On Efficiently Searching Trajectories and Archival Data for
Historical Similarities

%
Reza Sherkat
IBM Toronto Lab

rsherkat@ca.ibm.com

ABSTRACT

We study the problem of efficiently evaluating similarity
queries on histories, where a history is a d-dimensional time
series for d > 1. While there are some solutions for time-
series and spatio-temporal trajectories where typically d <
3, we are not aware of any work that examines the problem
for larger values of d. In this paper, we address the prob-
lem in its general case and propose a class of summaries for
histories with a few interesting properties. First, for com-
monly used distance functions such as the Lp-norm, LCSS,
and DTW, the summaries can be used to efficiently prune
some of the histories that cannot be in the answer set of
the queries. Second, histories can be indexed based on their
summaries, hence the qualifying candidates can be efficiently
retrieved. To further reduce the number of unnecessary dis-
tance computations for false positives, we propose a finer
level approximation of histories, and an algorithm to find an
approximation with the least maximum distance estimation
error. Experimental results confirm that the combination of
our feature extraction approaches and the indexability of our
summaries can improve upon existing methods and scales up
for larger values of d and database sizes, based on our ex-
periments on real and synthetic datasets of 17-dimensional
histories.

1. INTRODUCTION

There are many applications where the history of changes
to an object or an entity can be described as a sequence of
points with each point giving a snapshot of the object at a
time point. Consider the observations made about a patient
in a hospital. Changes to body temperature, blood pressure,
heart beat rate and blood sugar may be recorded regularly
over time, producing a chronological history of the patient’s
conditions. Similarly in the financial sector, the history of
a stock may be tracked using indicators such as daily open-
ing and closing prices, trading volume, etc. Also in mete-

*This work was done when the author was at the University
of Alberta.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.

VLDB ‘08, August 24-30, 2008, Auckland, New Zealand

Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

Davood Rafiei
University of Alberta

drafiei@cs.ualberta.ca

orology, measurements such as temperature, precipitation,
wind speed, pressure, moisture and snowfall are regularly
collected (e.g. daily or hourly) for many earth surfaces by
weather stations. Finding similarities between histories is
often useful for exploratory analysis, clustering, and predic-
tion. For instance, the similarities between the histories of
two stocks may explain or predict short-term and long-term
trends. Finding patients with similar recovery histories may
be useful for treatments or the trial of a new drug. Detecting
similarities between the weather conditions of two regions
may indicate that crops successfully produced in one region
may also be tried in the other region.

The problem to be addressed in this paper is efficiently
evaluating similarity queries on histories where a history is
a sequence of d-dimensional points; a timestamp may also
be assigned to each point. In the special case where d = 1
and the snapshots are recorded regularly in time, a history
becomes a time series, and there are quite a number of works
that address this problem (e.g. [1, 12, 15, 26, 20]). In cases
where d = 2 or 3, a history, often called a trajectory, may
describe the position of a moving object in a plane or space,
and there are also works that address this problem (e.g. [22,
32, 19, 31]). Since time series and trajectories are usually
long sequences, a common approach is to index features ex-
tracted from segments using a variant of R-tree structure.
While efficient for time series and trajectories, it is gener-
ally difficult to scale up many of these solutions for high di-
mensional histories mainly because the number of features
to be indexed increases with the dimensionality of histo-
ries. For instance, a Minimum Bounding hyper-Rectangle
(MBR) extracted from a segment of a d-dimensional history
is a 2(d 4 1)-dimensional vector. We are not aware of any
work that addresses the problem for larger values of d, ex-
cept two works on indexing video sequences; one work does
not consider the order of the frames [29] while the other uses
techniques specialized to video sequences [21].

As a measure of similarity between histories, many of the
distance functions proposed for time series and 2d- or 3d-
trajectories may be generalized to high dimensional histo-
ries. Example distance functions include L,-norm [33] (e.g.
city-block distance and Euclidean distance), dynamic time
warping [4], longest common subsequence [32], edit distance
with real penalty [8] and edit distance on real sequences [9].
The choice of a distance function is subjective and a selec-
tion may depend on the data domain. In most cases, an
index that is built for a particular distance function is use-
less if another distance function is used. We ideally want our
approach to be independent of the distance function used.



In this paper, we propose two concise summaries for effi-
ciently processing similarity queries in a filter-and-refinement
paradigm. Our first summary, referred to as HSums for
short, represents histories as compact time series that can
be indexed, hence allowing fast filtering of distant histories
with no false negatives. Our second proposed summary gives
a fine approximation of histories as a set of MBRs which are
derived by minimizing an upper bound of Distance Approxi-
mation Error (uDAE" for short). Experimental results show
that a combination of our feature extraction and the indexa-
bility of our HSums can improve upon existing methods and
scales with the size of database. Compared to a traditional
volume-based splitting, uDAE-based MBR approximations
give a more accurate estimate of the true distances. More-
over, uDAE-based MBR approximations are comparable, in
terms of distance preservation, to a more costly approxima-
tion scheme [2] but are significantly faster to derive. Since
uDAE is computed locally for each history, it is more ef-
ficient to maintain MBR approximations when either new
observations are recorded for histories in the database or
new histories are inserted. Our main contributions are as
follows:

e We propose techniques for extracting compact HSums
from histories with some interesting properties: (1) for
a large class of distance functions including all those
mentioned in this section, the same distance function
that operates on histories can be computed more effi-
ciently using HSums; (2) the distances between HSums
can be used to prune some of the histories that are far
from a query; (3) HSums can be indexed, hence the
pruning and retrievals can be done efficiently. Our
techniques for deriving HSums make use of a kernel
function that maps a d-dimensional point to a real
number. We identify a class of functions that can be
used as kernels; hence a spectrum of summaries can
be obtained.

e In a finer level of approximation than HSum, we pro-
pose uDAE-based MBR approximations of histories
to further prune false positives not pruned based on
their HSums. Two important features of a uDAE-
based MBR approximation are: (1) the maximum dis-
tance approximation error is minimized independent of
the queries, and (2) it resolves some of the limitations
of previous MBR-based techniques for approximating
histories in higher dimensions (i.e. large values of d).

e To improve the tightness of uDAE-based MBR, approx-
imations while keeping the same space requirements,
we propose two adaptive splitting strategies, namely
variable splitting and superimposed encoding. Vari-
able splitting targets cases where there is a large dif-
ference, in terms of the degree of changes, between
dimensions, and accordingly adjusts the splitting pol-
icy. Superimposed encoding targets cases where two or
more dimensions are correlated, and it might be pos-
sible to reduce the dimensionality of MBRs without
increasing the maximum distance estimation error.

e Finally, we conduct extensive experiments to evaluate
the efficiency and the scalability of our methods on
both real and synthetic data.

LuDAE is pronounced Yoda as in the Star Wars movie.

Roadmap - Sec.2 presents a generalization of a few
distance functions commonly used for time series to com-
pare histories. Our summarization method is presented in
Sec.3.2, followed by uDAE-based MBR approximation of
histories in Sec.4. Adaptive splitting policies are discussed
in Sec.5. Our algorithm to process similarity queries over
collection of histories is presented in Sec.6. Experimental
results are reported in Sec.7. Related work is surveyed in
Sec.8, followed by conclusions and future directions in Sec.9.

