

Abstract—High performance and accurate protein function
prediction is an important problem in molecular biology. Many
contemporary ontologies, such as Gene Ontology (GO), have a
hierarchical structure that can be exploited to improve the
prediction accuracy, and lower the computational cost, of protein
function prediction. We leverage the hierarchical structure of the
ontology in two ways. First, we present a method of creating
hierarchy-aware training sets for machine-learned classifiers and
we show that, in the case of GO molecular function, it is the most
accurate method compared to not considering the hierarchy
during training. Second, we use the hierarchy to reduce the
computational cost of classification. We also introduce a sound
methodology for evaluating hierarchical classifiers using global
cross-validation. Biologists often use sequence similarity (e.g.
BLAST) to identify a “nearest neighbor” sequence and use the
database annotations of this neighbor to predict protein function.
In these cases, we use the hierarchy to improve accuracy by a
small amount. When no similar sequences can be found (which is
true for up to 40% of some common proteomes), our technique
can improve accuracy by a more significant amount. Although
this paper focuses on a specific important application—protein
function prediction for the GO hierarchy—the techniques may be
applied to any classification problem over a hierarchical
ontology.

I. INTRODUCTION
The rate at which sequencing methods are producing

genomic and proteomic data is far outpacing the rate at which
these biological systems are being experimentally annotated.
In response, there has been much research in automated
protein function annotation, designed to provide biologists
with the most likely functions that proteins perform [20].
These methods should be highly accurate to be useful, and
they should be high-throughput so they can be used for a large
amount of data. Here, we present a computational tool for
predicting the Gene Ontology (GO) [25] molecular function of
proteins from sequence data.

A major concern in automated systems is the ontology used
for prediction. The ontology is a set of terms describing the
problem domain in a standardized way. In predicting
molecular function, the ontology is a set of terms that describe
the possible functions that proteins perform in the cell.
Although non-hierarchical, flat ontologies such as GeneQuiz
[8] and others are suitable for describing the general function
of proteins, a more sophisticated approach is useful for
describing more specific functions of proteins. Furthermore,
different experiments to verify the function of proteins provide

different levels of detail about that protein’s functions, which
leaves many proteins with incomplete or overly general
annotations. Hierarchical ontologies are an effective way of
addressing both of these issues.

In ontologies such as EC [2], SCOP [3] and GO, both
general and specific knowledge is represented in a hierarchical
structure where general terms are represented by nodes near
the root of the ontology and specific terms are represented by
nodes near the leaves of the ontology. The hierarchy defines
an inheritance (is-a) relationship between the term nodes,
where each term is a special case of its parent terms. That is,
any term is-a special case of each of its ancestor terms, where
an ancestor is any term along the path from the term to the
root of the hierarchy.

In the GO hierarchy, the inheritance relationship is called
the true path rule [25]. For example, the link from ion binding
to metal ion binding means that every protein associated with
the term metal ion binding inherits the ion binding term (i.e.,
metal ion binding is-a special case of ion binding). As the
knowledge of a particular protein is refined, new terms from
the ontology can be added to it. Some of these new terms are
newly discovered functions. In this case, the new term appears
in the graph as a descendent node of a previously known,
more general node. The true path rule plays an important role
in our hierarchy-aware methodology for training machine-
learned classifiers and predicting protein function. Without
the true path rule, predictions within the hierarchy would be
inconsistent.

GO describes three aspects of protein annotation: cellular
component, biological process, and molecular function.
However, our work is focused on only the molecular function
aspect of GO. We present Classification in a Hierarchy Under
Gene Ontology (CHUGO), a system that exploits the
hierarchical structure of the GO to make faster and more
accurate predictions of protein function. CHUGO assigns each
protein to one or more of a specified set of 406 GO functional
classes, spanning a large spectrum of functionality. By
contrast, the EC ontology is concerned with only enzymatic
proteins, and the SCOP only deals with protein structures.

Many proteins have multiple functions. For example, the
average number of experimentally verified functions for the
proteins in the Gene Ontology Annotation project (GOA) [1]
is 1.35. One standard machine learning approach in such
cases is to build a series of local binary predictors that predict

Improving Protein Function Prediction using the
Hierarchical Structure of the Gene Ontology

Roman Eisner, Brett Poulin, Duane Szafron, Paul Lu, Russ Greiner
Department of Computing Science

University of Alberta
Edmonton, AB, T6G 2E8 CANADA

{eisner, poulin, duane, paullu, greiner}@cs.ualberta.ca

Duane Szafron
Text Box
This is a pre-print of a paper that will appear in the Proceedings of 2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology, November 2005.

“yes” or “no” for each term in the ontology. We argue that if
the ontology forms a hierarchy, the speed and accuracy of
local predictors can be improved by exploiting the relationship
between the terms in the ontology.

This work makes contributions in three main areas:

1. Evaluation methodology: In ontologies where
multiple labels are possible, precision, recall, and
cross-validation are concepts that must be re-
visited, especially given a hierarchical ontology.
We define and examine a hierarchy-aware
evaluation methodology (Section 2).

