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ABSTRACT
Toponym Resolution, the task of assigning a location mention in a

document to a geographic referent (i.e., latitude/longitude), plays

a pivotal role in analyzing location-aware content. However, the

ambiguities of natural language and a huge number of possible

interpretations for toponyms constitute insurmountable hurdles for

this task. In this paper, we study the problem of toponym resolution

with no additional information other than a gazetteer and no train-

ing data. We demonstrate that a dearth of large enough annotated

data makes supervised methods less capable of generalizing. Our

proposed method estimates the geographic scope of documents and

leverages the connections between nearby place names as evidence

to resolve toponyms. We explore the interactions between multiple

interpretations of mentions and the relationships between different

toponyms in a document to build a model that finds the most co-

herent resolution. Our model is evaluated on three news corpora,

two from the literature and one collected and annotated by us; then,

we compare our methods to the state-of-the-art unsupervised and

supervised techniques. We also examine three commercial prod-

ucts including Reuters OpenCalais, Yahoo! YQL Placemaker, and

Google Cloud Natural Language API. The evaluation shows that

our method outperforms the unsupervised technique as well as

Reuters OpenCalais and Google Cloud Natural Language API on

all three corpora; also, our method shows a performance close to

that of the state-of-the art supervised method and outperforms it

when the test data has 40% or more toponyms that are not seen in

the training data.
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1 INTRODUCTION
The size of the Web has been growing near-exponentially over the

past decade with a vast number of websites emerging on a variety of

subjects and large volumes of textual data being made available ev-

ery day. In particular, a staggering amount of Web content (such as

news articles, blog, forum posts, and tweets) that are added online

on a minute by minute basis make frequent use of location names

as points of reference. However, many place names have multiple

interpretations and using them as references introduces ambigu-

ity which in turn leads to uncertainty. Determining geographic

interpretations for mentions of place names, known as toponyms,
involves resolving multiple types of ambiguities. Toponym resolu-

tion is the task of disambiguating or resolving toponyms in natural

language contexts to geographic locations (i.e., the correspond-

ing lat/long values). One of the formidable challenges is therefore

related to resolving the ambiguity of place names. For example,

consider the word Paris in the following sentences:

(1) “The November 2015 Paris attacks were the deadliest in the

country since World War II.”
1

(2) “Paris was voted ‘the Prettiest Little Town in Canada’ by

Harrowsmith Magazine.”
2

The first sentence cites the tragic incidents in Paris, France while
in the second sentence, the co-occurrence of Canada and Paris helps
us identify Paris. This example illustrates that a toponym resolution

method should probe for such clues in documents to reduce the

inherent ambiguities of the natural language text. GeoNames
3
, the

largest crowd-sourced location database, lists 97 interpretations for

the place name Paris.
The problem of toponym disambiguation has been studied in

the literature. Early works on geotagging documents rely on hand-

crafted rules and heuristics (e.g., Web-a-Where [3]). Recent studies,

however, are grounded on supervised and unsupervised models

that do not warrant any manual rules [1, 8, 22, 27, 35]. Adaptive

Context Features (or Adaptive in short), proposed by Lieberman

and Samet [22], and TopoCluster, suggested by DeLozier et al. [8],

are among the prominent methods that have been proposed in this

area. Adaptive method casts toponym resolution as a classification

problem, whereas TopoCluster leverages geographical measures to

estimate geographical profiles for words.

In this paper, we propose an unsupervised model to tackle to-

ponym resolution since supervised methods yield a poor perfor-

mance due to the paucity of sufficient annotated data. Our methods

rely merely on the document content and a gazetteer primarily

because supplementary information about a Web document often

is neither available nor reliable. Clearly, any additional data such

1
https://en.wikipedia.org/wiki/November_2015_Paris_attacks

2
http://www.brant.ca/en/discover-brant/paris.asp

3
http://geonames.org/
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as the hosting site of the document and its location (if available)

can further improve the performance.

Our toponym resolution model utilizes context-related features

of documents. First, we develop a probabilisticmodel, calledContext-
Bound Hypotheses (CBH), inspired by the work of Yu and Rafiei [37],

to incorporate two context-related hypotheses into toponym resolu-

tion. Yu and Rafiei’s model aims at geotagging non-location entities

and employs a primitive disambiguation technique to spatially re-

solve toponyms. We extend this model by integrating geographical

information of locations into the hypotheses. These context-related

premises capture some of the implicit relationships that hold be-

tween place names mentioned in the same document; thus, each

toponym follows either the location of a frequent toponym or a

nearby toponym. Then, we develop another model, called Spatial-
Hierarchy Sets (SHS), which discovers a minimal set of relationships

(as discussed in Section 2) that can exist among toponyms. SHS

maps the minimality problem to a conflict-free set cover problem

wherein sets are constructed using containment and sibling rela-

tionships among toponyms. The final model, Context-Hierarchy
Fusion (CHF), merges CBH and SHS to exploit context features in

extracting minimal relationships.

We conduct extensive experiments to evaluate our model. Our

experiments are carried out on multiple datasets, one collected

and annotated by us and two others well-known and used in the

literature, covering a large range of news sources. We assess the

performance of our model and compare it with the state-of-the-art

supervised and unsupervised techniques as well as a few com-

mercial geotagging products including Yahoo! YQL Placemaker
4
,

Thomson Reuter’s OpenCalais
5
, and Google Cloud Natural Lan-

guage API
6
. Moreover, we study the generalization problem of

supervised methods by feeding unseen data to Adaptive classifier,

showing that the classifier cannot keep up with our unsupervised

model.

