
Database management support for a news-on-demand application

M. Tamer Özsu, Duane Szafron, Ghada El-Medani, Sherine El-Medani,
Paul Iglinski, Manuela Schoene, Chiradeep Vittal

Laboratory for Database Systems Research
Department of Computing Science

University of Alberta
Edmonton, Alberta
Canada T6G 2H1

ABSTRACT

We describe the type system component of a database management system that supports a multimedia news-on-
demand application. The type system is an object-oriented one that represents document structure according to the SGML
and HyTime standards. End-users access the news database by using a visual query interface. We also describe current work
to generalize the database type system to accommodate arbitrary SGML/HyTime compliant multimedia documents. Such a
generalized type system would support a broad range of multimedia applications.

Keywords: multimedia, news-on-demand, multimedia database, SGML, HyTime.

1. INTRODUCTION

News-on-Demand is an application which provides subscribers with access to multimedia news articles that are in-
serted into a distributed database by news providers. Commercial news gathering/compiling organizations such as wire
services, television networks, and newspapers are examples of news providers. The news items that they provide are
annotated and organized into multimedia documents by the service providers (who may also be news providers). The
subscribers access this multimedia database and retrieve news articles or portions of relevant news articles. This is typically
a distributed service where clients access the articles over a broadband network from distributed servers.

Currently, there are a number of news-on-demand projects, but most of these systems do not use database technology
to store or manage the documents. However, there are a number of distinct advantages to using database management
systems (DBMS) for this kind of application. First, multimedia systems can benefit from standard DBMS services like data
independence (data abstraction), application neutrality (openness), controlled multi-user access (concurrency control), fault
tolerance (transactions, recovery), and access control. Second, traditional file systems force the user to format files for
multimedia objects and to manage large amounts of data. Third, databases can also represent meta-data like document
structure and spatio-temporal relationships along with the data. This approach can provide a uniform query interface that is
based on the structure of documents and the relationships between documents as well as on the content of the documents.
Finally, multimedia applications, including the news-on-demand application, are generally distributed, requiring multiple
servers to satisfy their storage requirements. The well-developed distributed DBMS technology1 can be used to efficiently
manage data distribution.

In this paper we describe the type system of a DBMS that supports a distributed news-on-demand application. This
DBMS is part of the larger Broadband Services Project that is being conducted by six institutions with support from the
Canadian Institute for Telecommunications Research. The objective of the project is to develop a software infrastructure
and to define an API that is suitable for a broad range of broadband distributed multimedia applications. The scope of the
project is currently being expanded from presentation-only applications, such as news-on-demand, to collaborative applica-
tions. The multimedia DBMS component of this project covers a broad spectrum of activities from the design and
implementation of an appropriate database type system (schema) to the development of application-specific query models
and languages that support content-based access to multimedia objects. This paper focuses on one major component of the
first phase of the project, the design of the database schema for the news-on-demand application. Figure 1 shows this
component in context of the entire application environment. This paper also outlines our current research on (a) extending
the database schema to support additional applications, and (b) coupling the DBMS with an SGML parser to enable
automatic insertion of documents into the database.

The unique features of our work are the following:

1. An integrated database stores not only directory information about the location of multimedia objects, but also the
objects themselves. This is quite different from other multimedia information systems where the database is con-
strained to store only descriptive information and all of the multimedia objects are stored in ordinary files. This
system stores non-continuous media (text and images) as native objects in the database and uses a continuous
media file server2, that is being developed at the University of British Columbia, as its underlying storage system
for continuous media (audio and video).

2. The ObjectStore™ object-oriented DBMS3 is used as the base layer of the multimedia database. The choice of an
object-oriented database instead of a more common relational system was made for a number of reasons. Rela-
tional DBMSs are suitable for representing meta-information, but are inadequate for modeling the complex
structure of multimedia documents. The “binary large objects” (BLOBs) that are supported in some relational sys-
tems are not sufficient to model multimedia entities. Although images can be stored as BLOBs, it is not possible
for the system to interpret the internal structure of BLOBs. For example, the system could not identify all BLOBs
that contain a particular sub-image. Furthermore, multimedia systems require extensible database schemas while
relational systems support only a fixed set of data types (integer, real, character, date, etc.).