2. Training set design: Structured ontologies are
encoded with important information about
relationships between terms, and are a way of
representing incomplete data. We present a novel
and effective methodology that exploits the
inherent structure of a hierarchical ontology
(Section 3).

3. Accurate and efficient protein function prediction:
The structure of a hierarchical ontology can also be
exploited at prediction time to improve predictive
performance, and lower computational costs
(Section 4). We also predict a large number of
terms – 406 molecular functions.

A. Related Work
There is a large body of research seeking ways to predict

the function of a given protein. One approach is to use the
protein’s 3-dimensional structure to predict that protein's
function [22]. Since this approach requires that the protein's
structure be solved (or at least predicted accurately) it provides
very limited coverage across all of the proteins in any
particular organism. A second set of techniques uses
documents describing proteins to predict the functions of these
proteins [19]. This technique also has extremely limited
coverage on a per-organism basis. Coverage can be improved
by using a technique based on finding similar sequences using
BLAST [16]. Such techniques use annotations from similar
sequences to predict the function of the unknown protein (also
called Nearest Neighbor). However, we demonstrate (Section
4) that such approaches do not work well for predicting GO
functions when the most similar sequences found by BLAST
are above the 10-3 E-value threshold. This often limits the
coverage of these predictors to only about 60% of the proteins
in a proteome.

King et al [13] presents another approach, one that is only
based on the existing annotations of proteins. The system
looks at existing annotations of the query protein, and predicts
annotations that often correlate with the existing predictions.
This is done because the authors correctly observe that protein
annotations are often incomplete. They describe protein
annotations as incomplete because “...there are genes whose
attributes are not yet all known, and because there is literature
that has not yet been digested by the database curators” [13].
However, in Section 3 we argue that even experimentally
determined annotations fresh from the lab may be incomplete,

since they may be overly general – and will become more
specific in the future. The methodology presented by King et
al also suffers from the fact that functions that are correlated
may not always occur together. In CHUGO, each function is
predicted individually, and correlations occur as a natural
result of the prediction process.

Our goal is to predict a protein's function starting from
sequence data. Protfun [12] is another example of such an
approach. It uses local sequence properties, such as predicted
post-translational modifications, sorting signals and properties
computed from amino acid composition. However, Protfun
does not exploit knowledge of the hierarchy, and the set of 14
GO terms that it predicts is relatively small. In addition to
using local sequence properties, we also use the annotations
from similar sequences in Swiss-Prot found by BLAST, when
they are available.

The machine learning literature has described attempts to
utilize the structure of a hierarchical ontology to improve
predictive accuracy. Kiritchenko et al [19] used the hierarchy
to increase the number of training instances at each node, by
first making the training data more consistent with the
ontology. We extend this work by investigating different
degrees of consistency with the hierarchy when creating our
predictors.

Chakrabarti et al [5] and King et al [13] both used the
structure of the underlying ontology to build a Bayesian
network. Similarly, the structure of the ontology has also been
exploited to create a hierarchical mixture of experts model
[11]. Although our system does not use more models as
complex as these, they could be combined with our approach
to potentially increase predictive performance.

Some results [6] have shown that a statistical technique
known as shrinkage can be used to set the parameters in a
hierarchy of predictors. Here, the ontology is exploited as
prior knowledge to understand which classes are related, and
thus, which parameters should have similar settings.

Other hierarchies have been exploited to change the
formulation of Support Vector Machines [15], and Association
Rules [7]. In principle, this approach could be combined with
our own, since the two techniques are independent.

Greiner et al observed that a top-down decision model in
hierarchical classification could have poor results since all
predictors along the path to the true label must agree [4]. Also,
other methods of training individual term predictors were
mentioned but not explored. Our methods of training set
design allow for a more inclusive classifier in which the top-
down model is more feasible, and thus we can reduce
computational complexity without a resulting loss of precision
and recall.

II. EVALUATION METHODOLOGY

A. Scoring Predictions in a Hierarchy
When annotating proteins with GO terms, each protein can

be assigned multiple terms for two reasons. First, due to the
hierarchical nature of GO, a protein annotated with a function
is implicitly annotated with all of the function’s parents, up to

the root node. For example, if a protein's function is metal ion
binding, then it is implicitly also a binding protein due to the
true path rule. Second, a protein could have multiple
functional domains or react to more than one molecule. For
example, the protein JIP1_MOUSE is annotated with kinesin
binding and protein kinase binding. Neither of these terms is a
direct specialization of the other, so there is no
ancestor/descendent relationship between these terms in GO.

The fact that each protein can have more than one GO term
causes problems for the traditional machine learning measures
of precision, recall, accuracy, and sensitivity. For classifiers, it
is easy to evaluate a binary “correct” or “incorrect” prediction.
But, intuitively, predictions that are “close” to the oracle label
should score “better” than predictions that are in an unrelated
part of the hierarchy.