In summary, the key contributions of this work are as follows:

• We devise an unsupervised toponym resolution model that

leverages context features of documents as well as spatial

relationships of toponyms to produce a coherent resolution.

• We extensively evaluate our model on different datasets and

in comparison with state-of-the-art methods.

• We demonstrate that our unsupervised model surpasses the

state-of-the-art unsupervised technique, TopoCluster [8],

and that it can handle unknown data better than supervised

techniques.

The rest of this paper is structured as follows: Section 2 demon-

strates a formal definition of the problem. The proposed unsuper-

vised model is described in Section 3. Section 4 explains the eval-

uation criteria, gold corpora and experiments. Section 5 reviews

the related work from the literature, and finally, in Section 6, we

conclude with a summary of results.

2 PROBLEM DEFINITION
Given a documentD and a sequence of toponymsT = t1, t2, · · · , tK
mentioned in D (e.g., extracted using a named-entity recognizer),

4
https://developer.yahoo.com/yql/

5
http://www.opencalais.com/

6
https://cloud.google.com/natural-language/

toponym resolution refers to grounding each toponym ti to a geo-

graphic footprint ℓi with a latitude and a longitude.

Geographic footprints or references are often derived from a

gazetteer, a repository of georeferenced locations and their asso-

ciated metadata such as type/class, population, spatial hierarchy,

etc. Following previous works [22, 35], we select GeoNames as our

gazetteer primarily because not only is it the largest public location

database with sufficiently high accuracy [2], but it also stores the

spatial hierarchy of locations
7
. Additionally, the bounding boxes of

some locations can be retrieved from GeoNames.

Each toponym ti in D has a set of location interpretations

Li = {li,1, li,2, · · · , li,ni }, derived from a gazetteer G, where ni
indicates the number of interpretations for toponym ti . Hence, to-
ponym resolution can be seen as detecting a mapping from location

mentions T to location interpretations. The resolution method yet

cannot enumerate all possible combinations of interpretations. For

instance, in a document that contains only 6 U.S. states:Washington
(n1=113), Florida (n2=228), California (n3=225), Colorado (n4=230),
Arizona (n5=63) and Texas (n6=53), the number of possible inter-

pretations exceeds 4 billion. The past works in this area therefore

incorporate heuristics to reduce the immense search space. For

instance, picking the most populated interpretation is a simple

heuristic that has been adopted in early works [19]. However, pop-

ulation alone cannot be effective for an off-the-shelf resolution

system. We address this problem by looking into containment and

sibling relationships among toponyms in a document.

3 THE UNSUPERVISED MODEL
The proposed method leverages a combination of context-related

features of documents to address toponym resolution. These fea-

tures are grounded on the characteristics of toponyms. It is well-

accepted (e.g., SPIDER [35]) that toponyms mentioned in a docu-

ment often show the following minimality properties:

• one-sense-per-referent: all of the occurrences of a toponym
generally refer to a unique locationwithin a single document;

• spatial-minimality: toponyms mentioned in a text tend to be

in a spatial proximity of each other.

In this section, we develop context-bound hypotheses, inspired

by the named entity geotagging method suggested by Yu and Rafiei

[37]. Then, we describe spatial hierarchies built from containment

and sibling relationships among location mentions in text. Lastly,

we explain how these two methods coalesce into an unsupervised

model to disambiguate toponyms.

3.1 Context-Bound Hypotheses
Yu and Rafiei [37] propose a probabilistic model to associate named

entities to locations. The task of geotagging named entities is de-

lineated as follows: given a named entity and a set of documents

germane to it, a geotagger finds the geographic focus of the named

entity. The model, introduced by Yu and Rafiei [37], incorporates

two hypotheses: geo-centre inheritance hypothesis and near-location
hypothesis and estimates the probabilities that these premises hold.

The probabilistic model makes use of the known entities that are

mentioned in the surrounding text to determine the geo-centre

7
OpenStreetMap, another well-known crowd-sourced gazetteer, is ruled out since it

does not contain spatial hierarchies [15].
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of a named entity. Their geotagging task mainly focuses on non-

location named entities and does only a simple location disambigua-

tion on each toponym, independent of other toponyms in the same

document. A question here is if their probabilistic model can be

applied to toponym resolution. This is the question we study in our

Context-Bound Hypotheses (CBH) model. In particular, to model the

cohesion of toponyms to context, we integrate the hypotheses with

geographical information of locations in order to spatially locate

a place mention. Context-Bound assumptions allow us to reduce

toponym resolution to a probabilistic model, which we are set to

compute the estimations in this section.

Algorithm 1: Preliminary Toponym Disambiguation in CBH

Input: Document D and sequence of toponyms T
Output: A preliminary mapping from T to location

interpretations

1 resolution ← ∅

2 for toponym ti in T do
3 ℓi ← Nil

4 for interpretation li, j in Li do
5 Hi, j ← RetrieveHierarchy(li, j)

6 node ← LookUp(parent[li, j ],Hi, j)

7 score ← 0

8 while node , Nil do
9 formh in Mentions(node) do

10 forml in Mentions(li, j) do
11 similarity ← max(similarity, 1

TD(mh,ml )
)

12 score ← score + similarity

13 node ← parent[node]

14 if conf idence[ℓi ] < score then
15 ℓi ← (li, j , score)

16 else if conf idence[ℓi ] = score then
17 if population[ℓi ] < population[li, j ] then
18 ℓi ← (li, j , score)

19 resolution ← resolution ∪ (ti , ℓi )

