251 + Re(b;)) + (aj * zo5 + Im(b;))s

for j = 1,---, k. If we map the resulting vector to a point x' using M,c.;, we get x’ijl =
a; * T35-1 + Re(b;) and x5; = a; * 195 + Im(b;) for j = 1,--- k. This transformation can
be rewritten as ¢’ = (Z,d) where Coj—1 = C2j = G, dyj_1 = Re(bj), and dy; = Im(b;) for
j=1,--- k. Since ¢ and d are vectors of real numbers, the rest follows from Lemma 1. g

On the other hand, Lemma 2 does not hold if @ is chosen to be a vector of complex
numbers. For example consider the axis-parallel line segment made by the two points p =
-5+ 2¢ and ¢ = —5 — 5i. If we apply the transformation ¢ = ((2 — 3i), (0)) to the line
segment, i.e. we multiply the two endpoints by 2 — 3¢, the resulting line segment made by
t(p) = —4 + 193 and t(q) = —25 + 5i is not axis-parallel anymore!

Lemma 3 Le

t @ be a vector of complex numbers, and b be a zero vector (5 = 6), the trans-
formation t = (@

,b) is safe w.r.t. M.
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Proof: Without loss of generality, we assume the magnitude and the phase angle of the

complex coordinate j (for j = 1,---,k) are respectively mapped to the coordinates 2j — 1
and 2j of the real plane. Suppose 7 is a k-dimensional vector of complex numbers and ¥ is
its image under M,,. We have z; = x5, 1e%" for j = 1,---, k. If we apply transformation ¢

to 7, we get 2/ = t(Z) = @+ Z+ b. We can rewrite this as follows:

2 = Abs(ay)e™N9) x gy; €™ 40

= (Abs(aj) * woj_,)elr2itAngle(a;))i

for j = 1,---,k. If we map the resulting vector to a point z’ using M., we get Ty, ; =
Abs(a;) * x9j—1 and '712‘7 = x9; + Angle(a;) for j = 1,---,k. This transformation can be
rewritten as t' = (¢, d) where co;_1 = Abs(a;), doj_1 = 0, c2; = 1, and dy; = Angle(a;)for
j=1,---,k. Since ¢ and d are vectors of real numbers, the rest follows from Lemma 1. g
In the next section, we develop efficient algorithms for evaluating queries that only use

safe transformations in their expression of similarity.

3 Query Evaluation Using R-tree Indexes

Given a set of time series data, an index can be constructed as follows ([AFS93, RM98]): find
the DFT of each sequence and keep the first few DF'T coefficients as the sequence features.
If we only keep the first £ DFT coefficients, sequences will become points in a k-dimensional
space. These points can be organized in a multidimensional index such as the R-tree family
[Gut84, BKSS90, SK96], the k-d-B-tree [LS90] or the grid file [NHS84|. In this section, we
describe the query evaluation for R-tree indexes. The same techniques can be extended to
other index structures. We do that for the k-d-B-tree and the grid file in Section 4.

An R-tree can be seen as a natural extension of B-trees for more than one dimension.
Non-leaf nodes contain entries of the form (MBR, ptr) where MBR is a Minimum Bounding
Rectangle of all the entries in a descendent node, and pi¢r is a pointer to the descendent
node. Bounding rectangles at the same tree level may overlap. Leaf nodes for point data
sets contain a set of data points or pointers to full data records.

3.1 Evaluation of Queries with Single Transformations

Given an R-tree index I on a data set S, and any safe transformation ¢, we can construct
an R-tree index I’ for t(S) = {t(Z) | £ € S} as follows:

Algorithm 1 : For every node n

n = ((MBRy, ptri),---,(MBR,, ptry))
in I, construct node n' in I’ such that
n = t(n)
= ((MBRID ptri)’ T (MBRma ptr;n))
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where MBR; is the rectangle obtained by applying ¢ to the endpoints of MBR; and ptr; is
a pointer to the node t(n;) if n; is the node pointed by ptr;. If n is a leaf, ptr] (= ptr;)
is a pointer to a data tuple or null. Since MBR; is an axis-parallel rectangle and ¢ is
a safe transformation, MBR; is an axis-parallel rectangle, due to the definition of a safe
transformation. Thus the new node n’ is a valid R-tree node. The construction stops when
every node in I is mapped to a node in I’.