3. The type system strictly adheres to the Standard Generalized Markup Language (SGML) and the Hypermedia/Time-
Based Structural Language HyTime standards4,5 . These are ISO standards (numbers 8879 and 10744) that are suffi-
ciently rich to support the target application, and are gaining widespread popularity. For example, HTML has
become the de-facto document standard for the World Wide Web and it is a popular application of SGML. SGML
mostly deals with textual documents whereas HyTime adds support for hypermedia and synchronized documents
(e.g., links and video). There are many successful projects that approach database schema design in an ad hoc
fashion. However, in an area such as multimedia information systems, it is important to follow international stan-
dards so that the multitude of applications and tools that follow these standards (e.g., authoring tools, browsers)
can all be used with the multimedia database.

The rest of this paper is organized as follows. Section 2 presents the database schema for the news-on-demand appli-
cation. It is a summary of work that has already been completed. Section 3 describes current research to generalize the type
system to support any SGML/HyTime documents. On-going work to facilitate automatic insertion of documents into the
database is described in Section 4. Section 5 highlights the long-term directions that are being followed.

Figure 1. Processing environment

Database
Processing System

DTD’s

SGML/
HyTime

Compiler

Type
System

…

Query
Processor

Service Providers End Users

SGML/HyTime
Processing System

Multimedia DBMS

Disk-
based

Repository

2. DATABASE SCHEMA DESIGN

In the object-oriented world, database schema design corresponds to the design of a type system*. In this context,
three fundamental issues must be considered. First, the different basic media components of the document (i.e., text, image,
audio, and video) need to be modeled. Second, the structure of the multimedia news documents must be represented. Third,
the spatial and temporal relationships between multimedia objects have to be captured and stored in the database. There is
a fourth issue related to the storage of descriptive control information that is required by other components of the multime-
dia application. However, we do not consider the fourth issue in this paper. In the remainder of this section we summarize
our approach to addressing the first three issues. More details can be found in other**

 publications6,7,8.

2.1 Modeling of Basic Multimedia Objects

Since ObjectStore does not provide native support for basic multimedia data other than text (strings), the type system
defines these data types and refers to them as atomic types (Figure 2).

All atomic types are defined as subtypes of an abstract type, Atomic. There are two abstract subtypes of atomic me-
dia, one for non-continuous media (NCMType) such as text and images and another for continuous media (CMType) such as
audio and video. All attributes and methods which are common to both kinds of media are promoted to the Atomic type.

The abstract supertype, NCMType defines a non-continuous media attribute called content, which is an array of
bytes, but it is further subtyped by the concrete media types, Text and Image. The Text subtype has additional methods:
match which implements a pattern matching algorithm, and substring which returns a portion of the text object given a
start index and an end index. The Image type has additional attributes such as the width, height and colors of the image.
Both these types have attributes for the quality of service (QoS) parameters specific to the media they model. The Image
type can be further subtyped to reflect the different storage formats possible, such as JPEG, TIFF or GIF.

Note that the actual data corresponding to objects of type CMType (and its subtypes) are stored in the continuous
media file server, rather than the multimedia DBMS. Thus, for the present implementation, database objects of these types
contain only meta-information. Nevertheless, a subtyping scheme has been created on the CMType side of the type hierar-
chy. The Temporal supertype of video and audio is defined to promote the common duration attribute. The Video
type can be subtyped to handle different storage formats like MPEG and Motion-JPEG. Synchronized text (SyncText), a
form of closed captioning, is not subtyped from Text, since it is not stored in the database. Instead, it is stored on the file
system with other continuous media. As a consequence, the methods match and substring cannot be applied to
synchronized text media.

