
Copyright 1998 IEEE. Published in the Proceedings of IPPS/SPDP '98, March 30-April 3, 1998, in Orlando, Florida. Personal use
of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or
for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this
work in other works, must be obtained from the IEEE. Contact: Manager, Copyrights and Permissions / IEEE Service Center / 445
Hoes Lane / P.O. Box 1331 / Piscataway, NJ 08855-1331, USA. Telephone: + Intl. 908-562-3966.

Using PI/OT to Support Complex Parallel I/O

Ian Parsons, Jonathan Schaeffer, Duane Szafron and Ron Unrau
Department of Computing Science, University of Alberta

Edmonton, AB, CANADA T6G 2H1
{ian, jonathan, duane, unrau}@cs.ualberta.ca

Abstract
This paper describes PI/OT, a template-based parallel

I/O system. In PI/OT, I/O streams have annotations
associated with them that are external to the source code.
These annotations specify an I/O behavior (template) and
some modifiers (attributes). This paper shows how PI/OT
attributes can be used to handle irregular data structures,
and how the templates can be hierarchically composed to
support complex I/O access patterns. PI/OT’s separation
of I/O specifications from the source code allows users to
create these parallel I/O behaviors quickly and correctly.
We demonstrate these capabilities by describing how
PI/OT can be used to implement a biochemistry
application and by discussing the performance results.

1. Introduction

The development of parallel applications has focused
on computational parallelism, with the result that parallel
I/O implementation techniques have lagged behind.
Support for parallel I/O is typically obtained from library
packages such as PIOUS [8] or MPI-IO [2]. While these
libraries support a common and standardized interface
respectively, they still require that the developer explicitly
differentiate between parallel and sequential I/O streams at
the source code level, and often require that application
data be imported or exported to and from specialized file
systems (e.g. Zebra [5]). As well, the computational
parallelism must often be restructured to accommodate the
model supported by the parallel I/O library. A different
approach is to try to preserve the sequential I/O function
interface. This has been successfully done for data parallel
applications in the Stream* system [7]. However, in
Stream*, the programmer must still explicitly describe the
computational and I/O parallelism in the source code.

A more radical alternative does not explicitly embed
any parallel behavior directly in the application. Instead, a
parallel programming system (PPS) such as Enterprise
[12] provides a set of pre-defined parallel behaviors, called
templates, that are selected by the developer and applied to
an application. Examples of templates for parallel
computation are pipelines and task farms. The user
supplies sequential code for the stages of the pipeline or
tasks of the farm, and the PPS uses the templates and
programmer-supplied code to generate a parallel program
that implements the specified behavior.

This high level of abstraction is beneficial for five
reasons. First, parallel behaviors are encapsulated into an
easy to understand set of templates. Complex behaviors
can be constructed by composing or nesting several
templates (e.g. a pipeline of task farms). Second, the user
specifies what parallelism is needed while the template
determines how the parallelism is implemented. This
shields the developer from the details of the parallel
implementation and allows the solution to be optimized
for different architectures. Third, parallel behavior can be
changed with no (or minimal) changes to the source code.
This allows developers to get first-draft code working
quickly, and to experiment with different parallel models
so that the one with the best performance can be selected.
Fourth, correct behavior of the templates is guaranteed by
the PPS. Fifth, the performance of the PPS generated code
can be comparable to hand-coded solutions.

Our research extends the concept of a template system
to include parallel I/O. The PI/OT Parallel I/O Templates
system (pronounced Pilot) showed that I/O templates can
be used to easily and efficiently describe the I/O of a
program at a high level [11]. PI/OT is an integrated sub-
system of a PPS (Enterprise). The computational part of a
parallel program is developed as usual, and includes I/O as
standard sequential calls to the stdio library. The I/O
streams to be parallelized are then annotated, external to
the source code, from a set of pre-defined I/O templates.
The system generates the code to correctly implement the
specified parallel I/O behavior. By not differentiating
between sequential and parallel I/O streams in the code,
the developer can use the annotations to quickly convert
sequential I/O to parallel I/O. The generated parallel
program has comparable performance to hand-tuned
parallel I/O code that uses low-level I/O libraries [12, 13].
Mixing different parallel computational and I/O behaviors
may affect the performance of the application, but their
correct implementation is orthogonal to the particular
templates used. In fact, in many cases the parallel I/O
template can be changed and the parallel program rerun
without recompiling the application.