2. PRELIMINARIES: DISTANCE BETWEEN
HISTORIES

A history, denoted by (@i,...,@dn), is a chronologically
ordered sequence of points where @i, ...,a, € R? for some
d. Let ¢4 denote a distance function in R?; a candidate for
¢q is the weighted L,-norm distance defined as

d b
$a(Z, J) = (Z (wi - |zi — yi)p) (1)
i=1
where w; is a real number, referred to as normalizing coef-
ficient. While w; = 1 for ¢ = 1,...,d gives the standard
Ly-norm, the normalizing coefficients can be set to other
values, for instance, to make the range of variations of all
dimensions (or features) equal and thus numerically compa-
rable, or to emphasize the significance of some dimensions
over others. The distance of two histories can be formulated
as a combination of the pairwise distances of their points.
Let A= (dy...dn) and B = (l_;l . l_;m> be two histories.
A simple way to measure the distance between A and B in

particular when n = m is to use Lp-norm again, i.e.
1

P

DP(A7 B) = (Z ¢d(alvgl)p> . (2)

Two histories may be considered similar, even if they are of
different lengths ( e.g. when they are collected at different
rates) or are out-of-phase (one is shifted in time). The dy-
namic time warping [4] between two histories extends the
histories by replicating some of their points such that the
extended histories are of the same lengths. An aggregation
of the pairwise distances between the matching points of the
extended histories can be used to measure the distance of
the two histories (as defined for time series [34]):

0 if both A and B are empty

oo if one of A or B is empty

¢a(head(A), head(B))+
Dty (A, rest(B)
min { Daww(rest(A), B),
Dgiw(rest(A), rest(B))
otherwise.

Ddtw(A, B) = )7
)

where head(A) denotes the first point of history A and
rest(A) denotes a history which is derived from A by re-
moving head(A). There is also a variant of DTW where two
points can be matched only if they are recorded within a
time interval, also called warping range [4].

An alternative measure to compare two histories is their
Longest Common Subsequence Score (LCSS) [32]. LCSS
addresses the problems associated with excessive matching
in DTW; each point of a history can either be matched with
a similar point of the other history or remain unmatched.
The similarity is thus proportional to the number of matched



points. Given € as the threshold for matching points, the
LCSS of two histories is defined as
0 if A or B is empty

1+ Sicss(rest(A), rest(B),€)
if pa(head(A), head(B)) < e

Siess (A, rest(B), €)
max Siess(rest(A), B, e)
otherwise.

Slcss(Ay B: 6) =

Sicss 18 a similarity score and not a distance function. A
distance function based on Sj.ss may be defined as

Dicss(A, B,€) =1 — Sicss(A, B, €)/min(m,n).

Also a constraint may be introduced to limit the range of
matches in LCSS, as discussed for DTW.

3. SUMMARIZING HISTORIES

Consider searching a large collection of histories for those
that are similar to a given history. We are interested in effi-
cient ways of organizing data such that similarity queries can
be evaluated efficiently. Our proposed solution constructs
summaries and uses them for efficient searching and filter-
ing. In particular, we propose two summaries, HSums (dis-
cussed in this section) and MBR approximations (discussed
in Sec. 4). But first, we introduce non-expansive mapping,
a concept we use to derive our HSums.

3.1 Non-Expansive Mapping

DEFINITION 1 (NON-EXPANSIVE MAPPING). A function
f :R? = R is a non-ezpansive mapping if for all points T
and i in R?, there exists a constant A, 0 < A < 1, such that

If the above condition is satisfied for 0 < A < 1, then the
mapping is said to be contractive and the constant A shows
the maximum size of a contraction. Next we present some
candidates for f, ¢4 and ¢1 and a discussion of the rationals
for choosing these candidates.

Weighted sum - Given a weight vector w, the weighted
sum of 7 is the scalar WX Z. If we assume each weight w;
gives the importance of a variable x;, then the weighted sum
would give a collective assessment of the variables.

LEMMA 1. Let ¢q be the weighted Ly-norm, defined in
Eq. 1, and ¢1 be the weighted Li-norm. The weighted sum
performs a non-expansive mapping from R? to R.

PRrROOF. Appears in the appendix. []

The weighted sum has some nice properties. In the case of
patients, it may give the overall condition of a patient. The
weighted sum may be used to classify points by a classifier,
e.g. Perceptron [27]. When w; = 1/d for ¢ = 1,...,d, the
weighted sum becomes the average and measures the central
tendency of a point?. If the weight vector is set to the first
principal component [14] of all points in a set of histories,
the maximum variance of the points is preserved.

2In this case, the weighted sum can be used to construct an
optimal approximation of the point in d-dimensional space,
in terms of the sum of squared error.

D, (AB)=1215

Figure 1: 2-d histories A and B (top) and their
HSums as time series (bottom); x(Z) = w”# with
@ = (0.5,0.5)7

Metric space embeddings - A large class of met-
ric space embeddings [18] can be used to construct a non-
expansive mapping when ¢4 is a metric distance function.
For instance, let 7 be a reference point; a mapping can be
defined as f1(Z) = ¢a(#,7). In the case of patients, the
reference can be the conditions of a normal healthy person.
Given two reference points, a mapping f2(Z) can be defined
as the projection of a point on the line that connects the
two reference points [11]. Again in the case of patients, the
reference points can be the conditions of two patients: one
a normal healthy person and the other a patient in some
critical condition. More generally, one can select a set R,
a finite and non-empty subset of points in R¢, as reference
and define a mapping function with respect to the set R as

[r(Z) = minger{¢a(Z,7)} ®3)

which is a special case of Lipschitz embedding [5].

LEMMA 2. If ¢y is set to the Li-norm: (1) f1 and fr per-
form a non-expansive mapping from R? to R if ¢q is set to
any metric distance; (2) fa performs a non-expansive map-
ping from R? to R if g is set to the Euclidean distance.

PROOF. Appears in [18]. [

3.2 History Summaries

DEFINITION 2 (HSuMm). The HSum of a history A =
(@1, ...,8n), with respect to a kernel function k : RY — R is
a time series denoted by hs.(A) and defined as

hse(A) =[k(@)] , i=1,...,n.

Fig.1 illustrates the idea of HSum for 2-dimensional his-
tories. The definition of HSum allows any function from
R? to R to be a potential kernel. However, we are inter-
ested in kernels that generate summaries that can be used
to prune histories, without introducing false negatives. This
constrains the distance of two HSums to be a lower-bound
of the distance between respective histories.



Table 1: Average tightness
| | ASL | Marine | VT1 [ VT2 | Word [ Web |
Do 0.54 0.97 0.65 | 0.79 0.50 0.71
Dgiw | 0.54 0.96 0.63 | 0.74 0.45 0.70
Djcss | 0.39 0.94 0.97 | 0.93 0.34 0.61

THEOREM 1. Let the kernel function k performs a non-
expansive mapping from R? to R. The distance between
HSums of histories A and B, measured using Dy, Dgtw, and
Dicss provides a lower-bound for the distance between A and
B, respectively measured using Dp, Datw, and Dicss.