The space of possible interpretations (as shown with an example

of 6 U.S. states) can be huge and enumerating all combinations

may not be feasible. To be able to compute probabilities of the

hypotheses, we perform a preliminary location disambiguation

[37]. This procedure, which is shown in Algorithm 1, leverages a

heuristic to resolve toponyms. Consider a location interpretation

li, j of toponym ti . The mentions of the ancestors in li, j ’s spatial
hierarchy (line 5; the hierarchies can be obtained from gazetteer

G) can be used as clues to resolve toponym ti . The closer an an-

cestor mention is, the more chance that particular interpretation

has to get selected. For example, toponym Edmonton refers to 6

different locations. Provided that it co-occurred with either Alberta
or Canada, we can pinpoint it (i.e., the city of Edmonton located

in Canada). For each toponym ti , the preliminary disambiguation

measures a score for each interpretation li, j (lines 8-13) and picks

the interpretation with maximum score (lines 14-15) and in case of

tie, the most populous interpretation is selected (lines 16-18). The

score is acquired by finding the maximum similarity between li, j
mentions and its ancestors’ mentions; similarity here is the inverse

of term distance (line 11), as used by Yu and Rafiei [37].

Preliminary disambiguation works poorly in cases where no

mentions of locations in spatial hierarchy exist in the document. For

instance, suppose we find toponyms Toronto, London, and Kingston
in an article. Though, humans can recognize that these cities are

presumably located in Ontario, Canada, preliminary resolution is

unable to find any clues for disambiguation and as a result, assigns

the toponyms to the interpretation with the highest population (i.e.,

Toronto 7→ Canada, London 7→ England, and Kingston 7→ Jamaica).
The result of the initial phase can be augmented by incorporating

context-related features into the resolution process. Our CBHmodel

proceeds to compute probabilities for the two hypotheses. The

method operates at each administrative division separately since

toponyms may lie in disparate division levels. Hence, the method

begins the disambiguation process from the lowest division and

furthers the process until all toponyms are resolved.

The geo-centre inheritance indicates that the location interpre-

tation of a toponym can be drawn from the geographic scope of the

document. The entities (i.e., people, locations, and organizations)

used in an article, can ascertain a location interpretation to which

the article is geographically relevant [4]. This location defines the

geographic scope of the document.

Based on the inheritance hypothesis, the toponyms mentioned

in a document are more likely to be part of or under the same

administrative division as the geographic scope of the document.

This makes sense due to the spatial minimality property. There-

fore, we first estimate the geographic scope of the document via a

probabilistic model. In particular, for toponym ti at division d , the
probability of li, j being the correct interpretation is

P
(d )
inh
(li, j |D, ti ) =

tf

(
ancd (li, j )

)∑ni
p=1 tf

(
ancd (li,p )

) (1)

where ancd returns the ancestor of an interpretation at division

d and tf(w) computes the term frequency in the document. Each

location interpretation here is extended to include its corresponding

spatial hierarchy. For example, interpretations of toponym Paris
are represented as{

[Paris { Ile-de-France { France],

[Paris { LamarCounty { Texas { US], · · ·
}

The second hypothesis, namely near-location hypothesis, relies

upon the toponyms mentioned in the vicinity of a toponym. To-

ponyms nearby a toponym can be linked to one another primarily

because of object/container and comma group relationships they pos-
sibly have [24]. According to this hypothesis, the closer toponym s
to toponym t , the stronger evidence toponym s is to disambiguate

toponym t . This is why, in this hypothesis, we compute the term

distance between toponyms as a measure of similarity to estimate

probabilities. In effect, for toponym ti at division d , the probability
of li, j being the correct interpretation is

P
(d )
near
(li, j |D, ti ) =

sim

(
ti , ancd (li, j )

)∑ni
p=1 sim

(
ti , ancd (li,p )

) (2)



where sim(v1,v2) is the similarity function between terms v1 and
v2 as demonstrated below:

sim(v1,v2) =
1

minwi ∈M (vi ){TD(w1,w2)}
(3)

where TD(w1,w2) is the distance between indices ofw1 andw2 and

M(v) is a set containing the mentions of term v in document D.

Now, we combine P
(d )
inh

and P
(d )
near

to incorporate both premises

into the model. The final context-bound model is regarded as a

weighted linear function of the two probabilities:

P
(d )
CB
(li, j |D, ti ) = J (d )(D, ti ) · P

(d )
near
(li, j |D, ti )

+ (1 − J (d )(D, ti )) · P
(d )
inh
(li, j |D, ti )

(4)

The coefficient J (d )(D, ti ) is obtained via Shannon Entropy of

the vector induced by near-location probabilities for toponym ti
with respect to li, j for all values of j.

The resolution is undertaken through maximum likelihood es-

timation over the probability in Equation (4). The final computed

probability can be considered as confidence score.

Algorithm 2: CBH Resolution

Input: Document D and sequence of toponyms T
Output: A mapping from T to location interpretations

1 resolution ← PreliminaryResol(D, T) // Alg. 1

2 for k ← 1 tomaxIterations do
3 for division d in {County, State,Country} do
4 for toponym ti in T do
5 ℓi ← argmaxj {P

(d )
CB
(li, j |D, ti )}

// refer to Eq. (4)

6 resolution ← resolution ∪ (ti , ℓi )

In summary, the CBH resolution method is illustrated in Algo-

rithm 2. The approach starts with a preliminary resolution, followed

by a hypotheses assessment to rectify results from the initial reso-

lution. The hypotheses model computes the probabilities for each

division separately to ensure the model can afford toponyms in all

levels of dispersion. Once the modification process finished, the

algorithm repeats for another iteration since altering the resolution

of a toponym may affect other disambiguated toponyms. Our ex-

periments show that CBH often takes two iterations to complete.