* In this paper we use the terms “type” and “class” interchangeably. Some object-oriented systems make a distinction
between types and classes. However, ObjectStore follows the C++ convention of using “classes” for both concepts. Thus,
any reference to “defining a type” corresponds to “defining a C++ class” in ObjectStore.
** Our publications are available on-line on the World Wide Web at URL http://web.cs.ualberta.ca/~database/

Figure 2. Atomic type hierarchy

Atomic

Text SyncText Temporal

NCMType CMType

Video Audio

Image

2.2 Modeling of Document Structure

As stated earlier, we follow the SGML standard for representing document structure. SGML formally specifies this
structure by defining element types (e.g., paragraph, figure) and the relationships between them in a Document Type
Declaration (DTD). SGML does not pre-specify the nature of these elements, or the structure of the composition hierarchy
that contains them. Instead, a document designer specifies a different DTD for each category of document being designed.
For example, a single "Book" DTD hierarchically composed of chapter, section, paragraph and word elements might serve
as the template for many instances of book. In our case, we wrote a DTD for multimedia news articles. However, since we
are interested in a full-blown object-oriented DBMS for storing and querying news articles, we also designed a type system
that conforms to this multimedia news DTD.

A DTD specifies element types, the hierarchical relationships between element types, and attributes associated with
them. Attributes contain "hidden" information that is not part of the document content. For example, a DTD designer may
define a Figure element with a fileName attribute that is a String representing the name of the file that contains a bit-map
image for the figure. The filename itself is not part of the content of the document.

 The type system must represent all of the information contained in the composition hierarchy and in the attributes.
We designed a type hierarchy for the elements in the news DTD which is rooted at the abstract Element type (Figure 3).
All elements maintain a reference to their parent element in the document instance hierarchy, so that the hierarchy can be
navigated starting from any element. This type is responsible for implementing these references. Element is subtyped by
three more specialized abstract types TextElement, Structured and HyElement.

In the DTD for news documents, we divide the document into asynchronous and synchronous components. This re-
flects the fact that continuous media with synchronization constraints (synchronous) need to be handled by HyTime
conforming element types, and other SGML element types are adequate to deal with text and image data (asynchronous).
The supertype HyElement encompasses all the HyTime elements used in the DTD. HyTime types are discussed in Section
2.3.

Capturing the document structure as a set of types raises the question of the storage model for the text part of the
multimedia documents. The standard approach is to store pieces of text with the elements that logically contain them. For
example, a Book may contain a list of Chapters, where each chapter contains a list of Sections. Each Section may contain
a list of paragraphs. Each paragraph may ultimately contain a String. Alternately, a finer granularity occurs if each Para-
graph contains a list of Words and each Word contains a String.

Although this standard approach is elegant and straightforward, it is very inefficient for two major reasons. First, the
number of individual objects that must be fetched from disk is large. Second, searching for Strings that span element (e.g.,
Word or Paragraph) boundaries is difficult. Our storage model for the textual components of a document is novel. In our
type system, the entire text string of each document is stored in a single object and compositional elements are represented
as annotations on the text object. Each annotation stores a reference to the text object, as well as start and end indexes.

Figure 3. Element type hierarchy

Element

StructuredTextElement HyElement

StructuredText AudioVisual SyncArticle

The TextElement type implements the protocols for manipulating these annotations, including the getString method
that returns an appropriate sub-string representation of any annotation. The type Quote is an example of a direct concrete
subclass of TextElement since each quote simply contains a reference to the document's text string, a start index and an
end index.

The type Structured is a supertype for elements in the DTD with complex content models. By complex, we mean
any element whose contents are not either empty or a single String (a simple String is referred to as #PCDATA in SGML).
That is, structured elements maintain references to child elements. Therefore, the type Structured defines the method
getNth to return the nth child element. The type Article is an example of a direct concrete subtype of Structured.
Each Article contains an instance of FrontMatter, an instance of ASync and an instance of Sync.

Elements which are both structured and based on text have a common supertype called StructuredText. The sub-
types of this type includes all text elements with complex content models, like List, Section, Figure,
Frontmatter, etc. whose components are themselves either instances of TextElement or StructuredText. For
example, instances of type Figure contain both a FigureCaption and an Image.