Our evaluation methodology is simple, intuitive, and
consistent with the true path rule. First, if a protein is assigned
a label, then it is also assigned the label of all of its ancestors
up to the root node. This simple but important consequence of
the hierarchy is easily overlooked. If the protein has another
predicted label in an unrelated part of the hierarchy, those
labels and their propagations are also added to the set of
labels. Only after propagation are the formulas for precision
and recall applied to find hierarchical precision and recall.

Failure to follow the true path rule (e.g. by propagating the
labels via the is-a relationship to the root node), leads to
inaccurate predictions and distorted evaluation metrics.
Incorporating propagation into the evaluation of predictions
allows for a graduated scoring system where distance in the
ontology is intrinsically taken into account. Hierarchical
precision and recall reflect how close, conceptually,
predictions are to the correct labels in the ontology.

For example, consider a term hierarchy where A is the
parent of B which is the parent of C (Fig. 1). Assume that
protein P1 is labeled {B} and protein P2 is labeled {C}. By the
true path rule, the labeling really should be {A, B} for P1, and
{A, B, C} for P2 after propagation (shown by circles in the
table within Fig. 1). Assume that for protein P1 we predict the
class to be {C}, which is different than the truth. By the true
path rule, we then assign P1 the labels {A, B, C} (shown by
x’s in the table within Fig. 1). Similarly, for P2 we predict the
label to be {B} and propagate to get {A, B}. Both of the
initial labels for P1 and P2 are different than the oracle, which
misleadingly suggests a poor prediction. But, hierarchical
precision and recall allow for an evaluation scheme which is
more in tune with intuition.

Intuitively, despite the differences with the oracle, our
prediction for P1 should have perfect recall, since it correctly
recalled that P1 has terms {A, B}. But the precision is only
2/3 since only 2 out of the 3 predicted labels were correct,
which is an intuitively sound penalty for the imperfect
prediction. Similarly, our prediction for P2 should have perfect
precision, since every predicted term is correct, but recall is
only 2/3 since only 2 out of 3 correct labels were recalled.
This example shows that predicting too “high” in the hierarchy
(e.g. P2) reduces recall, but does not affect precision and that
predicting too “low” in the hierarchy (e.g. P1) reduces
precision, but does not affect recall. Lastly, predictions that
are in a different part of the hierarchy altogether (e.g.
predicting P1 is in D, is not shown in the example) will have

neither high precision nor high recall. The ability to handle
“close” predictions and altogether wrong predictions are
important aspects of our methodology.

Fig.1. A simple evaluation example. Protein P1 is labeled as “B” but predicted
as “C”, and protein P2 is labeled as “C” but predicted as “B”.

The original, formal presentation of our approach to multi-

class precision and recall was introduced by Poulin [17]. In
this paper, we extend it to hierarchies by applying the true
path rule. Independently, the same approach was used by
Kiritchenko et al. [19], also in the domain of GO, and a formal
definition was published later [21]. A similar scoring metric
which considers the hierarchy was also presented by Wu et al
[52], but it is a single measure, and thus lacks the intuitive
value of precision and recall.

B. Evaluation using Global Fold Selection
To approximate how well a classifier will perform when

presented with new data, cross-validation is often used. For all
of our experiments, we use 5-fold cross-validation. In 5-fold
cross-validation, the data set is first randomly split into 5 parts
of equal size. Then, for 5 iterations, one fold is withheld as the
test set, and the remaining 4 folds are used as the training set
to create a classifier. It is important that random fold
generation ensures that the same ratio of positive and negative
training instances is placed in each fold. For example, if there
are 100 positive training instances and 900 negative training
instances, each fold should have 20 positive training instances
and 180 negative training instances. We refer to this property
as fold balance. Fold balance ensures that each classifier
trained during cross-validation behaves as closely as possible
to the final classifier created by training on all of the folds.
This assumes that the training instances have the same
distribution of positive and negative training instances as the
unknown query data on which the classifier will be invoked.
Of course the folds may not be perfectly balanced due to
integer division, but they should be as close as possible.

Precision, recall and F-measure are computed for the
classifiers created for each fold. The statistics for the 5 folds
are averaged to give an accurate representation of the
predictive performance of the classifier on future instances.
Statistics from cross-validation are a good indicator of how
well a classification system will predict new data due to the
fact that no information from a test fold is used to build the

predictor that will be applied to that test fold. We refer to this
principle as fold isolation. An alternate set of statistics can be
computed by using all training data to build a classifier and
then applying this classifier to each training instance in turn
and counting re-substitution errors. Statistics based on re-
substitution do not exhibit any isolation, since test data is used
in making predictions on test data. Therefore these statistics
are not useful in predicting statistics for future instances.