In [11], we showed that PI/OT achieved good
performance on applications with regular I/O patterns.
Unfortunately, most parallel I/O systems cannot handle
complex, irregular data access patterns well. For example,
although PIOUS, Elfs [4], Galley [9] and Vesta [1] excel
at regular I/O patterns (such as fixed size strides or

segments), they are not tuned for irregular I/O. However,
there is an important class of real-world applications
where I/O operations must be performed on irregular data
(for example, sparse matrices and dynamic lists). This
paper describes PI/OT's two research contributions towards
handling arbitrarily complex parallel I/O patterns.

Irregular data structures. Parallel I/O templates make it
easy to specify and support irregular data structures on
disk. Each template supports a different I/O
parallelization, and has attributes that refine the abstract
model for a particular file structure. A PI/OT template can
include a segment size attribute that can be fixed if the
segment size is known in advance, or can be dynamic to
accommodate variable sized records. This dynamic
segmentation can be used even if the record size is not
known until run-time (i.e. it is embedded as part of the
file structure itself).

Hierarchical I/O. PI/OT presents a small number of
templates for specifying parallel I/O. These can be viewed
as building blocks for constructing more complex I/O
behavior. PI/OT allows these templates to be
hierarchically composed so that the developer can create an
unlimited set of parallel I/O access patterns. We know of
no other parallel I/O system that achieves this flexibility.

2. PI/OT templates

PI/OT currently contains the five parallel I/O templates
shown as shaded boxes in Figure 1. The templates are
based on Crockett's concepts of global, independent, and
segmented file I/O [3]. The arcs in Figure 1 show which
templates make use of which concepts. When Independent
I/O is used, each participating process has its own file
pointer that it can move independently. With Segmented
I/O each of these independent file pointers is restricted to
its own file segment. With Global I/O, the processes
logically share a single global file pointer. However, since
the processes are distributed across a network, each of the
physical file pointers must be synchronized with the
single global file pointer.

Meeting LogPhotocopy Newspaper Report

Parallel I/O

Segmented I/O

Independent I/O Global I/O

Sequential I/O

Figure 1. The PI/OT templates.

The PI/OT parallel templates add synchronization
constraints to these basic abstract parallel concepts. This
template collection is not complete, but can be extended if
new properties are needed. However, it has not proved

necessary to add new templates to the set at this point.
One reason for this is that the current simple templates
can be composed together to represent more complex I/O
access patterns. These templates are intended to be
integrated with parallel computational templates to create
a parallel application.

2.1. Templates

A photocopy template uses independent file access,
where client processes read independently, but all write
operations are verified by an owner process before they
become visible to other client processes. This template
can be optimized by selectively replicating the file so that
read operations become local.

A newspaper template divides a file into disjoint
segments that can be read and written independently. This
template is analogous to several individuals sharing a
newspaper, where each individual has a section. A
newspaper file segment always knows its starting point
(base) in the file and the size of the segment (extent).

The extent is determined at compile-time by a user-
supplied segmentation constant or at run-time by a user-
supplied executable segmentation function. Segmentation
functions support applications with irregular data
structures, since each segment can have its own size that
is dynamically computed at run-time. The segmentation
function can even read data from disk to determine a
dynamic segment size. A parent process executes the
segmentation function to compute an extent before it calls
a client function to process its segment.

Sometimes an extent cannot be determined before
calling a client. The most common situation is for
output, where the size of the segment is not known until
the writing is complete. PI/OT marks such extents as
unknown. When a client process has an unknown extent,
its write operations are performed on its own local disk.
When the client exits, the entire segment is sent to the
parent process and written to the original file.