PRrROOF. Appears in the appendix. []

The lower-bounding property is good to have as it guaran-
tees the correctness of an index that uses the lower-bound,
but it doesn’t give the full picture. In particular, it doesn’t
tell how good is the lowerbound in approximating an actual
history. Fig.1 illustrates the lower-bounding property for
Datwy where ¢4 is set to the Ls-norm and ¢; is set to the
weighted L;i-norm with a normalizing coefficient of /2. Ta-
ble 1 reports average tightness for 50 randomly chosen histo-
ries from real datasets (Sec.7.1). For each distance function,
the tightness is the distance between two history summaries
divided by the distance between two histories. For D, and
Datw, we scaled the distance between summaries by % to
achieve a better lower bound for D, and Dy .

To construct an HSum in general, one needs to select a
kernel x and a distance function ¢1 in R. The choice of k and
¢1 depends on ¢4 and the function that aggregates the dis-
tances between points to give the distance between two his-
tories. It can be proved by contradiction that a kernel func-
tion must perform a non-expansive mapping to guarantee
the lower-bounding property. However, the lower-bounding
property is not limited to Dp, Datw, and Djcss.

THEOREM 2. Let HSums be derived using a kernel which
performs a non-expansive mapping. The lower-bounding prop-
erty is guaranteed to hold if the distance between two histo-
ries and their HSums is an aggregation of the distances be-
tween their respective points for commonly used aggregation
functions including min, mazx, sum, count and avg.

It can be shown that the lower-bounding property holds for
other previously proposed distance functions for time series
when generalized for histories such as ERP [8] and EDR [9]°.

3.3 Pruning Histories using HSums

HSums have two interesting properties for the purpose of
pruning. First, because of the lower-bounding property; if
the distance between two HSums is not less than a threshold,
the distance between their respective histories also cannot
be less than a scaled threshold, where the scale is determined
by the kernel function used. However, the distance between
two HSums is more efficient to compute. For instance, D,
can be computed in O(dn) time for two histories of the same
length n, and in O(n) time for their HSums. For two his-
tories of lengths m and n, D4t and Dj.ss are computed
in O(mn) time for HSums and in O(dmn) time for respec-
tive histories. The distance between the HSums of a query

3Both ERP and EDR make use of a gap symbol which is
set to a real number for time series. For histories, the gap
symbol would be a vector.

history and a data history can be used to avoid computing
a more expensive distance between the query and the data
history.

Second, since HSum is a time series, each history can be
indexed based on its HSum using any indexing technique de-
veloped in the domain of time series (and there is a rich col-
lection of such indexes). Though it should be noted that an
HSum gives a coarser representation of a history and some
patterns may show in the history but not in its HSum. For
instance, with the weights set the same for all dimensions,
a weighted sum remains unchanged for any permutations of
the dimensions. This is a type of distortion that cannot be
detected using HSums; it can reduce the pruning effective-
ness of HSum and degrade the performance of filtering by
increasing the number of false positives (e.g. Word dataset
in Table 1). The amount of this distortion directly depends
on the kernel function used and the data distribution. Next,
we present a finer representation of histories; we will use this
finer representation to further prune some of the false posi-
tives that cannot be pruned based on their HSums.

4. A FINER APPROXIMATION OF HISTO-
RIES

We consider approximating a history using a set of Min-
imum Bounding hyper-Rectangles (MBRs) which encloses
all points of the history. This representation, also commonly
used for organizing spatial and spatio-temporal objects (|24,
12, 22, 16]), provides a concise abstraction for histories. The
set of MBRs of a history, in general, preserves trends in in-
dividual dimensions of the history with a higher resolution
than its HSum. Moreover, for a large class of distance func-
tions, including D, Dgtw, and Djcss, the distance between
two histories can be underestimated efficiently by the dis-
tance between their MBR representations (e.g. [22, 20, 31]).

4.1 Notations and problem definition

To approximate a history A = (@1,...,dn) as a sequence
of k MBRs spread along the time axis, a splitting algo-
rithm must be used to divide A into k consecutive and non-
overlapping segments. Let s; and e;, respectively, denote
the indexes of the first and the last points of segment i. By
construction, s1 =1, e = n, and s;41 = e; + 1.

Let a¢[r] be the value of coordinate r of vector @;. Segment
¢ of the history is approximated by A; = (s;, €, I, i_il) where

Li[r] < aifr] < hi[r] si <t<e;

for 1 < r < d. MBR A; is a hyper-rectangle which tightly
encloses all points of the history falling in segment i. There
are (Z:f) possible ways to decompose A into k consecutive
and non-overlapping segments, and as a result there are that
many representations of the history. Among all possible
representations, we are interested in the one which can be
used more effectively for the purpose of filtering. Let A*
denote an arbitrary representation of history A as a set of k
MBRs. Let D(:) denote the distance between two histories.
Given a query history Q, A* is optimized for pruning if it
minimizes the distance approximation error defined as

where D(Q, A®) is the minimum distance between @Q and
any history that can be approximated using A*, therefore
D(Q, A*) is a lower-bound of the true distance of Q and A.



When the query history is provided, one can adjust split-
ting points to minimize Eq.4 for that query. However, often
the splitting is performed in a pre-processing step; there-
fore the algorithm to derive A* must be independent of the
query. An approach, which has been used extensively for
indexing spatial and spatio-temporal objects (e.g. [16, 31,
22]), would consider total volume of the MBRs as a criterion
for an optimal splitting. However, this approach produces
MBRs that are optimal for indexing but not for pruning.

A more effective solution for this problem was proposed
in [2], assuming that queries are selected uniformly at ran-
dom from the set of histories to be indexed. They propose
global distance-based segmentation to preserve all pairwise
distances. The splitting is both costly to derive and is only
optimal for static collections; it is not possible to predict
the effectiveness of this approach in a more realistic setting
where queries are not selected from the given dataset.

4.2 uDAE - Our optimality criterion

An optimal solution for Eq.4 cannot be reached at index-
ing time as it requires the knowledge of @), which is not
available at indexing time. Therefore, we propose an upper-
bound for distance approximation error (uUDAE for short)
which can be formulated independent of the query.

DEFINITION 3. Given a history A and an MBR approz-

imation A*, an upper bound of the distance approzimation
error w.r.t. to a distance function D(-) is uDAE(A, A*) if
for every history @,

D(Q,A) — D(Q, A") < uDAE(A, A¥).

DEFINITION 4. A near-optimal approzimation of history
A is defined as

argminuDAE(A, A").
Ak

The term near-optimal is used to indicate that the error
bound (and not the actual error) is minimized; the actual
error cannot be determined without advance knowledge of Q
and its points distribution. Ideally, when uDAE is zero, the
near-optimal solution will be the same as the optimal solu-
tion. We derive uDAE when D(-) is substituted by Ly-norm,
Datw, and Dj.ss assuming that ¢4 is a metric distance.

421 L,-norm

Consider Eq.4 and let D(-) be defined as in Eq.2. To
simplify our presentation, let p = 1.

k €4
DAEQ. A A) =3 " 6uldnd) — MINDIST(G:, A))

j=1i=s;

(5)
where MINDIST(G;, A;) denotes the distance of §; to its
closest point on or inside MBR Aj, as depicted in Fig.2.
There are two cases: when ¢; is outside MBR A; as is shown
in the left figure, the metric property of ¢4 implies that

< MAXDIST(d@;, A;)
where MAXDIST(d;, A;) denotes the distance of @; to its

farthest point in A;. When ¢; is on or inside MBR A; as in
Fig.2 right, we have

¢a(qi, a;) — MINDIST (i, Aj)

¢a(Gi, d:)
MAXDIST (@, A;).