The original index I can be constructed in many different ways, each with a different
performance, depending on the order of insertions and the way splits and overlaps are han-
dled. Our experiments show that the new index I’ has a similar performance to that of the
original index. The main observation here is that for a given index I and transformation
t, index I’ can be built on the fly without having much impact on the performance of the
search. This allows us to use one index for many possible transformations.

As our running example, consider the following proximity query:

Query 1: Given a query point ¢, a safe transformation ¢ and a threshold ¢, find
all points Z in the data set such that the Euclidean distance D(#(%), q) < e.

A naive evaluation of this query requires reading the whole data set, applying ¢ to every
data point and choosing every point Z such that D(#(Z), §) < e. This is a costly process. A
better approach is to use Algorithm 1 to construct a new index for transformed data points.
This new index can be built on the fly during the search operation as follows:

€
: < |

8= asin(e/ m)

Figure 7: Minimum bounding rectangle in the polar coordinate system
Algorithm 2 : Suppose an R-tree index is constructed on the first k¥ DFT coefficients of
sequences, and suppose the root node is denoted by N.

1. Preprocessing:

(a) Transform ¢ and ¢ into the frequency domain if they are in the time domain. Let
us denote the first & Fourier coefficients of ¢t and ¢ by ¢, and ¢ respectively.
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(b) Build a search rectangle ¢ for gx. A search rectangle is the minimum bounding
rectangle that contains all points within the Euclidean distance € of ¢. Building
a search rectangle is straightforward in the rectangular coordinate system; it is
simply (¢; — €,¢; + €) for i = 1,---,2k. The minimum bounding rectangle for a
complex number me® in the polar coordinate system is demonstrated in Figure 7.
The magnitude is in the range from m — € to m + €, and the angle is in the range
from o — arcsin(5) to a+ arcsin(%).

2. Search:

(a) If N is not a leaf, apply ¢ to every (rectangle) entry of N and check if the resulting
rectangle overlaps g..;. For all overlapping entries, call Search on the index
whose root node is pointed to by the overlapping entry.

(b) If N is a leaf, apply ¢ to every (point) entry of N and check if the resulting point
overlaps gre.. If so, the entry is a candidate.

3. Postprocessing:

(a) For every candidate point &, check its full database record to determine if the
Euclidean distance between ¢(Z) and ¢ is at most e. If so, the entry is in the
answer set.

The algorithm is guaranteed not to miss any qualifying sequence (see Appendix A for a
proof). Similarly all-pairs queries and nearest neighbors queries can be efficiently processed
using the index. For an all-pairs query, if we do a spatial join using the index, the only
change in the spatial join algorithm will be to replace the join predicate evaluation with
one that applies the desired transformation to the objects used in the join predicate. For
example, the join predicate evaluation for a; Nb; # @ can be easily changed to that for
t(a;) Nt(b;) # O where ¢ is a transformation and a; and b; are members of two spatial sets
(such as two MBRs). For a nearest neighbors query, the search starts from the root and
proceeds down the tree. As we go down the tree, we apply ¢ to all entries of the node we
visit. This change can be easily encoded in existing nearest neighbors search algorithms such
as those proposed by Roussopoulos et al. [RKV95] and Seidl et al. [SK98].

3.2 Evaluation of Queries with Multiple Transformations
Given an R-tree index on a data set S, consider evaluating the following proximity query:
Query 2: “Given a query time series ¢ and a set T of safe transformations,

find every time series § € S and transformation ¢ € T such that the Euclidean
distance D(t(5),t(q)) < €.

As a specific example, T could be the set of m-day moving averages for m € {1...40} and
we may want to find all stocks that have an m-day moving average similar to that of IBM.
One way to process this query is to scan the data set sequentially and for every sequence
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§ € S and transformation ¢ € T find out if the distance predicate evaluates to true. The cost
of this algorithm is one scan of the data set and computing the distance predicate |T'| x |S]|
times.

Another approach is for every transformation ¢ € T, use Algorithm 2 to retrieve all
sequences within the proximity € of the query sequence. The union of the results retrieved
gives the query answer. We call this algorithm S7-index, where ST stands for ‘a Single
Transformation at a time’. The cost of this algorithm is |T’| times the cost of traversing the
index.

The third approach is to group transformations together and scan the index once for every
group. We call this algorithm MT-index, where MT stands for ‘Multiple Transformations at
a time’. There are two issues that need to be resolved here: first, how shall transformations
be grouped together; second, how can a group of transformations be efficiently processed.
We first address the second issue.