The log template uses a global file pointer with the
added restriction that all writes take place at the end of the
file. After a write, the global file pointer is left at the end
of the file. However, any read or seek operation is free to
proceed without synchronization because the data is
always consistent. The end-of-file (EOF) marker is changed
only when the process with write permission updates the
global data structure. All other processes are limited to the
last known value of the global EOF.

The report template segments a file like a newspaper.
However, unlike a newspaper, a reader or writer can access
segments other than the one it owns. However, there is a
performance penalty for accessing another segment since
the parent process that divides the report into segments
must grant access to the external reader or writer.

The meeting template has a single global file pointer.
Only one reader or writer has control at any one time.

2.2. Template attributes

In addition to its basic semantics, each template can
have several attributes which refine its behavior. The first
is the order attribute. It determines the access sequence for
I/O operations that are executed by different processes and
the visibility semantics of the updates. There are three
values for the order attribute: ordered, relaxed and chaotic.
In addition, read operations may be ordered independently
from write operations so there is a read order and write
order attribute for each template.

For example, the source code in Figure 2 performs six
I/O operations. If the code is executed sequentially, the
order of operations is: α 0 , α 1 , α 2 , β0 , β1 , β2 . If
DoAlphaIO and DoBetaIO are executed concurrently,
the separate processes could potentially perform the
operations in any order. If the ordered attribute is used for
these I/O operations, the operations will occur in
sequential order. If the relaxed attribute is used, the alpha
operations will occur in arbitrary order, but will all be
completed before any of the beta operations start. Then the
beta operations will occur in arbitrary order. If the chaotic
attribute is selected, all six operations will occur in
arbitrary order. The visibility of the operations depends on
both the order attribute and the I/O template. The
visibility semantics are discussed in detail in [10].

AlphaBetaIO (FILE *fp) {
int j; int alpha[3]; double beta[3];
for (j = 0 ; j < 3 ; j++)
alpha[j] = DoAlphaIO(fp);

for (j = 0 ; j < 3 ; j++)
beta[j] = DoBetaIO(fp);

fclose(fp);
}

Figure 2. Code to illustrate I/O attributes.

The second attribute of each template is the I/O
transaction attribute that specifies either atomic or block
accesses. If a template has atomic I/O transactions then
each I/O statement is a single transaction. For example, if
a single write statement outputs two integers, no other
I/O operation can output between them. However, with
atomic I/O, if two adjacent write statements each output a
single integer, another I/O operation from a different
process may be interleaved between them. If the template
has block I/O transactions, then all I/O operations from a
block will be done in a single I/O transaction so that no
interleaving between I/O statements is possible.

The final attribute is the segmentation attribute. It is
only used by templates that support segmented I/O
(newspapers and reports). The segmentation is either a
constant that represents the extent of all segments for that
template, or a function that is called at run-time to
dynamically determine the extent of each individual
segment. The function is an ordinary sequential function,
supplied by the programmer, and is used to support
irregular data structures. Section 3 contains a detailed
example of a segmentation function and its application.

3. PI/OT with irregular data structures

To our knowledge, PI/OT is the only parallel I/O
system that supports dynamic segmentation of files for
irregular data structures. It provides this support in two
ways. First, it allows the user to write a sequential
function that is automatically called at run-time to
compute the size of a segment. This function can even
compute the segment size by reading from the data file
itself. The parent process calls the segmentation function
and then launches a child process that reads its data from
that specific segment on disk. Since the child process is
restricted to a particular disk segment, the parent process
can call the segmentation function many times and launch
many child processes concurrently, with no need for the
child processes to synchronize their disk access.

 Second, PI/OT provides a mechanism to support
situations in which the segment size of an output file
cannot be computed before the child process is launched.
In this case, each child process writes its segment to a
temporary file and then sends this data to the parent
process. The parent process then writes the complete
segment to the actual output file. Although this
mechanism works more slowly than when the segment
size is known in advance, it still provides speed-ups when
the known segment size technique cannot be used, as is
often the case for output files that contain irregular data.