However, in some cases, the modification step never terminates.

Specifically, consider the following sentence, an excerpt from a

news article:

“... London’s Heathrow, one of the world’s busiest

travel hubs.”
8

London and Heathrow are recognized as toponyms. Because no

notion of ancestors in the spatial hierarchy can be found, the ini-

tial resolution favors the highest population interpretation (i.e.,

London 7→ England and Heathrow 7→ Florida, US). In the next step,

the hypotheses model maps London to a place in United States be-

cause the other toponym is located in United States. Accordingly,

8
http://money.cnn.com/2016/12/14/news/companies/british-airways-ba-strike-

christmas

Heathrow is assigned to the airport in England. After the first iter-

ation, the resolution is changed to {London 7→ US,Heathrow 7→
Enдland}. Conversely, the second iteration would alter the results

to {London 7→ Enдland,Heathrow 7→ US}; the algorithm is now

trapped in an infinite loop. This is why, we introducemaxIterations
parameter to eschew these circumstances. While CBH fails to suc-

cessfully resolve toponyms in such cases, the approach, described

in next section, can address this shortcoming.

3.2 Spatial-Hierarchy Sets
The spatial minimality property (noted by Leidner [19]) leads us

to another resolution method called Spatial-Hierarchy Sets (SHS).
This method is grounded on containment and sibling relationships

that are likely to exist among toponyms in a document. Consider a

non-disjoint partitioning of the universe of locations (in a gazetteer)

where locations with similar or related interpretations (e.g., those

under the same administrative division or within a close proximity)

form a partition. Since toponyms in a document tend to refer to

geographically related locations, and those locations are more likely

to be in the same partitions than different partitions, we want to

find a small set of partitions that cover all toponyms; this can be

modeled as a conflict-free covering problem. Conflict-free covering

refers to the traditional set cover problem where each element

must be covered by at most one set in the answer. The covering

needs to be conflict-free due to one-sense-per-referent property. We

formally define conflict-free covering as an instance of the conflict-

free coloring of regions [16].

Conflict-free Covering Problem. Given a finite family of finite sets

S where each set Si is associated with a non-negative weight wi
and a universal setU containing all the elements from the sets, we

seek to find a collection of sets, namely A, with minimum weight

such that their union becomesU while each element is covered by

at most one set in A.

We formulate toponym resolution by conflict-free covering prob-

lem as the following:

(1) Each parent with all its children form a set of related in-

terpretations. Let S denote the collection of all such sets

that can be constructed. Each parent appears in a set with

its children, hence the size of S is the same as the number

of parents with non-zero children. Algorithm 3 depicts the

details of generating S.

(2) Recall that T denotes the set of toponyms in document D

(as defined in Section 2). We say a set in S covers a toponym

in T , if the set contains the surface text of the toponym. We

want to select sets in S that cover all toponyms in T . Our
goal is to minimize the number of interpretations (spatial

minimality) by selecting as few sets in S as possible.

(3) Let us form a color class for each toponym. The color class

for a toponym includes all possible interpretations of the

toponym. For example, Texas is a color class which includes

all places that can resolve Texas. We want to avoid selecting

multiple interpretations for the same toponym. That means,

we do the selection in (2) with the constraint that no more

than one color or interpretation can be selected for each

toponym.



Algorithm 3: Spatial-Hierarchy Set Generation

Input: Document D and sequence of toponyms T
Output: S, a collection of spatial hierarchy sets

1 S ← ∅

2 P ← ∅

3 for toponym ti in T do
4 if name[ti ] in P then
5 skip ti

6 for interpretation li, j in Li do
// checks whether the set exists

7 if parent[li, j ] in S then
8 AddChild((li, j , true),S[parent[li, j ]])
9 else

10 S ← S ∪ {(parent[li, j ], false) → (li, j , true)}
// the new set is a tree rooted at

parent[li, j ]

// the boolean values represent mentioned

flags

11 if li, j in S then
12 mentioned[S[li, j ]] ← true

13 P ← P ∪ name[li, j ]

In the special case where the color classes are empty (i.e., no con-

straint on colors), the problem becomes the classic set cover, which

is NP-complete. This means that existing methods approximate

the optimal solution. We leverage a greedy approach [34] to solve

the problem. Although the greedy approach gives an approximate

answer to the problem in general, our experiments reveal that such

answer yield a competitive performance.

However, this model suffers from some deficiencies, even if an

optimal solution is reached. A problem with this formulation is

that we cannot have Montreal, Quebec and Windsor, Ontario in the

same text (or they will not be resolved correctly) becauseWindsor
is also a town in Quebec. These are cases where the hypotheses
model, namely CBH, can better resolve. Furthermore, there may be

circumstances that similar toponyms may appear in more than one

sets and yet, we cannot favor one set to another. Suppose we have a

document where only Georgia and Turkey are mentioned. Two sets,

{Georдia(city) { Texas(state), Turkey(city) { Texas(state)}
and {Georдia(country) { World, Turkey(country) { World},
would emerge in S. Without any additional information, such as

document source, even humans cannot choose the correct inter-

pretation. SHS selects the most populated set as a rule of thumb in

these cases.