Since a transformation is a pair of n-dimensional vectors, it is a point in a 2n-dimensional
space. We assume both vectors are of real numbers. If not, one can rewrite any safe transfor-
mation in terms of a pair of real vectors (due to Lemma 1). Given a group of transformations,
we can construct a minimum bounding rectangle (MBR) for all transformations in the group.
Having an R-tree index built over sequences, we can apply the transformation rectangle to
entries of the index and construct a new index on the fly. To apply a transformation rectan-
gle to a data rectangle, we decompose the 2n-dimensional transformation rectangle into two
n-dimensional MBRs, one corresponding to @ which we denote by mult-MBR, and the other
corresponding to b which we denote by add-MBR. Given mult-MBR: <(M;l, Mih),...>,
add-MBR: <(A4;l, A1h),...> and data rectangle X: <(X;l, X1h),...>, the result of applying
mult-MBR and add-MBR to rectangle X is rectangle Y: <(Y3l,Y1h),...> where

for all dimensions ¢. As an example, consider the points of m-day moving average for m =
1,...,40 and their MBR. The result of applying the MBR of these transformations to a data
rectangle is shown in Figure 8.

MV1-40

angle(F2)

MV 1-40
—

angle(F2)

1-096 L--
17 0.85* 7 17

0.8 0.85 0.9 0.95 1 7
abs(F2) abs(F2)

Figure 8: From left to right, the second DFT coefficient of m-day moving averages for
m =1,...,40 and a data rectangle before and after being transformed.

We now address the next issue, i.e. how shall transformations be grouped together.
Consider the extreme case where all transformations in 7" are grouped together. If a few
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transformations spread all over the space, the minimum bounding rectangle of transforma-
tions will cover a large area. This MBR, when applied to a data rectangle, can easily make
the data rectangle intersect the query region. This can reduce the filtering power of the
index dramatically. On the other hand, if the number of groups and as a result the number
of MBRs goes up, the area of each MBR gets smaller. Thus the filtering power of each MBR
increases, but the same index needs to be traversed several times. In the worst case, the
number of MBRs is the same as the number of transformations, i.e. every MBR includes
only one transformation point. In such a case, both ST-indexr and MT-index perform exactly
the same.

Now the question is how we should optimally choose MBRs for a given set of transforma-
tions such that the total cost (in terms of the number of disk accesses) becomes minimum.
One solution is to estimate the cost for any possible set of MBRs and choose the set with
minimum cost. A first attempt in estimating the cost for a given set of MBRs is to use the
total area of MBRs. However, the total area is minimum if every MBR includes only one
transformation point, i.e. the ST-inder algorithm is used. Another approach for estimating
the cost of a given set of MBRs is to apply MBRs for a fixed data rectangle, say a unit
square, then compute the total area of the resulting data rectangles. Due to this estimation,
the best performance should be obtained using only one transformation rectangle.

However, our experiments showed that using one transformation rectangle did not neces-
sarily give the best performance. The worst performance for MT-index, which is close to that
of ST-index, is when we pack two clusters of transformations into one rectangle. A solution
to avoid this problem is to use a cluster detection algorithm (such as CURE [GRS98]) and
avoid packing two clusters into one rectangle.

We can now write the search algorithm for Query 2 as follows:

Algorithm 3 : Given an R-tree index which is built on the first k¥ Fourier coefficients of
time series and whose root is N, a safe transformation set T, a threshold ¢, and a search
sequence ¢, use the index to find all sequences that become within distance € of ¢ after being
transformed by a member of 7.

1. Decompose T into sets 17,75, ... using a clustering algorithm.
2. Do the following steps (steps 3 to 6) for every set T;:

3. Build an MBR for points in 7; and project it into a mult-MBR and an add-MBR as
described earlier.

4. If N is not a leaf, apply the mult-MBR and the add-MBR to every (rectangle) entry
of N using Equation 16 and check if the resulting rectangle intersects g.;. For every
intersecting entry, go to step 4 and do this step on the index rooted at the node of the
intersecting entry.

5. If N is a leaf, apply the mult-MBR and the add-MBR to every (point) entry of N and
check if the resulting rectangle intersects g...;- If so, the entry is a candidate.
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6. For every candidate entry, retrieve its full database record, apply all transformations in
T; to the sequence, and determine transformations that reduce the Euclidean distance
between the data sequence and the query sequence to less than e.