Hierarchical classification causes problems for cross-
validation since in this case, it is difficult to maintain both fold
balance and fold isolation, in the presence of the true path rule.
First, we assert that fold isolation requires that the same folds
be used for all node classifiers across the hierarchy. We will
refer to this as global fold selection. The following example
shows the difficulty of having folds that satisfy both. Assume
a protein P is in fold 1 for node B and in fold 2 for its parent
node A, and assume we are evaluating the classifiers when the
test set is fold 2. It is possible for the classifier at node B to
predict positive for protein P and the classifier at node A to
predict negative for protein P. However, the true path rule will
propagate the positive prediction from node B to parent node
A. This means that protein P was used as a training instance to
make a classifier for node B and this classifier was used to
propagate a positive prediction for protein P to class A. Using
a protein in a training set to make a prediction about the same
protein in a test set violates the fold isolation rule. Therefore a
single global fold split must be used for all nodes.

Unfortunately, global fold selection makes it difficult (and
in some cases impossible) to ensure fold balance. To address
this problem, we randomly generate 5,000 candidate splits of
the data set, and choose the split that has the best fold balance.
Assume that at node Ni there are Pi positive training instances
out of Ti total training instances of which Pij positive training
instances and Tij total training instances are in fold Fj. We
define the deviation Dij of fold Fj at node Ni to be ((Pij/Tij) –
(Pi/Ti)) / (Pi/Ti). For example, if at node N1 there are 10
positive training instances out of 90 total training instances
and in fold F2 for N1 there are 4 positive training instances out
of 40, then the deviation of fold 2 for node 1 is D12 = (4/40 –
10/90) /(10/90) = -0.1. For each split we compute the standard
deviation of all folds for all nodes:

!

" =

Dij

j

#
i

$Dij

NumberofFolds$ NumberofNodes%1

The best fold balance occurs for the split whose standard

deviation is the smallest (0.064) and the worst fold balance
occurs for the split whose standard deviation is the largest
(0.079). This suggests that although perfect fold balance
cannot be guaranteed, global folds are feasible using a simple
randomized approach.

III. TRAINING SET DESIGN

A. Data Set
Our data set consists of 14,362 proteins annotated with their

GO function terms. To create this data set, we first

downloaded the Gene Ontology from the GO website [25],
and then obtained our candidate set of proteins by examining
all proteins in the UniProt database [14]. We looked up each
of these proteins in the Gene Ontology Annotation project
(GOA) [1]. We wanted to build a conservative training set
based only on experimentally determined annotations, to avoid
any bias in our data set due to other electronic annotation
systems. The GOA project includes annotation codes with
each of their GO annotations. A protein was retained in the
training set if its GOA indicated it was not derived from
another electronic annotation system. We included annotation
codes IDA, IEP, IGI, IMP, IPI, RCA, TAS, and excluded
codes IC, IEA, ISS, NAS, ND - since the latter are either
annotated using electronic means, or are ambiguous in their
origin. We used the August 28, 2004 version of the GO
molecular function ontology, and the August 11, 2004 version
of the GOA mapping file. For protein sequence data we used
release 27 of TrEMBL, and release 44 of Swiss-Prot (which
together comprise UniProt release 2.0).

Originally, there were 7,399 nodes in the GO molecular
function hierarchy. However, to create reasonably accurate
local GO term predictors, we required a sufficient number of
positive training instances. Therefore, we only considered
those GO terms that have at least 20 proteins annotated at or
below them in the hierarchy. This decreased the size of the
ontology to 406 nodes. Note that CHUGO will only make a
prediction into one or more of these 406 categories.

B. Term Predictors
CHUGO uses hierarchy-aware ‘local’ predictors to predict

GO function. In hierarchical prediction, local predictors are
those that predict a single GO term. In contrast, BLAST
Nearest Neighbor (BLAST-NN) (that is, using the top BLAST
hit’s annotations as the predictions for a query instance) is a
global predictor, as a single call to BLAST can assign a
protein to one or more nodes. In contrast, CHUGO’s local
predictors train a binary classifier to predict each term
separately in the GO hierarchy, using a variety of supervised
learning techniques. Supervised learning is a two-stage
process where proteins whose GO terms are known are used to
train (that is, create) a classifier, and then the classifier is used
to make predictions on proteins whose GO terms are not
known. During training, each classifier must be presented
with positive examples (those that represent the node), and
negative examples (those that represent instances outside of
the node). Since we are able to choose our training data as we
wish, we evaluate a spectrum of methods to construct the
training data for each node.

In hierarchical classification, all resulting predictions must
obey the true path rule. Therefore, as a post-processing step,
we propagate all positive predictions upwards in the ontology.
Assuming that we have a perfect classification system, there
are two major situations where local predictors in a hierarchy
could perform perfectly on test data. These two styles of local
predictors act differently when presented with a query protein,
but both have the potential to result in perfect accuracy.