3.3 Context-Hierarchy Fusion
While the Spatial-Hierarchy Sets approach guarantees the min-

imality properties, it fails to select between identical structures

(e.g., the Georgia and Turkey case) mostly because it does not delve

into other context-related features of the document. On the other

hand, the Context-Bound Hypotheses model benefits from term fre-

quency and term distance features of the context. Notwithstanding

TR-News LGL CLUST

News sources 36 85 352

Documents 118 588 13327

Annotated docs 118 588 1082

Annotated topos 1318 5088 11962

Topos with GeonameID 1274 4462 11567

Distinct topos 353 1087 2323

Median topos per doc 9 6 8

Topos not found in GeoNames 2.7% 3.2% 3.3%

Wikipedia-linked topos 94.3% 94.1% 94.2%

Table 1: Corpora used in our experiments

the situations like Georgia and Turkey, using other context sen-

sitive information alleviates the disambiguation process in most

cases. For example, toponyms London, Aberdeen and Edinburgh
have interpretations located in Canada and SHS resolves them to

the corresponding interpretations in Canada to preserve minimality.

Even the presence of toponym England does not change the result
because Aberdeen and Edinburgh located in Scotland and we still

need to pick two sets to attain the correct resolution.

Consequently, merging SHS and CBH method allows us to take

advantage of both methods at the same time. Context-Hierarchy
Fusion (CHF) method chooses an interpretation from CBH only if

the confidence score is higher than a threshold τ . Otherwise, it
resolves toponyms using SHS.

4 EXPERIMENTS
In this section, we conduct extensive experiments to evaluate our

methods
9
and to assess their performance under different settings.

The particular questions to be investigated are:

(1) Given that CBH comprises different steps and components,

how much does inheritance and near location hypothesis

improve upon the preliminary location disambiguation?

(2) How sensitive is Context-Hierarchy Fusion to the value of

the threshold and if there are some sweet spots?

(3) How accurate is the proposed method, compared to the state-

of-the-art supervised and unsupervised methods as well as

commercial systems?

(4) How does the proposed method compare to the state-of-the-

art supervised method in terms of the generality of the model

on unseen data?

(5) When is an unsupervised technique expected to surpass

supervised methods?

For (3), we compare the performance of our method to that of

the state-of-the-art methods as well as commercial systems (i.e.,

Yahoo! YQL Placemaker, OpenCalais and Google Cloud Natural

Language API). The details of these proprietary products have not

been made public. However, these systems can be accessed through

public Web APIs at a relatively liberal rate limit, which enable us

to automatically test their geotagging process on our datasets.

In our evaluation setting, we apply two methods for toponym

recognition. First, we assume that the recognition phase is flawless,

9
The source code and the annotated dataset is available at https://github.com/ehsk/

CHF-TopoResolver
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which is displayed as Resol. In this method, the annotated toponyms

without latitude/longitude are fed to the underlying resolution

method. These experiments are conducted to compare our methods

to resolution methods such as TopoCluster [8]. Second, we employ

Stanford NER [11] to tag locations, which is shown by GeoTag.
We run GeoTag experiments to draw a comparison with systems

performing both recognition and resolution including closed-source

products and Adaptive [22].

4.1 Datasets
In order to evaluate our toponym resolution methods, gold data

corpora are required, in which all occurrences of geographic names

and phrases have been manually annotated. In our experiments, we

exploit three annotated datasets. Table 1 summarizes and compares

the statistics of these datasets.

TR-News. We collected this dataset from various global and local

News sources. We obtained news articles from several local news

sources to include less dominant interpretations of ambiguous lo-

cations such as Edmonton, England and Edmonton, Australia rather
than Edmonton, Canada or Paris, Texas, US in lieu of Paris, France.
Additionally, a number of articles from global news sources such

as BBC and Reuters have been selected to preserve the generality

of the corpus. We manually annotated toponyms in the articles

with the corresponding entries from GeoNames. The gold dataset

consists of 118 articles.

Local-Global Lexicon (LGL). This corpuswas developed by Lieber-
man et al. [23]. It is collected from local news sources and mainly

focuses on including ambiguous toponyms and this is why, it is

suitable to test toponym resolution systems against geographically

localized documents. The dataset is composed of 588 articles from

85 news sources.

CLUST. Lieberman and Samet [21] compiled this dataset from a

variety of global and local news sources. CLUST is a large dataset

containing 1082 annotated articles.

According to Table 1, the median number of toponyms per doc-

ument in all datasets are close to each other, meaning that the

corpora do not differ significantly with one another in terms of the

number of toponyms per article.

In addition, the three datasets contain toponyms (roughly 3%)

that cannot be found in gazetteer G, while annotated and linked to

an entry in the gazetteer. We observe that such toponyms fall into

one of the following categories: uncommon abbreviations such

as Alta. stands for Alberta, Canada, multi-word places such as

Montreal-Pierre Elliott Trudeau International Airport, and translit-

erated place names (e.g., city of Abbasiyeh, Egypt written as Ab-
bassiya).

The test corpora is also analyzed by the location type of their

annotated toponyms, as done by Lieberman and Samet [22]. We

compute the percentage of each location type for each dataset. As

show in Figure 1, LGL dataset largely consists of small cities, which

makes it a challenging test dataset since well-known locations are

presumably to be resolved with high precision due to their fre-

quent use in articles. In contrast,TR-News andCLUST datasets are

roughly similar and include countries more than any location type.

Figure 1: Comparative analysis of the test datasets based on
location type

This denotes that the articles appeared inTR-News andCLUST are

extracted from sources that are aimed at a global audience. These

sources usually provide more details for location mentions such

as saying Paris, US instead of Paris. On the other hand, in LGL,
because the articles are meant to be of use for local audience, the

news publishers typically do not state additional information in this

regard. Thus, geotagging approaches can be tested against these

test corpora since they span a variety of news sources both globally

and locally.