This algorithm is guaranteed not to miss any qualifying sequence. The proof is similar
to the one given in Appendix A for Algorithm 2. We can develop similar algorithms for
efficiently processing spatial join and nearest neighbors queries. In a spatial join query, we
apply the transformation MBR to all data items used in the join predicate before computing
the predicate. Similarly in a nearest neighbors query, as we walk down the tree, we apply
the transformation MBR to all entries of the node we visit. This change can be easily
incorporated into the existing nearest neighbors search algorithms on the R-tree.

So far, we have made no assumption on any possible ordering among transformations.
Next we show how one can exploit such an ordering during query evaluation.

3.3 Orderings of Transformations

In this section, we define a notion of ordering between transformations and show that this
notion can be quite useful in guiding the search more effectively.

Definition 4 Let T be a set of transformations on a vector space S (e.g., R") and D be
a distance function on pairs of points in S; we call < T, <> an ordering of T w.r.t. D if
V@,U_J" € S, \V/tk,tl € T,

t <t = D(tl(ﬁ;),tl(v;)) < D(tk(ﬁ;),tk(v}'))

Once an ordering is established among transformations, we can use this ordering to guide
the search more cleverly. To give an example, consider Query 2 with the transformation
set T = {to,...,t100} on R", where ¢; means “scale by factor ¢". An ordering of T w.r.t.
the Fuclidean distance is: 1, < t if | < k (see Appendix A for a proof). To find all
transformations that make a data sequence become similar to the query sequence we do not
need to apply all transformations to sequences. Instead, we need to find the ¢; with the largest
i (i-e., the t; that corresponds to the largest scale factor) that makes the distance predicate
true. One way to find ¢; is to do a binary search on the ordered list of transformations.
Definition 4 implies that the distance predicate is true for every transformation ¢; where
Jj <t.

Given an ordered set 71" of transformations on the Fourier series representation of time
series w.r.t. the Euclidean distance, we can use the binary search technique in all three
algorithms presented in Section 3.2. In the case of the sequential scan method, we still need
to scan the whole data set S. However, the number of transformations to be checked or the
number of sequence comparisons drops to |S| * log|T|. The ordering assumption reduces
the number of index traversals for ST-index to log|T|. In the case of MT-index, suppose
T is decomposed into transformation groups 711,75,...,T,,. If the ordering is preserved
among transformation groups, then the number of transformation groups to be checked
and as a result the number of index traversals reduces to log(m), whereas the number of
transformations to be checked inside each group 7; (out of the log(m) groups tested) reduces
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to log|T;|. However, if the ordering is not preserved among transformation groups, then
the number of index traversals will remain the same and the total number of comparisons
reduces to 37, log|T;|.

There are useful transformations on time series that are not ordered w.r.t. the Euclidean
distance. For example, no ordering is possible for a set of moving averages on R" w.r.t. the
Euclidean distance. See Appendix A for a proof.

4 Query Evaluation Using Other Index Structures

The algorithms presented in Section 3 can be easily extended to other point-based access
methods. To this end, we briefly examine two other index structures, namely the grid file
and the k-d-B-tree. Compared to the R-tree which partitions the data points, these two
access methods partition the embedding space that contains the data points. In this section,
we show how these indexes can be used in efficiently evaluating our similarity queries.

4.1 Use of the Grid File

The grid file imposes an n-dimensional grid decomposition of space. A grid directory maps
one or more cells of the grid into a data bucket. The grid, represented by n one-dimensional
arrays called scales, is kept in main memory while the directory and data buckets are stored
on disk.

Given a set of time series data, a grid file can be constructed as follows: find the DFT of
each sequence and keep the first £ DFT coefficients in a 2k-dimensional grid file with data
buckets keeping the full sequences. If a query requires a safe transformation ¢ = (@, 5) to be
applied to the data set, a new grid file can be constructed on the fly by replacing every scale
array X, = (X1, Xio, -..) along dimension ¢ with scale array X! = (a;-X;1 + b;, a;. X0 +
bi, -..) and every data record & with ¢(Z). The result is still guaranteed to give a valid grid
file, due to the safety of t.

Transformations may also be grouped together and simultaneously applied to the grid
file. This can be done by: (1) building an MBR for each group of transformations, (2)
applying each side of the MBR to the scale array associated with that side and (3) applying
all transformations inside the MBR to the qualifying sequences.