First, if a protein is to be assigned GO node Ni, every node
in the hierarchy will return a negative prediction, except for
node Ni that returns a positive prediction. During evaluation,
this prediction is propagated, and evaluates at 100% precision
and recall, if the prediction is correct. In this case, we call
these classifiers exclusive classifiers, since they exclude every
instance except for those that belong exactly at node Ni (and
not those that are more general or more specific). Exclusive
classifiers are traditionally used for non-hierachical, flat
ontologies, however, in theory, a system of exclusive
classifiers can perform perfectly in a hierarchy if each local
predictor predicts perfectly. But, as we will show, they
perform poorly on Gene Ontology function prediction.

Second, given a protein that belongs at node Ni, the term
predictor for Ni predicts positive, and so do all of Ni’s
ancestors in the hierarchy. Here, the classification would
evaluate at 100% precision and recall as well. In this case, we
call these classifiers inclusive classifiers.

Between the extremes, from exclusive to inclusive, there is
a grey area of classifier design where we sporadically find
positive and negative predictions between Ni and the root
node. Since it is possible for both exclusive and inclusive
designs to have perfect precision and recall, there is no a
priori reason to choose between inclusive or exclusive
classifiers. Thus, we will evaluate 4 schemes to construct
training data that range from exclusive to inclusive in their
nature. Ultimately, we conclude that the inclusive schemes
are preferable, for a variety of reasons.

For a particular GO node Ni, the “exclusive” approach to
training set construction (Table I) would use all proteins
explicitly labeled with the term Ni as the positive training set
and all proteins not explicitly labeled with Ni as the negative
training set.

One argument against this approach is that it does not
consider the hierarchy in training set construction. However,
the descendent nodes of Ni are not good negative instances for
the predictor at Ni. Therefore we could decide to exclude these
instances from the set of negative examples. This is labeled as
“less exclusive” in Table I.

Next we could observe that all descendents of Ni are not
only poor negative examples, but they could be used as
positive training examples, due to the nature of the is-a
relationship in the GO hierarchy. This has previously been
done in [21], but we wish to quantify the difference in each of
these schemes for constructing training data. This method is
called “less inclusive” in Table I.

Finally, to be most consistent with the hierarchy, we could
observe that those proteins that are annotated as ancestors of
Ni could in fact be instances of Ni. According to the GO
specifications, proteins are annotated with the most specific
function term for which an experiment has been performed.
For example, if a protein is annotated with term ion binding, it
is due to an experiment that confirmed this. However, this
does not mean that the protein does not belong to one of the
child classes: anion binding, cation binding or metal ion
binding, just that no experiment has determined that it belongs
to one of these subclasses. Since it is common for future

experiments to supply more specialized terms, it could be
dangerous to include proteins annotated with ancestor terms in
constructing a negative training set for a term. Therefore, our
final training set rule disallows any proteins labeled ion
binding in the negative training sets of predictors for the three
child terms. One could also argue that future experiments
could add any arbitrary new term to a protein, so that no
negative training instances can be used with confidence. This
is a good point, and it applies anytime a classification task can
have multiple positive answers and negative (experimental)
evidence is not available, not recorded, or incomplete.
However, we need negative training instances and at least we
guard against the more common case of more specific
annotations following less specific ones. We term this final
approach an inclusive classifier, and it is shown in Table I in
the row marked “inclusive”.

TABLE I

A VARIETY OF TRAINING STRATEGIES CAN BE USED TO CONSTRUCT A PREDICTOR
FOR NODE A IN THE HIERARCHY.

Method Positive

Examples
Negative Examples Not Used

Exclusive A Not A -
Less

Exclusive
A Not [A +

Descendents(A)]
Descendents(A)

Less
Inclusive

A +
Descendents(A)

Not [A +
Descendents(A)]

-

Inclusive A +
Descendents(A)

Not [A +
Descendents(A) +

Ancestors(A)]

Ancestors(A)

We evaluated these four training methods. For simplicity,

we chose to evaluate the training methods using a single local
predictor technology for this experiment. We used Proteome
Analyst [18] features in conjunction with Support Vector
Machines (more details in Section 4). Table II summarizes the
results of cross-validation for each of the 4 training set
construction methodologies. The precision of all 4 techniques
is comparable, but there are significant differences in recall
and F-measure (The F-measure in each row of the table also
has a 95% confidence interval of less than 0.01, which is not
shown).

TABLE II

CROSS-VALIDATION PERFORMANCE ON TRAINING STRATEGIES FOR EACH NODE
PREDICTOR USING PA FEATURES. THE BEST VALUES IN EACH COLUMN ARE BOLDFACE.

RESULTS SHOWN USE THE PA-SVM LOCAL PREDICTORS.