To demonstrate these techniques, we present a
biochemistry molecular docking application [6] that
requires support for irregular data structures. The basic
problem is to read variable length blocks of data from
disk, do a computation for each block, and output a
variable length block of data based on the computation.
Each block represents a molecule that contains other
molecules, each of which contains other molecules, etc.
The standard way of performing I/O on objects is to let
each object perform its own I/O. This approach can be
applied to composite molecules. A composite object
performs I/O by letting each of its components perform
its own I/O. Therefore, each individual I/O operation is
small, consisting of four to several hundred bytes. Each
composite object has a different I/O block size. The
experiments described in this paper are not the results of
running the real application, but rather an abstracted form
of the application that allows us to focus on the I/O and
easily modify the granularity of the computations.

Figure 3 shows a high-level view of the main
sequential program for our abstraction of the docking
application. The ComputeMolecule function reads an
object from a file (fin), performs calculations and writes
the results to an output file (fout). Not only does the
size of the input objects vary, but the size of the results
are different for each object. Once the input is exhausted,
the main program rereads the output file to analyze the
results (Stats). Each object has its own specific read and
write functions and knows which sub-objects it contains.

main(int argc, char **argv) {
FILE *fin, *fout;
fin = fopen(argv[1], “r”);
fout = fopen(argv[2], “w+”);
while (! feof(fin)) {
ComputeMolecule(fin, fout) ;
/* THESE CALLS CAN BE DONE IN PARALLEL */

}
fclose(fin); rewind(fout);
Stats(fout); fclose(fout);
return 0;

}

Figure 3. Sequential main program.

Since each ComputeMolecule call is independent
of the others, multiple processes can be used to execute
multiple copies of the ComputeMolecule function.
There is no need to preserve the sequential input file order
or the sequential output file order. It is only necessary to
ensure that each molecule is analyzed precisely once.

For the experiments in this paper, the molecule
structure of Figure 4 was used. The input file consists of a
sequence of B molecules, where each B starts with a
sequence of N molecule sub-sequences consisting of the
molecules C, E, D and E. Each B molecule has a final E
molecule at the end. For our tests, the input file contains
50 B molecules, the average size of each B molecule is
about 350 KBytes and the total file is about 17 MBytes.

DE EC

E
DE EC

DE EC DE ECN

B

Figure 4. Structure of B molecule.

Figure 5 shows an outline of the code that does the
molecule I/O. The code for molecules C and D is omitted
since it is similar to the code for E. Notice that this code
is purely sequential code with ordinary stdio calls. The
user makes no explicit changes to this source code in
parallelizing the I/O using PI/OT.

Since it does not matter which process does which
piece of work, segmenting the input file avoids the
inefficiency of having to synchronize file access. Each
process reads a contiguous segment in the file, although
the size of the segments varies. This I/O behavior is
represented by the newspaper template described in Section
2. The following annotation is sufficient to automatically
generate the newspaper parallel I/O code for the input file:
fin NEWSPAPER ro wo b ComputeMolecule=BSize

This annotation for file pointer fin, has ordered read
order (ro), ordered write order (wo), block I/O transaction
size (b), function name ComputeMolecule and
segmentation function BSize. Note that the sequential
user code does not call the segmentation function BSize
explicitly. Instead the parallel I/O code inserted by PI/OT
calls this segmentation function to split the file into
segments. When PI/OT is used with a parallel

programming system like Enterprise, the annotation is
automatically generated from the graphical user interface
when the user fills in a template attribute dialog box.
Figure 6 shows the programmer supplied sequential code
for the segmentation function BSize.

int ComputeMolecule(FILE *bfin, int nfin,
FILE *bfout, int nfout) {
/* Process one instance of B */
int N, i; char type ='B';
if (fread(&N, sizeof(int), 1, bfin) != 1)
return 1;

if (feof(bfin) == 0) {
fwrite(&type, sizeof(char), 1, bfout);
fwrite(&N, sizeof(int), 1, bfout);
for (i = 0; i < N; i++)
CEDE(bfin, bfout);
E(bfin, bfout);