4.2 Use of the K-D-B-Tree

The k-d-B-tree imposes an irregular (and not unique) decomposition of space. A leaf node
contains a set of data records or pointers to data records. An interior node contains a set
of pairs (region, ptr) with region corresponding to the disjoint union of regions represented
by the node pointed to by ptr if ptr points to an interior node; otherwise it is a bounding
rectangle for a set of points.

Given a k-d-B-tree on a set of time series data, and a query that requires a safe trans-
formation ¢ to be applied to data sequences, a new k-d-B-tree can be constructed on the fly
by applying ¢ to entries of the index (which are either rectangles or points) as the search
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proceeds. Due to the safety of ¢, the result of applying ¢ to a k-d-B-tree is guaranteed to
give a valid k-d-B-tree.

Similarly transformations may be grouped together and simultaneously applied to the
k-d-B-tree. The algorithm is very similar to that of the R-tree.

5 Experimental Results

We implemented our methods on top of Norbert Beckmann’s Version 2 implementation of
the R*-tree [BKSS90]. We ran experiments on both real stock prices data obtained from
the FTP site “ftp.ai.mit.edu/pub/stocks/results/” and synthetic data. The stock prices
database consisted of 1068 stocks and for each stock its daily closing prices for 128 days.
To test our algorithms on a larger data set and also to simulate the experiments reported
in the literature for the purpose of comparison, we also did some experiments on synthetic
data. Each synthetic sequence was in the form of # = [z;] where z; = z;_; + 2; and z; was a
randomly generated number in the range [—500, 500].

For every time series, we first transformed it to the normal form for reasons described
in Section 2.1, and then we found its Fourier coefficients. Since the mean of a normal form
series is zero by definition, the first Fourier coefficient is always zero, so we can discard it.
For every sequence, we stored the magnitudes and the angles of the second and the third
DFT coefficients in the index.

All our experiments were conducted on a 168MHZ Ultrasparc station. For our experi-
ments on proximity queries, we ran each experiment at least 100 times. Each time we chose
a random query sequence from the data set and searched for all other sequences within
distance € of the query sequence. The execution time was averaged over these runs. Our
all-pairs queries were spatial self-join queries where we searched the data set for all sequence
pairs within distance e of each other.

We report our experiments in two parts:

1. evaluating queries with single transformations (e.g. Query 1),

2. evaluating queries with multiple transformations (e.g. Query 2).

5.1 Evaluating Queries with Single Transformations

In this section, first we show that the overhead of applying single transformations to the
index is negligible. We then compare our method to sequential scanning.

5.1.1 Overhead on the Index for Proximity Queries

Our first experiment was on synthetic data. Figure 9 compares the execution time for two
kinds of queries: (a) a proximity query using transformations and (b) a proximity query
that uses no transformations. We kept the sequence length fixed to 128 while we varied
the number of sequences from 500 to 12,000. In order to have a premse comparison, the
identity transformation T} = (I, () was chosen such that T;(X) = X for all sequences X (I
is a vector of 1’s and 0 is a vector of 0’ s). This made the two queries produce the same
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results. Instead of setting the distance threshold e directly in our proximity queries, we set
the correlation to 0.85, plugged it in Equation 13 and found a value for e. This threshold
resulted in an average output size ranging from 1 to 69. As Figure 9 shows there is not much
difference between the two curves. The minor difference is due to the CPU time spent for
vector multiplication which is unavoidable. The number of disk accesses is the same in both
cases. For a non-identity transformation, the CPU time spent for vector multiplication is
still the same, but the number of disk accesses can be more or less depending on whether
the transformation inflates or deflates the index rectangles.

In the next experiment, we kept the number of sequences fixed to 1000 while we varied
the length of the sequences from 64 to 1024. The experiment was on proximity queries over
synthetic data. The correlation threshold was again set to 0.85; this resulted in an average
output size ranging from 1 to 6. We used the identity transformation again for the reason
described in the previous experiment. To increase the accuracy of our measurements, we ran
each experiment 1000 times. As demonstrated in Figure 10, the result was the same. Thus
the index traversal for similarity queries does not deteriorate the performance of the index.