A

T

MINDIST( q_)‘, A

T
3] ?i 3i

~

~
MAXDIST( &, A MAXDIST( R ., A )

Figure 2: MINDIST(q;, A;) and MAXDIST(d;, A;)
for points ¢; and @; and MBR A;

because MINDIST(G;, A;) is zero. Replacing ¢q(qi,d;) —
MINDIST(q;, A;) in Eq.5 with its upper-bound derived
above gives an upper-bound of the distance approximation
error
ke
uDAE(A,A") =" Y " MAXDIST(d;, A;).  (6)

j=1li=s;

THEOREM 3. When the distance between histories is de-
fined using Lp-norm,
ke
argminuDAE(A, A¥) = argmin Z Z MAXDIST (d;, Aj).

Ak Aq,.. AR J=1i=s;

PROOF. (sketch) When p = 1, the proof is straightforward
from Eq. 6. Forp > 1, uDAE(.) is a polynomial of order p of
MAXDIST(d;,Aj) and MINDIST(g;, A;); the latter can
be bounded to . M AX DIST(a;, A;) where c is a constant.
Since coefficient in the polynomial is a positive number, a so-
lution that minimizes the sum of M AX DIST(d;, A;) would
also minimize uDAE(.). O

422 Ddtw and chss

THEOREM 4. When the distance between histories is de-
fined using Dgtw or Dics,

ko€
argmin uDAE(A, A*) = arg min Z Z MAXDIST (a;, Aj).
Ak Aq,.. AR J=1i=s;

PRrROOF. Because of the space limitation, we only show
this for Dgty,. Let n(d@;, @) > 1 denote the number of
points in history ) which are matched with point @; of his-
tory A. An upper-bound for Eq.4 can be formulated as a
weighted sum of the errors of individual matches. Since
the error in a match which involves point @; is at most
MAXDIST(d;, Aj), an upper-bound for distance approx-
imation error can be formulated as

> EJ n(@;, Q) - MAX DIST(a;, A;). (7)

j=li=s;

Bounding n(d@;, Q) from above would allow us to derive a
bound of the distance approximation error. This is a natu-
ral constraint because a full length warping is not often de-
sired and might result into unrealistic matches [25]. In the
presence of a warping constraint, n(d;, @) cannot exceed a
warping range w and
ko€
uDAE(A,A") =w Y Y~ MAXDIST(d;, A;).

j=li=s;

and the rest follows. [
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Figure 3: MBRs of a history, one with min. volume
(left) and one with min. uDAE (right)

In the rest of the paper, we refer to Eq.6 as uDAE instead
of its general definition to make discussions about uDAE
concrete.

4.2.3 Computing uDAE

For a history of length n, an optimal splitting in terms of
uDAE into £ MBRs can be found using a dynamic program-
ming algorithm. Let As.. denote a subsequence of history A
consisting of points @, . ..d., and Al.. denote a single MBR
which encompasses As... Let U[{, k] denote the uDAE of
an optimal splitting of history A;., using & MBRs. When
k =1, there is only one possible splitting of a history which
is optimal by default and the corresponding uDAE can be
computed directly from Eq.6. For 1 < k < n, U[n, k] can be
computed recursively as follows:

Uln, k] = Mink—1<o<n {U[l,k — 1] + uDAE(Ags1m, A1) }

Uln, k] can be computed in O(n?k) time using dynamic pro-
gramming. The computational complexity for minimizing
uDAE is the same as that for minimizing total volume [16].
However, compared to volume, uDAE has some nice prop-
erties as discussed next.

4.3 uDAE compared to total MBR volume

Minimizing total volume, in general, does not lead to an
optimal representation of a history in terms of approxima-
tion error. Fig.3 presents two approximations of the same
history, one derived by minimizing total volume and the
other derived by minimizing uDAE. If a history shows no
change along one or more dimensions within an interval, the
total volume for any possible splitting of the history in that
interval is the same (i.e. zero). An optimal splitting strat-
egy for the interval with respect to total MBR volume is to
assign a single MBR for the whole interval, as happens for
MBR 1 in Fig.3(left). This is a serious problem for approxi-
mating histories in particular when d is relatively large and
points are sparse. Each history often has segments where
the points are not distributed along all dimensions, hence
the intrinsic (or real) dimensionality of the history within
those intervals is less than d. The same intervals are ap-
proximated by tighter MBRs when uDAE is minimized in
Fig.3(right). This problem is also observed when changes
happen in all dimensions of histories but there is a big vari-
ance in the degree of the changes; this is shown for MBRs 7
and 10 in Fig.3(left). A representation that minimizes the
total volume is expected to give a more accurate description
of the changes in dimensions with smaller variance. Unlike
volume, uDAE is minimized only when the MBRs are as
tight as possible; hence uDAE generally provides a better
approximation of histories and it is not affected by intervals
which produce trivial splittings when volume is used. A
better approximation is expected to improve both the tight-

ness of the lower-bounds and the effectiveness of pruning, as
shown in our experiments (Sec.7).

4.4 Splitting policy

The MBR approximation presented in this section adopts
a fized splitting policy where the same splitting intervals are
considered for all dimensions of a history. With a fixed split-
ting, we need to maintain for each segment, the minimum
and the maximum values along each dimension, and the end-
ing point of the segment. Because the MBRs of each history
are stored sequentially in our scheme, there is no need to
keep the starting points. Therefore, an approximation A”
requires k(2d + 1) features to maintain. Naturally, increas-
ing k will result into a better approximation of the history,
measured in terms of uDAE. However, given a fixed amount
of space for an approximation, a major concern for high-
dimensional histories is to make a clever use of the space
by finding the best possible approximation. A straightfor-
ward approach is to apply lossless data compression tech-
niques [36] to reduce the space requirement of A*, hence
increasing k indirectly. However, if we could find a better
splitting, without increasing k, we would also benefit from
compression. A fixed splitting policy would be a desirable
property to keep if MBRs are to be stored in a spatial index
structure. For histories of higher dimensionality, MBRs gen-
erally cannot be efficiently indexed due to the large number
of features [28], and there is no justification for a fixed split-
ting. A fixed splitting may be ineffective, for instance, when
changes are observed only on a subset of the dimensions or
the absolute values of the changes on several dimensions are
not correlated.

5. ADAPTIVE SPLITTING OF HISTORIES

Given a history and the available space M, the search for
an optimal adaptive splitting is a constrained optimization
problem where the goal is to find an MBR representation
which minimizes uDAE and does not exceed M in space
usage. An approach closely related to our adaptive splitting
is Adaptive Piecewise Constant Approximation (APCA) [7]
where each time series is approximated by a set of constant
value segments. The split points could be adjusted to derive
an optimal approximation of time series using a dynamic
programming algorithm [10]. We consider a more general
case for high-dimensional histories where the number and
the position of split points can change for different groups
of dimensions of a history. Our heuristics consider possible
correlation between dimensions and the similarity of change
trends to improve upon an optimal fixed splitting scheme in
terms of uDAE. Improving uDAE can improve the tightness
of the lower-bounds and the effectiveness of pruning.