2.3 Modeling of Spatio-Temporal Relationships

The representation of spatio-temporal relationships between multimedia objects is an important consideration in de-
signing a multimedia database. This information is required by the synchronization routines to plan the retrieval and
synchronized presentation of multimedia objects. For example, both the audio track and closed captions of a video must be
synchronized with the video images. Our representation is compliant with the HyTime standard, which addresses the more
general issue of presentation. The HyTime philosophy is to separate presentation information from the content of multimedia
documents. For example, the tags in a document may specify that a particular segment of the document is emphasized
without restricting how this emphasized segment should be rendered. The presentation information specifies presentation
preferences. For example, the presentation preferences may specify that emphasis should be rendered as bold, as italics or
in an alternate color, without affecting the document contents.

In following the HyTime philosophy, we completely separate the presentation of a document from its content. This
has two implications. First, the users’ presentation preferences must be stored and accessed when necessary. This is
accomplished using individualized style sheets which are stored in the database as objects. This aspect of the DBMS is
discussed elsewhere8. The second, and arguably more important, consideration is to represent the spatio-temporal relation-
ships in accordance with the HyTime standard.

HyTime defines a number of architectural forms to deal with various hypermedia concepts. One of these architectural
forms is the finite coordinate space (FCS) which HyTime uses for modeling spatio-temporal relationships. A finite coordi-
nate space is a set of axes of finite dimensions. All measurements are associated with the axes. The units of measurement
along axes are called quanta. There are various types of quanta defined in HyTime, besides the normal units of measure-
ment – including characters, words, nodes in trees, etc. We define an FCS of three dimensions: x and y to represent spatial
dimensions and time to model the temporal dimension. A set of ranges along the various axes defining the FCS form an
extent which corresponds to an event. An event schedule consists of one or more events. Event schedules, therefore, are used
to represent temporal relationships among various multimedia objects.

Within this context, our model of spatio-temporal is a set of type definitions that correspond to the relevant HyTime
concepts. The type hierarchy is depicted in Figure 4. The type HyElement is the supertype for all HyTime elements in the
type system. Its immediate subtypes model the architectural forms used in the DTD. The attributes of HyElement are its ID
(assigned by the author of the document, or by the document authoring software), and a string representing the name of the
architectural form. This models the assumption that every HyTime element can be linked its architectural form.

3. GENERALIZING THE TYPE SYSTEM

The type system described in the previous section is specific to the news-on-demand application since it is based on
the DTD for news documents. The multimedia database will only be able to support other applications if this type system is
generalize. Within the context of SGML/HyTime, this means that the database type system has to be able to reflect
multiple DTDs. This requires the system to analyze new DTDs and automatically generate the types that correspond to the
elements they define. We are currently modifying our system to accomplish this task. In addition, the DTD is stored as an
object in the database so that users can run queries like “Find all DTDs in which a ‘paragraph’ element is defined.”

The general architecture of the extended system is depicted in Figure 5. We have a meta-DTD that describes a
grammar for defining DTDs and a DTD Parser parses each DTD according to this grammar. While parsing the DTD, an
object is created for each valid SGML element defined in the DTD. Each DTD element object contains information about
the element, such as its name, attribute list and context model. If the DTD is valid, a Type Generator is used to automati-
cally generate C++ code that defines a new ObjectStore type for each element in the DTD. For example, if a Book DTD is
parsed, objects representing: Title, AuthorList, Chapter, Section, Paragraph, Index etc. would be created. If the DTD is
valid then each of these objects would generate C++ code that would define its own ObjectStore type.

There are two important problems that need to be addressed in this process. Both problems are abstraction problems
that can reduce the complexity of the multimedia type system and therefore reduce maintenance time and errors. First, if
two or more DTD elements in the same DTD definition share common features, then this feature should be automatically
extracted and promoted to an abstract superclass. For example, in the news-on-demand type system, the two types, Video
and Audio both share a common duration attribute, so the abstract supertype Temporal was created to promote this
feature. However, this factoring must be done automatically. If the feature is a common component, this is straightforward.
Otherwise, the problem is harder to solve.