5.1.2 Comparison with Sequential Scanning for Proximity Queries

Figures 11 and 12 compare the execution time of our approach to sequential scanning for
proximity queries. In Figure 11 the sequence length was fixed to 128 and the number of
sequences varied from 500 to 12000. In Figure 12 the number of sequences was fixed to 1000
and the sequence length varied from 64 to 1024. The experiment was again on synthetic
data. The correlation threshold was set to 0.85 and the identity transformation was also used.
To have a good implementation of the sequential scanning algorithm, the transformation is
applied to both data and query sequences during the distance computation; this means
both sequences are scanned at most once when they in the main memory. We also stop
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the distance computation process as soon as the distance exceeds €. Both graphs show the
superiority of our algorithm.

5.1.3 Comparison for All-Pairs Queries

Our last experiment in this part was the spatial self-join. We used the following methods:

a Scan the relation of time sequences sequentially, and compare every sequence § to all
other sequences in the relation; the transformation #,,4,420 is applied to every sequence
during the comparison; The distance computation is stopped as soon as the distance
exceeds €.

b Scan the relation of Fourier coefficients sequentially, and for every time series build a
search rectangle and pose it as a proximity query to the index after applying ¢mavg20
to both the index and the search rectangle.

¢ Do the spatial self-join as described in b without applying any transformation.

The experiment ran on a relation of stock prices data that had 1068 time sequences, and
the length of each sequence was 128. The correlation threshold was set to 0.9895 and the
distance threshold was computed accordingly. The result of the test is shown in Table 1.
Method b compared to its competitor method a is 6 to 7 times faster. Methods b and ¢
compute different queries, but the comparison between them confirms that the overhead on
the index is very small.

5.2 Evaluating Queries with Multiple Transformations

In this section, we first compare the performance of MT-index to that of ST-index and
sequential scan. To do the comparison, we made the choice of packing all transformations
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algorithm | time size of the
(milisec) | answer set

a 33.25 12
2.26 12
¢ 2.25 8

Table 1: The result of the join

into one rectangle though it did not necessarily give us the best possible performance of
MT-index. In the subsequent section, we show the effect of grouping transformations on
the performance of MT-index. In all our experiments over proximity queries, we set the
correlation threshold fixed to 0.96 and used Equation 13 to find a value for the Euclidean
distance threshold.

5.2.1 Comparing MT-index to ST-index and Sequential Scan
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Figure 13: Time per query varying the number of sequences

Figure 13 shows the running time of Query 2 using three algorithms sequential-scan, ST-
indez, and MT-indez. The transformations were a set of moving averages ranging from 10-day
moving average to 25-day moving average with their number fixed to 16. The experiment
ran on synthetic sequences of length 128 with their number varying from 500 to 12,000. The
average output size was 7 or more depending on the number of input sequences. The figure
shows that MT-index performs better than both ST-index and sequential-scan.

Figure 14 shows the running time of Query 2 again using three algorithms sequential-
scan, ST-index, and MT-inder. In the experiment, we set the number of sequences fixed
to 1068, but we varied the number of transformations from 1 to 30. The transformations
were a set of moving averages ranging from 5-day moving average to 34-day moving average.
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Figure 14: Time per query varying the number of transformations

The experiment ran on real stock price data. The average output size was 11 or more
depending on the number of transformations. The figure shows that MT-index outperforms
both ST-indexr and sequential-scan.

The next experiment was on a spatial join query which was expressed as follows:

Query 3: “Given a set of transformations denoted by T, find every pair s; and
$5 of time series and every ¢ € T such that the correlation p(t(s1),t(s3)) > 0.99.”

The transformations were again a set of moving averages ranging from 5-day moving
average to 34-day moving average. We varied the number of transformations from 1 to 30.
The experiment ran on real stock prices data which consisted of 1068 sequences of length
128. The average output size was at least 7. Figure 15 shows the running time of Query 3
using three algorithms: sequential-scan, ST-index, and MT-index. Both ST-indexr and MT-
index perform better than sequential-scan. As we increase the number of transformations,
the MT-index algorithm performs better than ST-indez until the number of transformations
gets 30. At this point the running time for both is the same.