}
}
fflush(bfout); return 0;

}
void CEDE(FILE *fin, FILE *fout) {
if (feof(fin) == 0) {
C(fin, fout); E(fin, fout);
D(fin, fout); E(fin, fout);

}
}
void E(FILE *fin, FILE *fout) {
if (feof(fin) == 0) {
if (ReadEData(fin, &Data) == -1)
return;

ProcessEData(&Data);
WriteEData(fout, &Data);

}
}

Figure 5. Sequential code for molecule I/O.

unsigned long BSize (FILE * fp, int pmin, int
pmax, int pcurrent) {
/* Segmentation function for B = n(CEDE)E */
/* Read the number of CEDE sequences; For */
/* each CEDE record, add its size. Finally,*/
/* add the size of the trailing E record. */
unsigned long offset; int N, i;
i = fread(&N, sizeof(int), 1, fp);
/* number of CEDE molecules */
offset = sizeof(int);
if (i != 1)
/* End of file or file error */
return (unsigned long) -1;

for (i = 0 ; i < N ; i++) {
offset += AtomicSize(fp); /* C size */
offset += AtomicSize(fp); /* E size */
offset += AtomicSize(fp); /* D size */
offset += AtomicSize(fp); /* E size */

}
offset += AtomicSize(fp); /* E size */
return offset;

}
unsigned long AtomicSize (FILE * fp) {
/* Size function for each Atom. */
unsigned long offset; int M;
/* Scratch buffer big enough for any atom */
char buff[4096]; /* Maximum atom size */
offset = sizeof(int);
fread(&M, sizeof(int), 1, fp);
/* number of elements in each vector */
offset += M * (sizeof(int) + sizeof(char));
/* Skip over the vectors */
fread(buff, sizeof(char), M * (sizeof(int)
+ sizeof(char)), fp);

return offset;
}

Figure 6. A segmentation function.

Output file access also needs to be coordinated. The
sequential program outputs one result for each molecule
B. To reduce synchronization, we can select a newspaper
template to obtain a segmented output file. Since the order
of the results is not important in this application,
synchronization can be further reduced by assigning a
chaotic attribute to the newspaper template. In this way, a
call to ComputeMolecule does not have to wait for all
previous calls to write their results before it can write its
result. The annotation for the output file is:
fout NEWSPAPER rc wc b ComputeMolecule=0

This annotation for file pointer fout, has chaotic read
order (rc), chaotic write order (wc), block I/O transaction
size (b), function name ComputeMolecule and
segmentation unknown (=0). Alternately, a log template
can be used for the output file. This choice will be
discussed at the end of this section.

The size of the result disk block varies for each B
molecule that is processed. However, we cannot use a
programmer-supplied segmentation function like we did
for the input records since segmentation functions are
called by the parent process before a child process is
called. In this application, the parent process, main,
cannot pre-compute the segment size of the output file,
since the size of an output record is not known until the
child process, ComputeMolecule, reads its molecule
from disk and performs its computation. Therefore, we use
an unknown segment size for the output file. The child
process writes its output data to a temporary scratch file
(local to the process if possible) as its I/O operations are
executed. When the child process is finished executing, it
reads the contents of the temporary file and sends this
complete segment in a single message to the parent
process, main. In this application, since the output file
template is chaotic, the parent process writes these
segments to the actual output file in a first-come-first-
served order.

Segmenting both the input and output files eliminates
the need for the ComputeMolecule processes to
internally synchronize their concurrent activities.
However, they must synchronize before the sequential
Stats function can be called. The rewind function in
Figure 3 serves as a barrier to guarantee that all the results
are in the output file. Stats does a sequential read of the
output file, summarizing each output record.