Second, common element definitions across different DTD definitions should be represented by a common type in the
type system. However, there is no easy solution to this problem since it leads to the well-known semantic heterogeneity
problem that has been studied extensively within the multidatabase community. Briefly, the problem is one of being able to
determine whether two elements are semantically equivalent. This problem has also been studied in the programming
languages field as well where there are many different definitions for type equivalence9. For example, two types are name
equivalent if they have the same name. However, this would not be a good definition of type equivalence in our model
since two different DTDs might use the same name to describe different elements. For example, a Signature in a
Thesis DTD may be different than a Signature in a Symphony DTD. Similarly, programming languages define two
types to be structurally equivalent if the components recursively have the same names and types. This may also lead to
faulty equivalencies. For example, FigureCaption and a Title are structurally equivalent since they each have a
single component that is a String. However, they are semantically different and this difference may only become clear in
the context of what composite objects can contain them. Since this is not a trivial problem, we have chosen to give up
some abstraction in favor of a semantically “safe” type system.

However, this does not mean that we have completely abandoned type re-use across DTDs. We reuse both the atomic
types such as Audio, Image and Text (see Figure 2) as well as the high-level abstract supertypes such as TextElement,

Figure 4. Type hierarchy for HyTime elements

TextElement Structured HyElement

StructuredText

Ilink_AF
Evsched_AF

Extlist_AF

Event_AF Fcs_AF
Axis_AF

Dimspec_AF

Link

Temporal

Saudio Spatial

SvideoStext

Av-fcs Av-evsched

Av-extlist

X Time

Xdimspec Ydimspec

Tdimspec

Marklist_AF

Axes-marklist

Y

Structured and HyElement (see Figure 3). These types are safe to re-use because they have well defined semantics and
appear across many document types. For the rest of the elements in a given DTD, we create new types. Name conflicts
between elements in different DTDs are resolved automatically by using the DTD name as prefix during type creation (e.g.
article_section, book_section).

This approach actually has one major advantage over re-using arbitrary type definitions across multiple DTDs. That
is, new element types are inserted into the database without costly schema evolution. For example, assume an existing
DTD defined a type T1 and a new DTD defined the semantically equivalent type T2. Also assume that type T2 had a
supertype T3, schema evolution would be necessary for the existing type T1 since T3 would have to be added as a su-
pertype

The DTD Manager in Figure 5 takes the DTD file as input and stores the DTD as an object in the database that can
be used for parsing documents and other purposes. This is done after type creation. As soon as a DTD is stored in the
database, SGML documents of that type can be inserted. A DTD object contains the name of the DTD, the content of the
DTD as a character string and other descriptive information such as the count of the number of documents that conform to
this DTD.

4. AUTOMATING DOCUMENT ENTRY

One of the serious shortcomings of our current implementation is the unavailability of authoring tools for the insertion
of documents into the database. We have implemented facilities for querying the database8 once the documents are inserted
in it, but no tools exist to automatically insert documents. Part of our current work concentrates on coupling the multimedia
database with a retrofitted SGML parser. SGML documents can then be created using existing authoring tools*** and
automatically inserted into the database.

*** Besides the availability of a number of authoring tools that generate SGML marked-up files, Microsoft has announced
that one of the upcoming versions of its popular word processor “Microsoft Word” will be able to save documents in
marked-up files. Coupling the parser that we are retrofitting with these authoring tools would not be difficult.

<!ELEMENT …>
…
<!ATTLIST…>

D
T

D
 P

ar
se

r

DTD
Manager

Type
Generator

DTDs

Type System

SGML Documents

DTD file

Multimedia Database

Q
u

er
y

In
te

rf
ac

e

Users

Figure 5. Architecture for handling multiple DTDs

The general architecture for this coupling is depicted in Figure 6. The SGML Parser accepts an SGML Document In-
stance from the Authoring Tool, validates it, and forms a parse tree. The Instance Generator traverses the parse tree and
instantiates the appropriate objects in the database corresponding to the elements in the document. These are persistent
objects stored in the database that can be accessed using the query interface.