5.1 Variable Splitting (VS)

When the variances of the changes along all dimensions
are not the same, a fixed splitting may over-allocate the
split points to dimensions with less or no changes; this is
typically for the cost of under-allocating the split points to
dimensions that can use more split points. Our first heuris-
tic partitions the set of dimensions and assigns split points
to each partition independently; the number of split points
can also vary between partitions. Fig.4 illustrates the intu-
ition for a 4-dimensional history where our variable splitting
reduces uDAE. The variable splitting assigns 10 MBRs to
{w,y} and 4 MBRs to {z,z} which is a deviation from 8
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Figure 4: Optimal fixed splitting (left) change trends (middle) and optimal variable splitting (right)

MBRs of the fixed splitting; the break down results in allo-
cating 3 MBRs to the last 40 points of {w,y} for a better
approximation instead of 1 MBR of the fixed splitting. We
use the following definition to formalize variable splitting.

DEFINITION 5  (INDUCED HISTORY). LetD ={1,...,d}
denote the set of dimensions of history A, and D; be a non-
empty subset of D. The induced history w(A, D;) is a history
derived from A by removing all dimensions in D — D;.

Let {D1,..., Dy} be a partitioning of the set D, such that
D;ND; =@ fori# j and U?_; D; = D. A variable splitting
of history A is defined as a set P = {(D1,k1),...,{Dp,kp)}
where k; is a natural number and the pair (D;, k;), 1 <1 < p,
indicates that the induced history w(A, D;) is approximated
using k; MBRs. A fixed splitting is indeed a variable split-
ting where P = {(D, k)}. The split points for each induced
history have to be determined independent from other in-
duced histories by a splitting algorithm that minimizes a
cost, such as uDAE or volume. A variable splitting P could
be used to derive a unique approximation of history A in
O(|P|kmaz) time where kmqq is the maximum number of
MBRs dedicated to the induced histories derived by P. The
optimal variable splitting policy must minimize uDAFE sub-
ject to a space constraint?. Because the number of features
required to store k; MBRs of the induced history 7(A, D;)
is k;(2|D;| 4+ 1), the space constraint can be formulated as

> ki(2|Dil+1) < M. (8)
(D;,k;)EP

LEMMA 3. An optimal adaptive splitting is guaranteed not
to do worse than a fized splitting policy.

PROOF. (sketch) Since the search space for an optimal
adaptive splitting policy is a superset of the space searched
for the fixed splitting, the rest follows. []

An exhaustive search to find an optimal variable splitting
is computationally prohibitive, since all possible partitioning
of D into nonempty subsets need to be constructed and for
each partitioning, the optimal number of splittings of each
partition must be determined. The number of possible parti-
tioning of I into non-empty subsets is Bg, the bell number®.
Because performing an exhaustive search becomes inefficient
for large databases when d > 10 (B1o = 115, 975), we exploit
a simple heuristic which considers only one partitioning of
D. To form this partitioning, we cluster dimensions that are
likely to benefit from the same splitting points. We use the
similarity of change trends of dimensions as the criterion for
clustering (Fig.4 middle).

“More detail about space allocation in Sec.7.4.
®Bo =By =1and ford > 1, Bay1 = >, Bi(%)

Extracting change trends. Extracting change trends
involves three steps. First, for each dimension, the sequence
of changes is extracted as a time series. The value of this
time series at time ¢; is the value of the change for the corre-
sponding dimension from time ¢; to t;11. Second, a change
at time ¢; is considered significant if the magnitude (i.e. ab-
solute value) of change is « standard deviation greater than
the average magnitude of changes in a window of length w
centered at t;; otherwise we set the change to zero. Finally,
significant changes are smoothed using a moving average
window of length w to derive change trends. We set w =7
(to resemble a week) and set &« = 1.5 in our experiments.

Finding an optimal assignment. After extracting the
change trends for all dimensions, any clustering algorithm
such as K-means can be used to partition the dimensions of
each history, based on the similarity of change trends, into p
subsets. When p = 1, all dimensions of the history are in the
same group and a variable splitting is equivalent to a fixed
splitting. When p = d, dimensions are split independently.
For a partitioning of I, we want to assign the number (and
the position) of splitting points for each induced history. A
brute-force approach would consider all possible assignments
of ki, i = 1,...,p, which satisfy the space constraint. For
each assignment a dynamic programming algorithm must
be performed to find the positions of the splits. After the
split points for each induced history is determined, uDAE
is computed to identify and keep an optimal variable split-
ting. As finding k; MBRs of w(A, D;) requires O(n’k;) time,
the brute-force approach is not efficient since it requires to
find optimal split for every assignment of k;, i = 1,...,p.
However, the search can be formulated as a dynamic pro-
gramming algorithm where the optimal splitting of (A, D;)
into k; — 1 MBRs can be computed directly from the ma-
trix which was computed for finding the optimal splitting of
w(A, D;) using k; points. By induction, only one splitting is
required for each induced history 7(A, D;), with k; set to

M-YT @D+ .
2D 11 , J#I ()

which is the maximum number of MBRs that could be allo-
cated to w(A, D;), when only one MBR is assigned to every
other induced history 7(A, D;), j # i. A branch-and-bound
algorithm could be developed to find an optimal assignment
of MBRs for a given partitioning. This, combined with our
heuristic used to examine only one partitioning of D, gives
a suboptimal variable splitting of a history.

5.2 Superimposed encoding (SE)

When there is a high similarity among the dimensions of
an induced history, this similarity could be used to signifi-
cantly reduce the size of an encoding. Such similarity can
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posed encoding (bottom)

have a low support over the whole dataset, and traditional
dimensionality reduction techniques (e.g. PCA) might not
consider it significant. However, such a rather local similar-
ity can be used to reduce the space required to encode the
MBRs of induced histories by imposing similar dimensions
into one representative group. Each segment of a superim-
posed set of dimensions is associated with a time interval and
is approximated by the minimum and the maximum values
observed in the interval. Hence a set of superimposed dimen-
sions is encoded as a sequence of one-dimensional MBRs.
The saving in the number of features could increase the num-
ber of splits and potentially reduce uDAE while keeping the
space requirement the same. In Fig.5, for instance, dimen-
sions {w,y} and similarly {z, 2z} are grouped together and
the MBR of each superimposed segment is encoded using a
temporal range and a pair of minimum and maximum. As
a result, dimensions {w, y} and {z, z} are respectively split
into 13 and 12 segments, using the same amount of space as
splitting the history into 7 segments, to reduce uDAE.

The approach discussed for variable splitting can be eas-
ily modified to implement our superimposed encoding; since
|D;| dimensions are superimposed into one, |D;| in Eq.8
must be replaced by one, to derive the space constraint.
The setting of maximum value for k; in Eq.9 should be mod-
ified, alternatively, to L%j and the partitioning of
D must be performed based on the similarities of dimensions
instead of their change trends. Note that our superimposed
encoding has similarities with the concept of Skyline Bound-
ing Regions (SBR) of Li et al. [23], but the two are different.
While SBRs are built on multiple similar time series with
no other relationships, superimposed encoding is done on a
partition, which includes similar dimensions of one history.
Also Li et al. use the area of SBRs to find best approxi-
mations while we use uDAE because of its advantages for
pruning as discussed earlier.