The parallel speedup for this application is highly
dependent on the computational granularity of the specific
molecules used. If the computation time for molecules is
short, there is only a small speedup. As the computation
time increases, so does the speedup. Figure 7 shows the
performance results for various computational
granularities and number of processors. One additional
process was used for the main program. The execution
time of the sequential program is also given for
comparison. The different granularity numbers indicate
average CPU times taken to compute the results for a
single B molecule (10 seconds, 37 seconds and 147
seconds), since the nature of these computations can be

changed. In the original application, a typical molecule
took 37 seconds. A maximum of 16 processors were used
in this set of experiments. Fourteen of them were Sun4
ELCs and the other two were slower Sun4 IPCs. The
faster processors were always used first. All processors had
a local disk for swap and temporary files and were
connected by a 10 megabit per second Ethernet network.

no. of CM Computational Granularity (secs)
processes 10 37 147

sequential 479 1853 7339
2 512 1361 4875
5 251 535 1824
10 187 324 1062
15 148 255 679

Figure 7. Performance results.

As the computational granularity increased,
parallelization produced a better speed-up since a larger
portion of the time was spent doing computation as
compared to I/O. Figure 8 shows the speedups.

0

2

4

6

8

10

12

0 5 10 15
number of processors for ComputeMolecule

sp
ee

d-
up

10 seconds
37 seconds

147 seconds
linear

Granularity

Figure 8. Speedup.

It is important to clearly understand the role that PI/OT
plays in improved application performance. The speed-up
shown in Figure 8 is a measure of the speed of a parallel
application that uses parallel I/O, versus a sequential
application that uses sequential I/O. There are two
components to this speed-up: one due to parallel
computation and the other due to parallel I/O. We are not
claiming that all of the speed-up in Figure 8 is directly
due to parallel I/O. In fact, it is possible to write a parallel
application that relies on sequential I/O since each parallel
process could send its I/O to a single I/O process that
could do all of the physical I/O sequentially. The
programmer could explicitly insert all necessary I/O
synchronization in the source code. If the granularity of
the computations was high enough and the times of the
I/O operations did not overlap very much, most of the
speed-up would result from computational parallelism.
However, we think that dividing speed-up responsibility is
irrelevant. The bottom line is that PI/OT allows a
programmer to rapidly match an I/O template to a
computational structure so that parallel I/O is painless to

implement. The alternative of hand-crafting I/O to match a
parallel computational structure is unappealing.

The dynamic segmentation function shown in Figure 6
is fairly complicated since, although each atomic object
(molecule) stores its size, each non-atomic molecule must
compute its size by calling the size function of each of its
components. This results in each molecule being
essentially read twice, once to determine its size and once
when the data is actually read. Would a simpler
segmentation function increase performance? This
application shows that in practice, the actual segmentation
function is relatively insignificant. For example, we
replaced the complicated segmentation function, BSize,
of Figure 6 by one that simply reads the length of
molecule B from disk in one read operation (after changing
the format of the molecule on disk so that the length is
there). With this change, the program speed improvement
is only 1%. In fact, if the size of all of the B molecules is
made the same, and the segmentation function is then
replaced by a segmentation constant, then there is no
further measurable improvement. Therefore, our approach
of calling a user-supplied dynamic segmentation function
supports dynamic molecule configurations without any
significant segmentation function performance penalty.

In this paper we have presented an application that uses
a single parallel I/O template, the newspaper, to
demonstrate template-based parallel I/O. We have done
this for simplicity so that the reader would not have to
learn the semantics of more than one template. However,
it is easy to experiment with different templates to
compare their relative performance for any particular
application. For example, a programmer could select a log
template instead of a newspaper, for the output file of the
ComputeMolecule process. Unfortunately, for the
docking problem, a log turns out to be a poor choice since
the variable size of the output records causes too much
synchronization overhead and results in a 25% slowdown
from the sequential time. Nevertheless, it is easy to
determine that a log template is a poor choice, since no
code has to be rewritten to try it. It took only a few
minutes to change the template to a log and re-run the
program. It takes hours to modify the I/O source code in a
non-template-based system like PIOUS to produce a
similar change in functionality.