Method Precision Recall F-Measure Exceptions
per Protein

Exclusive 0.758 0.326 0.456 1.517
Less
Exclusive

0.774 0.401 0.528 1.736

Less
Inclusive

0.772 0.634 0.696 0.049

Inclusive 0.754 0.648 0.697 0.087

Our goal is to maximize precision, recall, and F-measure.
The column “exceptions per protein” in Table II describes
how often we see a positive prediction for a node predictor,
and a negative prediction for that node’s ancestor term(s) –
violations of the true path rule. By their nature, exclusive

classifiers are more likely to have many exceptions, while
inclusive classifiers are likely to have few. The data in Table
II matches this intuition. But, as previously discussed, the
evaluation methodology requires that we first propagate
positive predictions upward in the ontology, which
ameliorates the effect of exceptions, so our test is fair to all
four strategies. In fact, the differences between techniques can
be explained via differences in the size of the positive training
set (exclusive classifiers have fewer positive training instances
and more negative training instances), and noise in the data
used for training.

We can see that as our classifiers become more and more
inclusive, recall and F-measure are increased. The first reason
is that we are increasing the number of positive training
examples (going from less exclusive to less inclusive), so the
predictors become better at recognizing those proteins that
should belong at or below each node. The second reason
classifiers perform better is that noise is removed from the
training sets. That is, as we become more and more inclusive
we are not using instances that are intuitively positive in the
negative training set, when going from exclusive to less
exclusive. Also, by excluding ambiguously labeled instances
from the negative training set, when going from less inclusive
to inclusive classifiers, noise is further removed.

As we make our classifiers more inclusive, there is a higher
chance that a false negative at a node will be offset by a true
positive prediction at a descendent node, and the false
negative will be overruled by the true path rule. In a sense,
inclusive classifiers reinforce each other along the path in a
hierarchy, whereas in a system of exclusive classifiers, we are
relying on one predictor to make the correct call for each
assigned label.

The inclusive strategy has the best overall recall and F-
measure and we recommend it as the best overall strategy.
Admittedly, our cross-validation experiment shows that
excluding ancestors from the negative training instances set
only has a small advantage over the less inclusive strategy.
However, we speculate that the actual advantages of excluding
ancestors are greater than shown by this experiment. We
believe that the nature of cross-validation tests, and the fact
that an absence of a label in the GO hierarchy does not
necessarily mean a label is wrong, leads to lower quantitative
results for what is, arguably, a more accurate predictor in the
future, where more information is obtained about the training
data. Specifically, proteins may not be annotated with all the
labels that are appropriate. As discussed earlier, a missing
experiment results in a missing label, but the label may be
correct. For example, a protein that is annotated as an ion
binding protein, but in actuality is a anion binding protein
(which is a child of ion binding in the hierarchy), would non-
intuitively give us a better score when we predict it as NOT
anion binding. This is because “not anion binding” matches
the annotations, which we consider as the correct answer
during cross-validation, but “not anion binding” may not
match reality. Our predictor may answer “anion binding”
because of legitimate, machine-learned similarities between
the protein and other proteins in the anion binding set. A

future experiment may show that the protein is indeed “anion
binding”. In fact, the overall goal is to have predictors that
can predict labels that are not currently known. This systemic
side-effect of taking the annotation as “complete truth” (even
when it is not complete) is a difficult issue to measure and
address. However, we note that our hierarchy-aware
definitions for recall, precision, and F-measure minimize these
side-effects, and we plan on investigating the issue as future
work.

IV. PREDICTING PROTEIN FUNCTION
Biologists strive to understand the function of a protein.

Ultimately, a laboratory experiment is needed to confirm the
function of a protein, but a computational prediction can be
useful both in itself and in suggesting an appropriate
experiment.

A variety of computational techniques have been studied,
ranging from sequence comparison, to machine learning, to
structure analysis and simulation. As well, the techniques
range from local predictors to global predictors, either of
which may or may not exploit knowledge of the hierarchy.

We argue (and demonstrate) that the hierarchical structure
of ontologies such as GO should be exploited. First, not
exploiting the hierarchical structure of GO can violate the true
path rule, which implies inconsistent predictions. Second, as
already discussed, the construction of training sets for
machine-learned classifiers benefits from a hierarchy. In
general, it can be difficult to accumulate a sufficient number
of positive and negative training instances, and we can exploit
the hierarchy to address this problem. Third, the performance
cost of using machine-learned classifiers can be controlled
when the hierarchy is considered.

Sequence comparison is commonly used to give biologists
an initial idea of what a protein's role in the cell is. The most
commonly used method of sequence comparison is BLAST
[1]. A typical use case of BLAST would be running a new
protein against a trusted database (such as Swiss-Prot), and
then manually reviewing the annotations for the similar
proteins found by BLAST. Assuming that the top BLAST hits
are homologous to the query protein, the user may then decide
that it is likely that their query protein is similar in function,
and then proceed with further experiments based on this data.
However, proteins that are not similar to well-studied proteins
will not return a good BLAST result (measured in terms of E-
value), so the biologist is faced with either looking at proteins
that are very disparate from their protein of interest, looking
for other sequence information, or proceeding with “wet lab”
experiments without any initial idea of the protein’s function.
Due to the ubiquitous use of BLAST, we compare CHUGO to
BLAST in terms of predictive accuracy, coverage, and
computational cost, even though BLAST itself does not take
into account hierarchy information.