5.2.2 Multiple Transformation Rectangles

In this section, we show that grouping all transformations in one rectangle does not nec-
essarily give us the best possible performance. To show this, we ran Query 2 using the
MT-index algorithm on real stock price data, but varied the number of transformations per
MBR from one to its maximum. The transformation set consisted of m-day moving averages
form = 6,...,29. We equally partitioned subsequent transformations and built an MBR for
each partition. As is shown in Figure 16, despite the fact that collecting all transformations
in one rectangle resulted in the minimum number of disk accesses, it did not necessarily give
us the best running time.
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Figure 15: Time per query varying the number of transformations

We later added the inverted version of each transformation, which was obtained by mul-
tiplying every coefficient by -1, to the transformation set. This created two clusters in
a multidimensional space. Again, we equally partitioned subsequent transformations and
built an MBR for each partition. We varied the number of transformations per MBR from
one to 48 which was the size of the transformation set. As is shown in Figure 17, the running
time shows bumps when we pack one third or all of the transformations in a rectangle. The
same bumps are also observed in the number of disk accesses. This is due to the fact that
in these two cases two separate clusters (or parts of them) are placed in one transformation
rectangle.

These experiments show that as we start packing transformations into rectangles, we see
a major performance improvement up to a certain point (six to eight transformations per
rectangle here). The performance after this point either stays the same or goes down. The
worst performance for MT-index, which was even worse than ST-index, was when we packed
two clusters of transformations into one rectangle. A solution to avoid this problem is to
use a cluster detection algorithm in advance and avoid packing more than one cluster to a
rectangle.

6 Conclusions

We have proposed a class of transformations that can be used in a query language to express
similarity between time series in a general way. This class allows the expression of several
practically important notions of similarity, and queries using this class can be efficiently
implemented on top of point-based multidimensional indexes. Our contributions can be
summarized as follows:

e Formulation of an interesting class of transformations including the moving average in
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Figure 16: Both the running time and the number of disk accesses varying by the number
of transformations per MBRs

our transformation language.
e Development of a safety condition for transformations.

e Implementation of similarity matching under these transformations on top of the R-tree
index.

e Development of a new algorithm that applies multiple transformations specified in a
query to a set of sequences in one scan of the R-tree index built on those sequences.

e Development of a notion of ordering among transformations and using this notion in
efficiently guiding the search.

We evaluated our methods over both real stock prices and synthetic data. In the case
of queries with single transformations, the experiments show that the execution time of
our method is almost the same as that of accessing the index with no transformations; our
method has much better performance than sequential scanning, and the performance gets
better as both the number and the length of sequences increase. In the case of queries
with multiple transformations, the experiments show that the given algorithm for handling
multiple transformations outperforms both sequential scanning and the index traversal using
one transformation at a time.
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A Some Proofs

Lemma 4 Algorithm 2 is guaranteed not to miss any qualifying sequence.

Proof: Suppose ¥ is a qualifying data sequence, i.e. D(t(Z), ) < €, but Z is not returned
by Algorithm 2. If we represent ¢ by (@,b), we can write

n—1
D(@*Z+b,9) = (D lagzs + by — ¢s*)? <e

F=0
However,
k—1 L n—1 L
(> lagzy+bp —qp*)7 < (3 lagzy + by —qp*)? < e (16)
f=0 f=0

for £ < n. Thus sequence ¥ must be returned by the proximity query on the index. This is
a contradiction. g

Lemma 5 Let T = {t1,t9,...,tm} be a set of transformations on R™ where t; means “scale
by factor i”; an ordering of T w.r.t. the Euclidean distance is defined as t; <ty if | < k.

Proof: Let t; and t; be two arbitrary transformations in 7" and suppose, without loss
of generality, i < j. Let & and ¢ be two arbitrary points in R" and D(Z,%) denotes their
Euclidean distance. Since D(Z, %) is a positive number, we can multiply it to both sides of
inequality ¢ < j. This will give us

i.D(Z,§) < j.D(%, ), (17)
but we have
n—1
D@ = () (an —y)?)"? (18)
k=0
—1

= Z iy — i.,)°)"° = D(i.%, i.9)).

Equations 17,18 imply D(i.Z,1.9) < D(j.Z,j.9). n

Lemma 6 Let T denotes a set of (circular) moving averages on R™ and D denotes the
Euclidean distance; no ordering is possible for transformation set T w.r.t. D.

Proof: We prove this lemma by contradiction. Suppose there is an ordering among
members of 7" w.r.t. D. Consider the following sequences:
s = [10, 12, 10, 12
s, = [10, 11, 12, 11|
sy = [11, 11, 11, 11
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If we denote the circular 2-day moving average by mv2 and the circular 3-day moving average
by muv3, we can write

mv2(s1) = [11, 11, 11, 11}, mwv3(s1) = [10.67, 11.33, 10.67, 11.33],
mu2(5) = [10.5, 105, 11.5, 11.5], mwe3(s) = [11, 1067, 11,  11.33],
mu2(5) = [11, 11, 11, 11], med(s) = [11, 11, 11, 11].