4. Support for complex I/O patterns

The templates are sufficient to represent the I/O
patterns in many parallel applications. However,
especially in applications that perform computations on
complex data structures, more complex patterns can
sometimes result in improved performance. For example,
in the molecular docking application of Section 3, when
the granularity of the CPU computations increases beyond
10 seconds per molecule, it is more efficient for a
ComputeMolecule process to launch separate
processes for computing multiple CEDE chains. Figure 9

shows a new process diagram that represents this change
in computational parallelism.

Compute
Molecule

main

Compute
Molecule

Compute
CEDECompute

CEDECompute
CEDECompute

CEDECompute
CEDECompute

CEDECompute
CEDECompute

CEDE

 Figure 9. Composite template processes.

If the programmer was using a template-based parallel
programming system, then this change in computational
parallelism could be achieved by changing the
computational template. For example, in the Enterprise
system, this change could be accomplished by drawing a
diagram similar to Figure 9 and by moving the code for
the sequential function ComputeCEDE to a separate
source file.

In this case, it is useful to modify the I/O templates so
that the new processes perform their own parallel I/O.
That is, the parallel I/O behaviors should be modified to
match the new computational behavior. Note that since
PI/OT uses the sequential source code of the original
ComputeMolecule function, no I/O code needs to be
changed. PI/OT supports the hierarchical composition of
I/O templates that can be used to rapidly mirror changes in
the computational parallelism. In this case, the N segment
newspaper template of the input file of the
ComputeMolecule function can be modified to contain
a newspaper template for ComputeCEDE. Similarly the
output file can be transformed to a newspaper of
newspapers. The following annotations defines the
hierarchy of newspaper templates for the input and output
files for the process diagram of Figure 9:
fin NEWSPAPER ro wo b ComputeMolecule=BSize
fin NEWSPAPER ro wo b ComputeCEDE=CEDESize
fout NEWSPAPER rc wc b ComputeMolecule=0
fout NEWSPAPER rc wc b ComputeCEDE=0

These annotations are the only changes that a
programmer must make to the parallel I/O in order to use
a newspaper of newspapers instead of a simple newspaper.
No changes to the code are necessary.

Figure 10 contains performance results for the
composed newspaper I/O templates used in the process
diagram of Figure 9. We used the same input file that was
used to generate the performance results in Figure 7, with
147 second computational time. Four different strategies
are shown for distributing the ComputeMolecule and
ComputeCEDE processes among 10 of the processors. In
addition, one processor is used to execute the main

process, one processor is used to manage the multiple
processes for ComputeMolecule and one processor is
used to manage the multiple processes for
ComputeCEDE . Notice that using 10 processes for
ComputeMolecule and 0 for ComputeCEDE
corresponds to the 1062 second time in Figure 7. The
results in Figure 10 are the average of 5 trials with less
than 1% variation between trials.

CMolecule
replication

CCEDE
replication

Time (sec)

10 0 1062
2 8 1023
3 7 1158
4 6 1344

Figure 10. Composed I/O templates.

These strategies can be quickly tested since no code
needs to be re-compiled. Only computational annotations
need to be changed. The details of these annotations are
not germane to this discussion except that the number of
processes allocated to ComputeMolecule and
ComputeCEDE can easily be changed subject to the
constraint that a total of 10 processes are used. In this
case, we can see from Figure 10 that allocating 2
processes to ComputeMolecule and 8 processes to
ComputeCEDE is best. This means that the hierarchical
process structure of Figure 10 has a 4% better performance
result than the simple process structure of Section 3.
Previously, you could argue that the increased difficulty in
coding a more complex process structure would not justify
such a marginal performance improvement. However,
with templates for both computation and I/O, the code
does not change and it is easy to experiment with different
process hierarchies.