4.2 Evaluation Metrics
Performance measures in our experiments are Precision, Recall ,
F1-measure , and mean error distance (M). However, to ascertain

whether an interpretation is correctly predicted, we also investigate

the error distance between the predicted coordinates and the actual

coordinates, as used in numerous studies [5, 7, 8, 19, 22, 31, 35].

This distance enables us to fare various systems against each other

since they may select latitude/longitude of locations from different

gazetteers or knowledge bases
10
. We set the error distance to 10

miles, same as Adaptive method [22], whereas most researches tend

to adopt a relaxed threshold (i.e., 161 kilometers) [5, 8, 31, 35].

For TopoCluster [8] and the commercial products, on the other

hand, we employ a different criteria primarily because the error

distance may not be accurate for large areas (even with higher

error distance thresholds). Hence, in order to consider whether an

interpretation is correctly projected to a coordinate, we check if the

predicted interpretation resides in the bounding-box area of the

ground truth; here the bounding-boxes of locations are extracted

from GeoNames. We did not use this bounding-box grounded ac-

curacy for other methods since most of them rely on the same

gazetteer adopted in this work. Although using bound-boxes works

in favor of TopoCluster and the proprietary products, the mean

error distance metric fails to precisely mirror the accuracy for

these methods since for a prediction deemed as correct based on

bounding-boxes, the error distance can still be high.

Furthermore, in Resol experiments, we only calculate Precision
because given a toponym, a resolution method is more likely to map

it to an interpretation unless it does not exist in the gazetteer; thus,

Recall would be approximately analogous to Precision. It is also

10
Locations are represented with a single centroid and gazetteers may vary in picking

the centroids.



P
Resol

PGeoTag RGeoTag F1−GeoTag
Preliminary 78.0 73.4 52.1 60.9

Inheritance 78.1 73.6 52.0 61.0

Near-location 79.0 73.9 52.3 61.2

CBH 79.2 74.9 53.0 62.1

Table 2: Detailed analysis of Context-Bound Hypotheses
(CBH) on TR-News dataset

worth mentioning that the mean error distance is only reported

in Resol experiments and not in GeoTag experiments, because the

mean error distance cannot be measured for toponyms that are

either not identified or falsely detected.

4.3 Analysis of Context-Bound Hypotheses
As discussed in Section 3.1, Context-Bound Hypotheses commences

with a preliminary toponym disambiguation, followed by estimat-

ing two probabilities for inheritance and near-location hypotheses.

In this section, we evaluate the preliminary phase and see whether

the modification phase by Context-Bound hypotheses alleviates

the resolution performance. Moreover, we study the role of the hy-

potheses in CBH by removing one of them at a time and measuring

the performance. This experiment is conducted on the TR-News
dataset in both Resol and GeoTag modes.

As shown in Table 2, taking both hypotheses into account com-

plements the preliminary disambiguation, though the improvement

does not seem considerable (slightly higher than 1% in F1-measure)

in both GeoTag and Resol experiments.

Additionally, the near-location hypothesis contributes to the

improvement more than the inheritance hypothesis. This is largely

because the inheritance hypothesis estimates probabilities using

term frequency. In cases where two locations are mentioned as

frequent as each other, term frequency does not seem accurate. For

example, consider the toponym Edmonton, which can be located

in either Canada or Australia in a document where Australia and
Canada appear twice each. This results in the same score for both

interpretations and a decision would be made by population size.

Term distance, however, can help better in this case, denoting that

the closer mention is more likely to be the correct interpretation.

Nonetheless, we still need both hypotheses since the results are

improved by putting near-location and inheritance together.

4.4 Fusion Threshold Study
In Context-Hierarchy Fusion (explained in Section 3.3), choosing an

appropriate value for the threshold can be crucial in the resolution

the performance. In this experiment, we vary the threshold τ to

study its effect on performance. According to the results shown

in Figure 2, we can identify a sweet spot when CHF achieves the

best performance on all three datasets; this happens when τ falls

between 0.5 and 0.6; we set τ to 0.55 in our experiments.

Also, we can see a mild spike in F1-measure at τ = 1 in the

LGL curve, which can be attributed to the localized content of the

dataset. In particular, SHS (at τ = 1, CHF is analogous to SHS)

works better on LGL since locations in LGL are not mentioned fre-

quently alongside their corresponding spatial hierarchy ancestors.

As discussed in Section 3.1, CBH needs to spot the mentions of

these ancestors in documents (containment relationship) in order

to generate a more accurate resolution, whereas SHS does not rely

solely on containment relationships. It also takes sibling relation-

ships into account, and as a result, merging SHS and CBH does not

seem to be effective on LGL.

4.5 Resolution Accuracy
In this section, we measure the performance of our proposed meth-

ods and compare them with other resolution techniques. The meth-

ods presented in this paper are Context-Bound Hypotheses (CBH),

Spatial-Hierarchy Sets (SHS) and Context-Hierarchy Fusion (CHF).

We compare the results with two prominent systems: TopoClus-

ter [8] (i.e., the state-of-the-art unsupervised model) and Adaptive

[22] (i.e., the state-of-the-art supervised model). The source code

of TopoCluster was available online, so we were able to test the

method on our datasets. However, in order to test the Adaptive

classifier, we implemented the supervised method
11
, albeit with-

out two features, namely dateline and locallex; this was because
for locallex, the authors used an annotated dataset containing the

expected audience location of the news sources and also, dateline
required a general location for each article which was not avail-

able for most articles in the test corpora. The modified version is

named CustomAdaptive in our results. We follow the same parame-

ter setting of the original Adaptive [22] and perform 10-fold cross

validation to test CustomAdaptive.