During cross validation, BLAST is run for each of the test
proteins against the current fold's training set of proteins. A
BLAST hit is a match for this test protein against the current
training set. Each BLAST hit is scored with an E-value that
represents the similarity of the two protein sequences. As the

E-value increases, the less similar the match is to the query
protein. Our experiments have found that the BLAST
predictor performs the best when we set our threshold for
accepting BLAST hits at an E-value of 10-3. The sequences
that do not have a BLAST hit with E-value ≤ 10-3 are proteins
that are quite different from well-studied proteins. These two
cases - when the protein has high sequence similarity to our
training set, and when it does not - will be examined
separately.

A. Proteins with one or more good BLAST Hits
During cross-validation, 89% (12,725 out of 14,362) of the

proteins in our data set had a good BLAST hit. Our goal is to
try to exploit the hierarchical structure of GO to make the
predictions for these proteins more accurate.

Our predictors at each node are created using an ensemble
classifier. The ensemble is composed of several classifiers:

1. SVM with PFAM as features
2. SVM with Proteome Analyst (PA) features
3. Probabilistic Suffix Trees (PSTs)
4. BLAST.

We use PFAM [10] matches within each sequence as
features for a Support Vector Machine (SVM) classifier. We
also use SwissProt annotation-based features, extracted by
Proteome Analyst [18], with an SVM classifier. Probabilistic
Suffix Trees (PSTs) have been used to predict high level GO
functions with some success in the past [17]. PSTs are trained
for each GO term, and a brute force search through their
parameter space (window length, prune depth, and
pseudocount) is performed for each predictor to optimize their
accuracy.

TABLE III

PERFORMANCE ON PROTEINS FOR WHICH BLAST RETURNS A GOOD HIT (EVALUE ≤
0.001 DURING CROSS-VALIDATION. BLAST-NN ASSIGNS THE FUNCTIONS OF THE MOST

SIMILAR PROTEIN TO THE QUERY PROTEIN. VOTING IS OUR ENSEMBLE CLASSIFIER
.

Method Precision Recall Average
Cost

BLAST-NN 77% 78% 1
Ensemble Voting 77% 80% 1219

The ensemble classifier is a simple voting scheme, where 2

or more predictors assigning a term to a protein will predict
that GO term. The results of using a voting scheme are shown
in Table III, compared to a BLAST Nearest Neighbor search.

However, to achieve these results, the predictors for each
node in the ontology must be computed for each query
sequence. This results in a far greater computational cost than
running BLAST alone. The cost in Table III is a rough
estimate at the average cost of running each prediction
method, per protein. Each node predictor is assigned a cost of
1, and BLAST is assigned a constant cost of 1 since it is a
global predictor. Thus, the cost of 1,219 for voting over the
ontology is derived by the formula (Number of Nodes) ×
(Number of Predictors at Each Node) + (Cost of BLAST).
Since we use three predictors at each node (PA-SVM, PFAM-
SVM, and PSTs in a voting ensemble) this value is 406 × 3 +
1 = 1,219. We do not add a cost of calculating the result of
voting since this is a trivial computation. Although the costs of

these predictors would in fact vary, this method will give us an
initial idea of how computationally intensive each approach is.

BLAST is a global predictor of molecular function. This
means its computational complexity does not depend on the
size of the predicted ontology (it only depends on the size of
the database that we are searching against). As Table III
shows, the results of a BLAST search are quite accurate when
highly similar sequences are found. Furthermore, the
information gained from running a BLAST search is very
important since it is both accurate, and computationally
efficient compared to running many local predictors at each
node. We can use the results of BLAST to give us a set of
candidate nodes to run our local predictors on, which will
decrease computational cost from running all node predictors.

If we examine the annotations that BLAST-NN returns, we
can see that when the annotations are incorrect, they tend to be
near the actual annotations (Fig. 2). We can exploit this fact in
two ways. First, if there is more than one good BLAST hit, we
can use these additional hits as guidelines for prediction.
Second, since we know the structure of the ontology during
prediction, we can look at classes that are nearby (in terms of
path length within the ontology) to the annotations found by
BLAST-NN. In both methods, the results of the BLAST
search are used as a seed to begin searching. As will be shown
later, searching from the root downward is a viable option,
however, it is more costly.

Fig. 2. When BLAST-NN does not return the correct nodes, the nodes that are

returned tend to be close to the correct answer.

The first option, called B-N-Union, is to look at more than
one BLAST hit's annotation. N is the number of hits whose
annotations are used. For example, if the top 2 BLAST hits
for a given protein are used to generate a union set of
annotations, then N=2. Intuitively, if we take the union of
more than one BLAST hit's annotations, we will get a wider
range of predictions. This should increase recall, and decrease
precision. However, since this set is smaller than the entire
ontology, and the recall is high, we can run our predictors on
this set of labels and get good performance while keeping
computational cost low.