These experiments were re-run on a heterogeneous
network consisting of one Sparc 10 (SS10) dual processor
unit, two Sun4 Classics, five Sun ELCs and five Sun
SLCs. The same general pattern emerged in that the 2/8
split performed the best. However, in this case the 3/7
split was also better than the 10/0 split. This difference is
due to the widely varying processing speeds of the
machines. The important point here is that the template
I/O approach allows you to rapidly experiment to find the
best configuration for the machines you have on hand.

5. Conclusions and future work

Parallelizing the I/O part of a distributed parallel
application is difficult for three reasons. First, the data
files must often be segmented to allow parallel access.
Segmentation is especially difficult for irregular data
structures whose structure can only be determined at run-
time. Second, the I/O accesses must be coordinated with
the computational parallelism. Third, the low-level details
of distributed I/O, such as file pointer management and
synchronization, are difficult to implement correctly.

PI/OT addresses all of these difficulties in the context
of an integrated template-oriented parallel programming
system. High level parallel I/O behaviors can be described
using the pre-defined templates. Multiple templates can be
composed to extend the descriptive power of the template
behavior, and static or dynamic segmentation is supported
through the template attributes. The I/O can be expressed
as sequential accesses in the parallel program, making it
easier to implement the access semantics correctly. The
templates are then applied automatically by the PPS to
parallelize the accesses in concert with the parallel
computational structure. Low-level file pointer
management and synchronization is correctly and
automatically handled by the system.

We have demonstrated these properties on a sample
application from biochemistry that illustrates PI/OTs
capabilities for handling dynamic segmentation of
irregular data structures. We have also shown how the
compositional power of templates is easily incorporated to
support complex parallel computation and I/O structures.

References

[1] P. Corbett, S. Baylor, and D. Feitelson, "Overview of
the Vesta Parallel File System," IPPS '93 Workshop on
I/O in Parallel Computer Systems, pp. 1-16, 1993.

[2] P. Corbett, D. Feitelson, Y. Hsu, et. al., “Overview of
the MPI-IO Parallel I/O Interface,” Third Workshop on
I/O in Parallel Distributed Systems, pp. 1-15, 1995.

[3] T. Crockett, “File Concepts For Parallel I/O”
Supercomputing'89, pp. 574-579,1989.

[4] A. Grimshaw and E. Loyot Jr., “ELFS: Object-Oriented
Extensible File Systems,” University of Virginia,
Computer Science Report TR-91-14, July 1991.

[5] J. Hartman and J. Ousterhout, “The Zebra Striped
Network File System,” ACM Transactions on Computer
Systems, 13(3), pp. 274-310, 1995.

[6] T. Hart and R. Read, "A Multiple-Start Monte Carlo
Docking Method," Proteins: Structure, Function and
Genetics, 13, pp. 206-222, 1992.

[7] J. Moore, P. Hatcher, and M. Quinn, "Stream*: Fast,
Flexible, Data-Parallel I/O," Proceedings of Parallel
Computing 95, pp. 287-294, 1995.

[8] S. Moyer and V. Sunderam, “Scalable Concurrency
Control for Parallel File Systems,” Third Workshop on
I/O in Parallel and Distributed Systems, pp. 90-106,
1995.

[9] N. Nieuwejaar and D. Kotz, “Performance of the Galley
File System,” Fourth Annual Workshop on I/O in
Parallel and Distributed Systems, pp. 83-94, 1996.

[10] I. Parsons, "PI/OT: A Template Approach to Parallel
I/O," Ph.D. Thesis, Department of Computing Science,
University of Alberta, 1997.

[11] I. Parsons, R. Unrau, J. Schaeffer, and D. Szafron,
"PI/OT: Parallel I/O Templates," Parallel Computing,
Vol. 23, No. 4-5, pp. 543-570, May 1997.

[12] J. Schaeffer, D. Szafron, G. Lobe, and I. Parsons, “The
Enterprise Model for Developing Distributed
Applications,” IEEE Parallel & Distributed Technology,
1(3), pp. 85-96, 1993.