Table 3 illustrates the evaluation results. CHF produces the best

performance among our proposed methods on CLUST and TR-
News and SHS beats the other proposed techniques on LGL. Among

all listed methods, CustomAdaptive shows the highest performance.

We also report recall, to make a comparison with the original Adap-

tive method [22].

While commercial products produce high precision, their recall

is lower than our proposed methods in all cases except for Yahoo!

YQL Placemaker. Placemaker yields the best results among the com-

mercial products and achieves higher overall performance than

our methods. On the other hand, OpenCalais is able to recognize

toponyms as locative expressions. For instance, it identifies the
Kenyan captial rather than just Kenyan. However, we observe that
sometimes it fails to detect a full location phrase; for example, only

Toronto in Greater Toronto Area is detected12. Further, Google Cloud
Natural API offers an entity extraction service, which focuses highly

on recognition of named entities
13
. The system links extracted en-

tities to their corresponding Wikipedia articles and provides no

additional information about geographic coordinates of location

entities. Therefore, the geographical information of locations can

only be derived from Wikipedia for this product. According to

Table 1, nearly 94% of toponyms in each dataset have Wikipedia

articles
14
, but not all Wikipedia articles contain spatial coordinates

of locations, which is partly attributed to a poor recall in our ex-

periments. Thus, we can see why entity linking approaches cannot

be exploited for toponym resolution.

11
Since we did not have access to the source code.

12
We count these as correct resolutions unless they fall outside the bounding box of

the annotated toponym.

13
Google Cloud Natural API extracts locative expressions in any form in addition to

proper names like family home and suburb.
14
GeoNames keeps record of Wikipedia URLs for each location.



Figure 2: F1-measure vs. threshold τ for Context-Hierarchy
Fusion method on TR-News dataset. At τ = 0.55, CHF
achieves the best F1-measure on all three corpora.

We run Resol experiments to analyze TopoCluster [8] since it is

a resolution method. DeLozier et al. stipulated that TopoCluster

performs best when integrated with a gazetteer; this is why, the in-

tegrated version, called TopoClusterGaz, is adopted throughout this

experiment. The results are presented in Table 3 (P
Resol

andM
Resol

columns). According to our results, CHF outperforms TopoCluster

on all three datasets. Moreover, DeLozier et al. [8] set the error dis-

tance threshold for TopoCluster to 161 kilometers and achieved an

accuracy of 71.4% on LGL15, whereas under the same setting, CHF

reaches 71.2% on LGL, which is marginally lower than TopoCluster.

Besides accuracy, the mean error distance is also measured in

our Resol experiments
16
. Among the unsupervised methods, CBH

stands out with the lowest error. CHF is close to CBH with its error

not exceeding 40km. This difference stems from SHS impacting

CHF because when a toponym is projected to an incorrect location

by SHS, the mapped location is more likely located in a country

different than the ground truth.

4.6 Unseen Data Analysis
Supervised techniques benefit from the knowledge gained in the

training phase and if there is an overlap between the training data

and the test data, then the prediction can be counted as overly opti-

mistic. Domingos emphasizes that generalization is achieved by a

separation of the training data and the test data [9]. This is why, we

study the effect of the overlap between training and test datasets

on F1-measure . For this purpose, CustomAdaptive classifier was

trained on CLUST dataset (the trend does not vary significantly

if the classifier trained on LGL) and tested against TR-News . We

define the overlap ratio measure as the number of toponyms per

article in test data, which has also been appeared in the training

data. We can channel overlap ratio through trimming off articles

from test data and measure performance on the trimmed test data.

Figure 3 plots F1-measure against the overlap ratio. The unsuper-

vised method surpasses the supervised method when the overlap

ratio is less than 60% (when the overlap ratio is at 0.6, CHF still

outperforms CustomAdaptive with a 1% margin). This observation

confirms that the unsupervised technique, namely CHF, can handle

15
Among the datasets used in TopoCluster paper [8], LGL is the only dataset to which

we have access

16
Mean error distance for TopoCluster in LGL is derived from the original paper [8].

Figure 3: F1-measure of CustomAdaptive trained on CLUST
and CHF when overlap ratio varies. CHF yields a better
performance than CustomAdaptive when overlap between
training data and test data is lower than 60%.

unknown data better than the supervised method, namely Adaptive

(CustomAdaptive implementation).

5 RELATEDWORKS
Numerous studies have been conducted and much progress has

been made on the task of disambiguating location mentions. The

existing approaches in the literature may be grouped into (1) un-

supervised and rule-based, (2) supervised, and (3) those based on

some knowledge bases. However, a plethora of methods leverage a

mixture of techniques. For example, DeLozier et al. [8] proposed

an unsupervised toponym resolution method that leverages geo-

graphical kernels and spatially annotated Wikipedia articles. Also,

Lieberman and Samet [22] presented a supervised technique that

uses both geographical distance and additional knowledge like

gazetteers and document source to disambiguate toponyms.

Unsupervised and rule-based methods In unsupervised resolu-

tion, various techniques have been studied. Map-based methods

create a representation of all referents on a world map and ap-

ply techniques such as geographical centroid detection and outlier

elimination to estimate the target of a toponym [19]. Moncla et al.

[28] introduce a map-based technique where density-based clus-

tering was carried out to detect outliers. Buscaldi [6] argues that

map-based techniques face difficulties in grounding toponyms in a

document when they are spatially far from each other. Rule-based

and heuristic-based methods also have been adopted in the litera-

ture [3, 19]. For instance, the presence of “Canada” in text London,
Canada may help disambiguate London. However, finding a set of
rules to cover all cases in natural language text seems to be arduous.