6. SIMILARITY SEARCH ON HISTORIES

We are now ready to present our algorithm for process-
ing nearest-neighbors queries. Our algorithm uses an index
over HSums which are 1-d time series. Leaf nodes of the in-

Input: A d-dimensional history @ as query
An index constructed on HSums
Output: k£ most similar histories to @Q
Pre-processing:
Apply kernel function k on Q to extract hs,(Q).
Obtain @; MBR approximation of Q.

Search:

(1) Find k-NN of hsk(Q) using the index.
2) Let R1 be all records in the result set.
) Let r be the largest value of D(H,Q), H € R;.
) Perform a range search for hs.(Q) and range r.
) Let R2 be all records in the result set.
) Initialize Topk list to the first k records in Ry .
) For each history H in Ro
) Read H; MBR approximation of H
) If D”,(I’I7 Q) 2 TOpk.diSt
) Prune H
) Else
) Read H the full history corresponding to H.
) Compute D(H,Q); update Topk if needed
) EndIf

Figure 6: Algorithm for k-NN search

dex contain both HSums and uDAE-MBR approximations
of data histories, whereas internal nodes are built based on
HSums. Fig.6 gives an example of a multi-step nearest-
neighbors search algorithm [28] which performs filtering us-
ing the index (line 1-5) and pruning based on uDAE-MBRs
(line 9). The algorithm first retrieves k histories with the
most similar HSums to the HSum of the query. For each
retrieved history, r is computed as an upper-bound of the
distance of the query and potential candidates. Given the
non-expansive property of the kernel function, a history H
is a candidate for original nearest-neighbors query, only if
D(hsk(H),hsx(Q)) < r. Therefore, the algorithm performs
a range query on the index on HSums to retrieve a super-
set of the qualifying histories (line 4). Some false positives
are pruned by computing a lower-bound® of true distance in
line 9; true distance is computed in line 13 to prune false
positives not pruned by HSum index and uDAE-MBRs.

7. EXPERIMENTAL EVALUATIONS

First we compare our approach to a related and recently
proposed splitting algorithm [2] on the basis of efficiency of
splitting and quality of generated MBRs. Second, we com-
pare our uDAE-based splitting with the traditional volume
based splitting in terms of the tightness of lower bounds.
Third, we investigate the effectiveness of our adaptive split-
ting heuristics in improving the quality of MBRs measured
by uDAE. Finally, we study the efficiency of our algorithm in
terms of pruning power, running time, and scalability. Ex-
periments are performed on a machine with a single AMD
XP2600 CPU, 512MB RAM, running Red Hat Linux.

7.1 Datasets and Settings

Reall - This dataset was provided to us by the authours
of [2] and has 41 real datasets from UCR, time series archive”.
Each dataset contains 50 time series of length 512.

Real2 - Table 2 provides a summary of the datasets
in this group, which are 2-4 dimensional histories. These
datasets have been used in related work (e.g. [31]).

5Dis(+) can be any function that lower-bounds D(-)
"http://www.cs.ucr.edu/~eamonn/TSDMA /



Table 2: Summary of Real2 datasets
| | ASL [ Marine | VT1 | VT2 | Word |

Dimension 3 2 2 2 4
Size 6,756 4 15 23 | 2,381
Avg. length 58 128 151 543 178

Web - This dataset contains the history of a sample
of the Web as a collection of 17-dimensional histories. We
used Google Directory® to get a sample of highly ranked web
pages. Google Directory organizes web sites by their cate-
gories in a hierarchical structure. Each node in the structure
contains a set of links to other nodes, as well as a list of web
pages and a descriptive text for each page. In each node,
the web pages are ordered according to their PageRank. We
crawled the first five levels of this directory and extracted
a set of descriptive terms for each of the 17 categories (e.g.
Art, Business, Sports, etc.). The set of descriptive terms
for each category included all terms that appeared in the
text description of any node that descended from the cat-
egory within the crawled data. From the crawled data, we
collected the URL of 11,328 web sites; these are links to
external web sites within the first five levels of Google Di-
rectory. We checked the change history of these pages in
Internet Archive’. For most of the web pages, either the
page did not change in the specified period or few versions
of it (less than 50) were stored in Internet Archive. To fo-
cus our experiments on pages that changed more often, we
decided to crawl those with at least 50 different versions in
the first six months of 2004 from Internet Archive. This pro-
vided us with 1,191 histories of web pages. We crawled all
versions of these pages and mapped each version into a point
in a 17-dimensional space. The mapping showed the degree
of overlap between the content of each version of a page and
the descriptive terms of each category. The result after this
mapping was a set of 17-dimensional histories that showed
the change patterns of 1,191 pages over this interval. The
average number of versions for each web site was 81.

Synthetic - In order to investigate the scalability of
our approach, we constructed a large but realistic synthetic
dataset. We used the Web dataset as a seed set and gener-
ated multiple copies of the histories in the seed by applying a
combination of four operations: permutation, time shifting,
compression and insertion of new points, thus increasing the
number of histories in the dataset. Permutation randomly
changes the order of dimensions of a history. Time shifting,
introduces a random shift 7 in time. Compression, selects a
random segment and replaces it with a single point which is
the average value of that segment. New points are inserted
at index t. The inserted point was set to the average of the
points at index [t—w,t). A combination of compression and
insertion can increase or decrease the length of histories. We
selected 7 from [1,5], ¢ from 1 to the history length, and w
from [1,10], all uniformly at random.

Settings - In the pre-processing step, all histories were
normalized so the mean for each dimension was zero. We
set ¢4 to Euclidean distance, ¢1 to weighted Li-norm with
a normalizing coefficient of v/2 according to Lemma 1. The
kernel function x was set to average for Deyc, Darw, and
Dicss. The number of splits for each history was set to

Shttp://directory.google.com/
http://www.archive.org/
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Figure 7: Average tightness and split time

10% of the length of the history. For tightness, we com-
puted the ratio of estimated distance over true distance; a
tightness closer to one indicates a more distance preserving
splitting. To estimate distance between two histories, we de-
rived an MBR approximation of the two histories and used
the same lower-bounds used in [31] for Euclidean distance,
dynamic time warping, and longest common subsequence.
To measure Euclidean distance between histories of different
lengths, we chopped the longer history; other possible alter-
native would be up-sampling (down-sampling) the shorter
(longer) history'®. For Dgu., the warping range was set to
5% of query length and for Dj.ss, € was set to 25% of the
query standard deviation, as both suggested in [31].

7.2 uDAE vs. Distance-based Splitting

We investigated how a splitting algorithm which mini-
mizes uDAE could be compared with a related algorithm [2]
which performs a global distance-based segmentation of his-
tories, aiming at maximizing pairwise distance preservation.
Since the exact solution of the proposed approach could not
be applied to even a database of moderate size, due to its
intractable complexity, Anagnostopoulos et al. propose a
greedy solution that closely preserves the sum of pairwise
distances; we refer to this approach as AVHKY and compare
it with a dynamic programming algorithm which minimizes
total uDAE for histories (our approach). To be in-line with
the experiments performed in [2], we used the same datasets
and distance function i.e. Euclidean distance.