The parser is based on a freeware application called nsgmls developed by James Clark. The parser is being modified
to incorporate the following changes:

1. The DTD used for parsing the document instance is fetched from the multimedia database.

2. The output of the parser is passed to the Instance Generator as a parse tree instead of producing parsed text output.

3. The parser does not produce any output unless the document is error-free.

5. CONCLUSIONS

In this paper we describe several components of our DBMS for multimedia applications. Most of our effort so far has
concentrated on the news-on-demand application. The resulting type system described in Section 2 is quite specific to the
requirements of this and it has been fully implemented as class extensions to ObjectStore on IBM RS6000 machines
operating under AIX. In addition to the database schema described here, we have implemented a visual querying facility
that enables easy access to documents in the database. This work is described elsewhere6,8 .

We are in the process of generalizing our DBMS so that it can support other multimedia applications which follow
the SGML/HyTime standard for describing multimedia documents. Our aim is to make the database usable not only in
presentational applications such as news-on-demand, but also in conversational applications. Our approach is outlined in
Section 3. This is on-going work and more results will be described in later papers.

DTDs

Type System

SGML Documents

DTD

Multimedia Database

Q
u

er
y

In
te

rf
ac

e

Users

C++ Types

C++ Objects

<article >
…
</article>

Authoring
Tools

SGML
Parser

SGML
Parser

<!ELEMENT ..>
.....
<!ATTLIST...>

Parse
Tree

SGML
Document
nstance

Figure 6. Architecture for automatic document entry

We are also coupling the DBMS with authoring tools to support database document insertion. The approach, outlined
in Section 4, uses existing tools that have been developed for SGML and retrofits them to work with our DBMS. This
illustrates one major advantage of following a standard such as SGML/HyTime. It enables us to leverage the work of others
who have developed a wide range of tools that comply with these standards.

Our long term plan involves three goals. First, to build multi-media-specific query models and languages that are
easier to use and more efficient than general query models and languages. These advantages would follow from a common
type system that is optimized for queries that are common across multi-media applications, but may not be common in
general non-multimedia applications. Second, to support content-based indexing and access to images. For example, the
user should be able to ask for “all images that have dogs in them”. Third, better coupling of the database with the continu-
ous media file server. Each of these is a long term project whose results will be reported separately.

We did not provide an extensive comparison of our work with related projects. There are quite a number of efforts to
design multimedia DBMSs and we have surveyed them elsewhere6. The two fundamentally unique aspects of our approach
are the adherence to international standards, and the design of an integrated database that not only captures descriptive data
about multimedia objects, but also stores the objects themselves.

6. ACKNOWLEDGMENTS

This research is supported by a grant from the Canadian Institute for Telecommunications Research (CITR) which is
one of the Networks of Centres of Excellence funded by the Government of Canada.

7. REFERENCES

1. M.T. Özsu and P. Valduriez, Principles of Distributed Database Systems, Prentice Hall, Englewood Cliffs, NJ, 1991.

2. G. Neufeld, D. Makaroff, and N. Hutchinson. The design of a file server for scalable VBR media, Technical Report,
University of British Columbia, Department of Computer Science, December 1994.

3. C. Lamb, G. Landis, J. Orenstein, and D. Weinreb. “The ObjectStore database system,” Communications of the ACM,
Vol. 34, No. 10, pp. 50-63, October 1991.

4. International Standards Organization. Information Processing – Text and Office Information Systems – Standard General-
ized Markup Language (ISO 8879), 1986.

5. International Standards Organization. Hypermedia/Time-based Structuring Language: HyTime (ISO 10744), 1992.

6. M.T. Özsu, D. Szafron, G. El-Medani, and C. Vittal, “An object-oriented multimedia database system for a news-on-
demand application”, Multimedia Systems, Vol. 3, No. 5/6, 1995 (in press).

7. C. Vittal, An object-oriented multimedia database system for a news-on-demand application, M.Sc. Thesis, University of
Alberta, Spring 1995. Available as Technical Report TR95-14.

8. G. El-Medani, A visual query facility for multimedia databases, M.Sc. Thesis, University of Alberta, Fall 1995. Avail-
able as Technical Report TR95-18.

9. K. C. Louden, Programming Languages, Principles and Practice, PWS Publishing Company, Boston, MA, 1993.