Approaches using knowledge bases Wikipedia has been inte-

grated as a knowledge base into more recent toponym disambigua-

tion techniques [5, 8, 31, 35, 36]. Ardanuy and Sporleder [5] ad-

dress toponym disambiguation inmultilingual retrospective articles.

They build a model to distill semantic features fromWikipedia infor-

mation such as page title and article body. Speriosu and Baldridge

[35] argue that non-spatial words impart useful information to dis-

ambiguate toponyms and they propose likelihood models that are

obtained from Wikipedia. DeLozier et al. [8] propose TopoCluster,

which does not rely on gazetteers to resolve toponyms, to address

cases where location mentions are not found in gazetteers. They



LGL CLUST TR-News
Method P R F1 P

Resol
M

Resol
P R F1 P

Resol
M

Resol
P R F1 P

Resol
M

Resol

Unsupervised
CBH 66.8 40.6 50.5 68.6 760 80.6 55.8 66.0 81.5 709 74.9 53.0 62.1 79.2 869
SHS 69.7 43.3 53.4 68.3 1372 72.8 51.6 60.4 71.1 1521 73.8 53.6 62.1 69.9 2305

CHF 68.5 43.1 52.9 68.9 818 80.6 58.4 67.7 81.0 788 79.3 58.2 67.1 80.5 942

TopoCluster [8] - - - 59.7 1228 - - - 77.1 769 - - - 68.8 1422

Supervised
Adaptive [22] - 58.7 - 94.2 - - 61.8 - 96.0 - - - - - -

CustomAdaptive 79.2 48.5 60.2 88.3 679 89.8 57.9 70.4 93.4 504 83.8 74.9 79.1 90.5 573
Commercial
Placemaker 73.5 48.6 58.5 - - 87.4 61.1 71.9 - - 80.8 63.0 70.8 - -

OpenCalais 77.1 28.9 42.1 - - 87.5 48.5 62.4 - - 81.3 48.5 61.2 - -

GoogleNL+Wiki 80.5 34.0 47.8 - - 82.8 39.2 53.2 - - 80.2 38.4 51.9 - -

Table 3: Performance results of variousmethods inGeoTag andResol experiments. The best results in each category are bolded.

construct a geographical language model to capture geographical

senses of words using Wikipedia pages of locations. However, they

note that adding gazetteer information to TopoCluster, namely

TopoClusterGaz, yields a better performance. Less known toponyms

are not expected to be found in Wikipedia; they can introduce

challenges and hinder the performance of this method.

Supervised methods Many classification techniques have been

proposed for geotagging purposes including Bayesian [1], random

forests [22], RIPPER rule learner [14] and SVM [14, 27]. The fea-

tures extracted for these classifiers can be grouped into context-free

and context-sensitive features [22]. Context-free features typically

include heuristics and information from external sources such as

knowledge bases and gazetteers and may include, for example, pop-

ulation [22] and location type [14]. Context-sensitive features are

obtained from documents where toponyms are mentioned. Melo

and Martins [27] use normalized TF-IDF document vectors over

curvilinear and quadrilateral regions on Earth’s surface. The adap-

tive method, proposed by Lieberman and Samet [22], casts geo-

graphical proximity and sibling relationship among interpretations

in a context window as features. GeoWhiz [1] aggregate several like-

lihoods based on observations in training data. For instance, largely

populated places are more likely estimated as their prominent inter-

pretation. The suggested method by Santos et al. [31] consolidates

information from Wikipage pages of locations to compute several

similarity and geographical features (context-free features) and per-

forms a nearest neighbor search using locality-sensitive hashing

(LSH) to resolve locations.

Other more general related work Entity disambiguation (also

known as entity linking) [13, 17, 20, 25, 32] is related to toponym

resolution. Linking named entities (i.e., people, organizations, and

locations) to their corresponding real world entities in a knowledge

base subsumes toponym disambiguation. Nonetheless, geographical

features of location entities are neglected by these systems [35] and

thus, geographically specialized methods for resolving toponyms

are still needed to map locations to their corresponding geographic

footprint.

Another line of research pertinent to this work is location dis-

ambiguation in social media. The related work in this area may

incorporate user profile data and social network information as

well as natural language processing tools and gazetteers to tackle

this task [18, 29]. Flatow et al. [12] propose a method that learns

geo-referenced n-grams from training data to perform geotagging

on social messages. Use of words that are endogenous to social

media are considered as an inherent hurdle here. Moreover, social

media content have deficient orthographic structure and lack con-

text, which bring even more complexities to toponym resolution in

social media [10, 26, 30].

6 CONCLUSIONS
In this paper, we study toponym resolution and propose two novel

unsupervised models and a mixture model, namely CHF, to ad-

dress the problem. We investigate the effectiveness of the proposed

methods with other techniques. Our evaluations show that the

Context-Hierarchy Fusion method outperforms TopoCluster, the

state-of-the-art unsupervised method, in terms of precision. The

performance of supervised techniques exceeds that of our proposed

methods (as expected), nonetheless, we have shown that the state-

of-the-art supervised classifier, called Adaptive, highly relies on

the training data and Context-Hierarchy Fusion can handle unseen

toponyms better.

The future work may investigate other mixture models and a bet-

ter understanding of when one or both of supervised and unsuper-

vised methods are expected to perform not so well. In addition, the

correlations among the bounding-boxes of toponyms in an article

can be studied to augment the resolution, considering the gazetteer

are endowed with bounding-box of locations for this purpose [33].

Another direction is understanding the differences between short

and long text as far as toponym resolution is concerned and the

challenges each pose.
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