We partitioned each dataset and considered a quarter as
query data and the rest as data to be indexed. Similar to
AVHKY, we set the number of MBRs for the collection to be
split equal to 10% of the total sum of the length of the his-
tories in the collection. We wished to split each query using
the same approach used to split the corresponding dataset.
Since AVHKY could not be used to independently split a
query, we split each query by minimizing volume, to avoid
being biased to any of the two methods to be compared. For
each query and data history pair, we measured tightness and
report average tightness and splitting time in Fig.7.

Our approach performed very close to AVHKY in terms
of average tightness but was significantly better in terms of
running time. This is because uDAE is a local measure,

OFither approach can produce error in k-NN classification.



Table 3: Avg. tightness of lower bounds

Asl | Marine | VT1 | VT2 | Word
Deye | volume | 0.42 0.73 0.87 | 0.84 0.50
uDAE | 0.49 0.75 0.90 | 0.89 0.56
Dty | volume | 0.50 0.64 0.76 | 0.75 0.44
uDAE | 0.54 0.65 0.77 | 0.77 0.46
Divss | volume | 053 | 0.60 | 0.82 | 0.70 | 0.48
uDAE | 0.58 0.71 0.82 | 0.75 0.54

computed for each history independently, unlike AVHKY
where the distances of the segments of all pairs of histories
in the dataset are computed to make a decision on merging
consecutive segments of each history. It should be mentioned
that all-pairs distance computation of AVHKY cannot be
performed for updates whereas ours can.

7.3 uDAE vs. Total Volume

Tightness of lower-bounds We investigated how a uDAE-

based splitting scheme could be compared with a volume-
based approach [16], w.r.t. the tightness of the lower-bounds
proposed in [31]. Other than the volume-based approach
in [31], the only similar comparison which we are aware
of, is reported for time series and Euclidean distance [2];
we consider high dimensional histories and more flexible
distance functions here. Table 3 reports average tightness
computed for fifty histories selected uniformly at random
from each dataset when uDAE(volume) is minimized. Even
though uDAE minimizes an upper bound (instead of the
exact value) of distance approximation error, our observa-
tion is that for most datasets and distance functions, using
uDAE makes estimated distances closer to true distances,
thus it is expected to be more effective for pruning.

Right number of MBRs Finding the right number of
MBRs is an important issue in MBR approximation of his-
tories. A heuristic is proposed in [17] which finds a number
beyond which increasing the number of MBRs is not benefi-
cial as it does not decrease total volume. The same heuristic
can be used to find a proper value for the number of MBRs
when uDAE is used because uDAE, like volume, is a mono-
tonically decreasing function of the number of MBRs. In
this experiment, we investigated how history approximation
improved with k£, the number of MBRs, for Web and Word
(Real2) datasets. Let vi(u1) be the total volume(uDAE) of
the histories in the dataset when a single MBR is assigned
to each history. We increased k from 20 to 450 and for each
k, derived optimal approximation of the histories using k
MBRs, where optimality was measured using total volume
and total uDAE. Fig.8 shows the total volume and uDAE,
normalized by wvy(u1) for 20 randomly picked histories of
Word and Web datasets, varying the number of MBRs.

As expected, both volume and uDAE decreased with k.
However, volume decreased with a faster rate. In partic-
ular, for Web dataset, total volume was zero when as few
as 30 MBRs were assigned to all histories (on average 1.5
MBR to each history). This is because each dimension in
this dataset represents the similarity of a page to one of 17
categories; for most web sites, the pages in the history are
similar to only a subset of categories and show zero (or very
small) similarity to other categories. For instance, the his-
tory of http://www.mealtime.org/ shows high similarity to
{Home, Health, Science, Shopping} and a relatively small
similarity to {Arts, Business, Games, Computers}. When
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the similarity of a web page to a set of categories remains
relatively low over time, a single MBR would have a to-
tal volume close to zero and is therefore optimal. However,
uDAE is not affected by this phenomenon and increasing
the numbers of MBRs beyond 30 resulted into more dis-
tance preserving approximation of histories. We expect to
observe a similar pattern for high-dimensional histories if
only a sub-space of dimensions changes.

7.4 Effectiveness of Adaptive Splitting

We measured average uDAE reduction for high-dimensional
histories when our heuristics were employed. For each his-
tory, we derived an optimal fixed splitting using ¥ MBRs; k
was set to 10% of the length of the history. Such an optimal
splitting requires M = k(2dn., + n:) bytes to store where
nm and n; are, respectively, the space required to store the
extents of each dimension (min. and max.) and the tem-
poral length of each MBR. Because for each 17-dimensional
history, finding optimal adaptive splitting required consid-
ering By7 ~ 8.2 % 10'° partitioning of the set of dimensions,
we implemented our heuristics and considered only n, par-
titions, where n, ranged from 2 to 4. We measured uDAE
reduction compared to optimal uDAE-based fixed splitting,
given M bytes of space. To store k; MBRs of induced his-
tory w(D;, A), we allocated k;(2|D;|nm + n¢) + nq bytes in
VS and k;(2nm + nt) + ng bytes in SE; here ng is the space
required to store (D;, k;). We set n,, = 4, ny = 1, and
nd = 2 bytes.

Table 4 reports average uDAE reduction for Web dataset
for VS and SE. Although we derived suboptimal solutions
for adaptive splitting, our heuristics were still effective and
improved upon optimal fixed splitting. This is significant as
it demonstrates the possibility to improve upon the optimal
fixed splitting scheme. We observed more reduction for SE
than the marginal uDAE reduction in VS, which is to some
extent natural for this dataset because it has several corre-
lated dimensions and SE benefits from supper-imposing sim-
ilar dimensions. Because similar dimensions are represented
using the same extrema in SE; SE increases the number of
splits for each induced history.

To find how much the reduction in uDAE is significant,
we measured its effect on the tightness of lower bounds for
the Web dataset in Table 5. As we expected, not only
uDAE-based fixed splitting improved the lower bounds over
the volume based scheme, taking advantage of the redun-
dancy in similar dimensions and the sparseness present in
Web dataset for dimensions that do not change, our adap-
tive splitting could improve up to 25%(33%) upon uDAE-
(volume-) based fixed splitting. For other datasets, we didn’t
observe much improvement when adaptive splitting is used.



Table 4: Avg. uDAE reduction (Web)
VS,2 VS,3 VS, 4 SE,2 | SE,3 | SE,4 | SE,5
0.30% | 0.82% | 1.33% || 3.8% | 5.0% | 6.0% | 7.2%

Table 5: Avg. tightness of lower bounds(Web)
\ | volume [ uDAE [ SE2 [ SE3 [ SE4 [ SE5 |
Deyc 0.45 0.53 0.70 | 0.76 | 0.78 | 0.78
Duarw | 0.44 048 | 053 | 057 | 0.57 | 0.61
Dices | 053 056 | 0.64 | 0.69 | 0.60 | 0.75

7.5 Performance Evaluation

We compared our algorithm with the framework proposed
n [31], henceforth VHGK. Two indices were constructed,
one for organizing the MBRs of d-dimensional histories (for
VHGK) and one for the MBRs of HSums. For each history,
we set s;, the number of splits, to 10% of its length for the
first index and to %si for the second index, to make the
index sizes equal for a fair comparison. To derive MBRs in
VHGK, we optimized total volume using DPSplit [16]. Fig.9
reports results averaged over fifty 10-NN queries. Marine,
VT1, and VT2 were relatively small and a linear scan could
outperform an index. Since our approach uses two pruning
steps, once by HSum and once by uDAE-MBRs, it shows a
better overall pruning and performance compared to VHGK,
even though it uses the index twice (line 1 and 4 of our
algorithm in Fig.6) to answer each query.