There are two possible orderings between mv2 and mv3:

e Case 1: mv2 < mv3
By Definition 4, D(mv2(s;), mv2(s;)) < D(mwv3(s;), mv3(s;)) for all pairs §; and §j.
However, this does not hold for s3 and s3;

D(mv2(s3), mv2(s3)) =1 > D(mw3(s3), mv3(s3)) = 0.75
e Case 2: mv3 < mv2

By Definition 4, D(mv3(s;), mv3(s;)) < D(mwv2(s;), mv2(s;)) for all pairs §; and §j.
However, this does not hold for s§7 and s3;

D(mw3(s1), mv3(s3)) = 0.66 > D(mv2(s1), mv2(s3)) =0

There are no other cases, so the proof is complete. g

Lemma 7 Let T denotes a set of non-circular moving averages on R™ and D denotes the
Euclidean distance; no ordering is possible for transformation set T w.r.t. D.

Proof: The proof is similar to that of Lemma 6. Suppose there is an ordering among
members of 7" w.r.t. D. If we denote the non-circular 2-day moving averages by mwv2 and the
non-circular 3-day moving averages by muv3, we can write

mv2(s1) = [11, 11, 11], mv3(s1) = [10.67, 11.33],
mu2(5) = [10.5, 115, 11.5], moe3(%) = [11,  11.33],
mu2(s3) = [11, 11, 11],  mw3(s3) = [11,  11]

where sequences s7, $3 and s3 are those given in Lemma 6. There are two possible orderings
between mv2 and muv3:

e Case 1: mv2 < mv3
By Definition 4, D(mv2(s;), mv2(s;)) < D(mwv3(s;), mv3(s;)) for all pairs §; and §;.
However, this does not hold for s3 and s3

D(mv2(s3), mv2(s3)) = 0.87 > D(mw3(s3), mv3(s3)) = 0.33

e Case 2: mv3 < mv2
By Definition 4, D(mv3(s;), mv3(s;)) < D(mwv2(s;), mv2(s;)) for all pairs §; and §;.
However, this does not hold for s7 and s3;

D(mwv3(s1), mv3(s3)) = 0.47 > D(mv2(s1), mv2(s3)) =0
There are no other cases, so the proof is complete. g
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B Expressing Momentum as a Transformation

Let m = [1, —1, 0, ..., 0] be a vector of length n and & be a time series of the same
length. Let us denote the DFT of m by M and the DFT of £ by X. The convolution of
Z and m, conv(Z,m), gives the momentum of Z. Since a convolution in the time domain
corresponds to a multiplication in the frequency domain, the product of M and X gives the
momentum in the frequency domain. If we use the polar representatlon for complex numbers
and map X and M respectively to real vectors X' and M’ such that M; = My;e ezt and
X; = Xb;e¥51 ) we will have M;.X; = (Mj;. Xy )e" X1 ™™2i00) for j =0,...,n — 1. Thus,
we can express the momentum operation as an affine transformation of the form (@, b) where
QJ, bej =0, agjy1 =1 and byj1 = MéjH.

C Expressing Time Shift as a Transformation

Suppose we want to shift sequence & = [zg, x1,...,T,—1] one day to the right. If we inserted
a zero at the beginning, the result after the shift would be &' = [0, z¢, 21, ..., Z,_1] which is
a sequence of length n + 1. Using Equation 1, we can write the DFT of ' as follows:

n—
—i2w(t+1)f 7127rf —l27rtf
XI = Z :L‘te n+1 = e n+l z -’L'te n+1
f 15 \/ n+1
w =0,...,n. Ti i.e. i Wi
here 0,...,n. Time sequences are usually long, i.e. n is a large number, so we can

easily replace n + 1 inside the parentheses by n without much affecting the equation. Now
the expression inside the parentheses becomes Xy, the fth DFT coefficient of Z, and we can
write

Xl et X
This gives the first n Fourier coefficients of ’. If we use the polar representation for com-
plex numbers, we can express the shift operation as an affine transformation of the form
(f, [0, _51(10)’ 0, _21(11), ...]). We can still do time shift even if Z is not a long sequence.
The trick is to pad at least as many zeros as the amount of the shift at the end of the se-
quence. Now we can forget the overflow zeros generated by the shift and consider the shifted

sequence the same size as the original sequence.
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