We measured the scalability of our approach for 17-d his-
tories. To the best of our knowledge, no experiment has been
reported on histories with more than 4 dimensions, consid-
ering Euclidean distance, DTW, and LCSS. We used syn-
thetic dataset with 1k, 2k, 4k, and 8k histories constructed
from our Web dataset. Fig.10 reports the fraction of dataset
pruned and relative query processing time over linear scan.
In each case, the average is reported for fifty 10-NN queries.
Our approach shows a strong pruning power for a wide range
of database sizes, which makes it superior to linear scan and
scalable with database size.

8. RELATED WORK

Time-series Several approaches have been proposed to
index time series for Euclidean distance [1, 7, 26]), L,-norm
[33], edit distance with real penalty [8], dynamic time warp-
ing [20, 35], and longest common subsequence [15, 31]. As
a result of Theorem 2, our approach can take advantage of
index structures proposed for time series to index history
summaries for efficient filtering.

Multi-dimensional time-series For Euclidean distance,
Lee et al [22] partition data sequences into subsequences,
each subsequence represented by an MBRs. The MBRs are
organized in an R*-tree index structure, which is probed by
query MBRs to prune irrelevant data sequences. Kahveci et
al. [19] propose an index structure for shift- and scale- in-
variant comparison of time sequences. Cai et al. [6] use the
coefficients of chebyshef polynomials as features to approx-
imate data sequences. Frentzos et al. [13] consider the tem-
poral aspect of trajectories (i.e. histories of moving objects)
and define, as distance measure, the integral of the function
of time of Euclidean distance between the two trajectories.
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Figure 9: Pruning and relative query processing
time averaged for fifty 10-NN queries
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Figure 10: Avg. pruning and relative query time;
bars for each distance (left to right) are for datasets
with 1k, 2k, 4k and, 8k histories.

A pair-wise comparison of points cannot be used when histo-
ries are of different lengths or a non-uniform time-shifting is
present. Vlachos et al. [31] propose an index structure that
supports multiple distance measures. They organize MBRs
extracted from data sequences in an R-tree and based on
the intersection of the query MBRs with those in the index,
to prune irrelevant data sequences. The dimensionality of
the MBRs increases with d, facing multi-dimensional index
structures with performance degradation [28].

Video-sequences Shen et al. [29] measure the similarity
by the fraction of similar frames that are common between
two sequences, without considering the order of the frames
in the sequence. Lee et al. [21] propose a graph based data
structure to capture spatial and temporal features of video
data. They use a model-based expectation maximization
approach to group similar object graphs. This method is
specific to video data and we are not sure if it can be ap-
plied to more general histories. Also the assumption that
data follows some basic model (Gaussian in [21]) can be vi-
olated, which would result in missing qualifying histories.
Other domain specific approaches have been proposed. For
instance, given the motion sequence of a person, Assa et
al. [3] extract a sequence of joint aspects and compute dis-
similarity between motion sequences using affinity matrices
which are extracted from joint data.

9. CONCLUSIONS AND FUTURE WORK

We have addressed the problem of efficiently evaluating
similarity queries on histories, proposed techniques for find-
ing summaries of histories at different levels of detail, and
investigated the use of these summaries for indexing and
pruning. We have developed uDAE as a measure of the
tightness of history approximations and empirically evalu-
ated its effectiveness on real and synthetic datasets of higher



dimensionality for fixed and adaptive splitting policies. Our
work leads to a few interesting directions. First, many data
mining tasks such as clustering and pattern recognition re-
quire a large number of distance computations. We believe
that HSum and uDAE-based approximations can improve
the efficiency of such data mining tasks without much af-
fecting their accuracies; further work may examine the re-
lationships between these tasks and our approximations in
more details. Second, there are applications where a history
can be represented more effectively as a sequence of time-
stamped market-basket data [30]. Generalizing HSum and
uDAE to such datasets is future work. Finally, as the di-
mensionality of points increases, it might be more effective
to consider a subspace of points to measure the distance.
Extending our work to support history summaries extracted
from a subspace of points is a direction for future research.
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APPENDIX

Proof of Lemma 1. To show that weighted sum is a non-
expansive mapping, we use one of the properties of convex
functions. Let g be a convex function defined on real num-
bers, i.e. for real numbers ¢y, ..., cq such that 27:1 c =1,
the following inequality holds

d
g(z cia;) <
i=1

for any set of real numbers ai,...,aq. Let & and ¢ be arbi-
trary d-dimensional points. Replacing g(x) with |z|? (which
is a convex function), ¢; with 1/d for all ¢, and a; with
w;(x; — ;) in Eq.10 yields

d1 d
2 guiln—w| <2

The above inequality can be written as

cig(ai) (10)
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d P
1-p T
‘d v (0" E) — a5t " (@ Ty)‘ < <Z(wi |z; — yi)p>
i=1
The left hand side is the weighted Li-norm of @? @ and &7 ¢,
-
with a normalizing coefficient of d .

Proof of Theorem 1. Let A = (d1,...,dn) and B =
(b1,...,bm) be two histories. For D,, when n = m, the
distance between two summaries is derived as

o= (G teer)

which is obtained by replacing ¢4 in Eq.2 with ¢1, because
a summary is a time series and each point in the sum-
mary is a real value. Since k is a non-expansive mapping,

d1 (Ii(ﬁ:i), /i(li)) is bounded from above by A-¢q(d, gz), thus

Dp(hsw(A), hse(B

1

(S 0amn))

i=1

= \-Dy(A,B)

Dp(hsk(A), hsx(B))

IN

and, the lower-bounding property holds for D,, because
0 < A < 1. Likewise, we can show that the lower-bounding
property holds for D4y, i-e.

Dot (hsi(A), hsw(B)) < X+ Darw (A, B).

where 0 < A < 1; the proof is by induction on the length
of a match'!. The case for Dj.ss is slightly different, be-
cause a threshold € is used to decide if two points can be
matched. To show the lower-bounding property for Djcss,
we show that the similarity of two HSums upper-bounds
the similarity between histories. When points a; and I;j
are matched, from the definition of Sjcss, it must hold that
qﬁd(al,b ) < e. Because k performs a non-expansive map-
ping, ¢1(k(@:), 5(b;)) < A- € for 0 < A < 1. Therefore,

Slcss(A, B, 6) S Slcss(hsn(A), hSK(B), A 6),

Hgince % > 1, one can get a tighter lower bound for D, and
Dt by scaling the distance between summaries by %

The lengths of HSums are the same as the lengths of their re-
spective histories, thus the lower-bounding property holds.
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