The second option, called SearchN, is to exploit the
annotations returned by BLAST and search in the
neighborhood of the top BLAST hit's annotations. N is the

graph distance from the seed annotations in which we add
nodes to our set of candidate nodes. In this case, we exploit
the structure of the GO hierarchy to know which terms are
close by. Since BLAST tends to come close to the actual
predictions when it is wrong (Fig. 2), we know that there is a
high chance of the correct labels being within those that
BLAST-NN returns, or nearby. In this case we can start with
the set of GO terms that BLAST-NN returns and add the terms
in the neighborhood to the set of candidate terms. As in the
first method, recall will be increased by this method, and the
node predictor is used as a validation to compensate for this by
removing false positives. Also, similar to the first proposed
method, the computational runtime is less than running the
validating predictors for all nodes.

The advantage of the SearchN and B-N-Union approaches
is that they decrease the computational cost from running all
of the node predictors to running only predictors for likely GO
nodes. An interesting side effect is that constraining our
candidate nodes for our predictors raises precision since we
never consider those GO terms that are unlikely to be assigned
to an instance. An important note is that regardless of which
method is computationally cheaper for finding the set of
candidate GO term predictors to run, the neighborhood search
method must be used when only a single good BLAST hit is
found (since there are no other good hits to union). In total,
1,259 proteins had a single good BLAST hit, 944 had 2, and
10,522 had 3 or more. A comparison of the methods is shown
in Table IV.

TABLE IV

COMPARING METHODS OF USING BLAST TO FIND CANDIDATE LABELS, AND THEN
VALIDATING THESE SETS USING OUR PREDICTORS.

Candidate

Method
Precision Recall Average

Cost
B-1-Union 81% 75% 16
B-2-Union 79% 78% 20
B-3-Union 78% 79% 22
B-10-Union 77% 80% 32

Search1 80% 77% 82
Search2 78% 78% 221
Search3 78% 79% 430

Although the B-2-Union and Search-3 method produce the

same precision and recall, the Search-3 method is very costly.
Therefore, we recommend using B-2-Union whenever
possible (when there are enough good BLAST hits) but use
Search-3 when only a single BLAST hit is found.

Although using a simple voting technique for our predictors
is not very sophisticated, it works quite well in practice. As a
comparison, we used SVM to learn the weights on each
predictor, given all of the prediction data (which is a violation
of fold isolation). As the predictive performance in this case
was almost the same as using a simple voting ensemble, we
did not pursue weighting functions further.

B. Proteins with no good BLAST Hit
The case when there are no BLAST hits is the most

challenging, and arguably most important scenario. The more
novel the protein or organism, the less likely a protein will
appear in well-curated and well-annotated databases. In

particular, 11% (1,637) of the proteins in our data set did not
have a good BLAST hit during cross-validation. These are
sequences that are very disparate from those that have been
studied, and thus, BLAST will not be able to find a good
similar sequence in the database of experimentally verified
proteins. One option the user has is to simply accept the top
BLAST result, regardless of its E-value. However, this method
proves to be quite inaccurate, as shown in Table V. Since our
predictors of protein function model the sequences in a variety
of ways, rather than simply looking for similarities between
the sequences directly, our predictors can make predictions on
a wider range of protein sequences. For these results, the
PFAM-SVM and PA-SVM predictors prove to be the best
combination for our ensemble classifiers (since BLAST and
PSTs do not perform well on these sequences).

TABLE V

PERFORMANCE ON PROTEINS THAT DO NOT RETURN A GOOD BLAST HIT DURING
CROSS-VALIDATION.

Method Precision Recall Average

Cost
BLAST NN

(Any E-Value)
19% 20% 1

CHUGO Local Voting 55% 32% 812
CHUGO Top-Down

Local Voting
56% 32% 58

Each of these methods (accepting a lower quality BLAST

hit, or using our local predictors) increase the coverage of just
using a BLAST predictor and only accepting good BLAST
hits. However, our local predictor strategies (i.e., Local Voting
and Top-Down Local Voting) result in a large increase in
precision and recall.

Running the voting classifiers for each of the nodes in the
hierarchy is expensive. However, as the low exceptions in
Table II show, our predictions tend to be consistent with each
other. In other words, when a label is predicted as positive for
an instance, it is likely that the parent term in the ontology was
predicted as positive as well. This is because our classifiers are
as inclusive as possible. Due to the fact that we are using an
inclusive scheme for training our classifiers, we can do a top-
down search on the hierarchy without any significant loss in
predictive performance. In fact, as Table IV shows, we
actually see an increase in precision when using a top-down
model, since we do not consider some nodes that are very
unlikely to be positively labeled.

It should be noted that this scheme would not be possible
with an exclusive classifier (even if it performed perfectly),
due to the inconsistent predictions that it would produce.
Therefore, inclusive classifiers have the added advantage that
a top-down search will decrease computational cost without
the penalty to accuracy that we would see in the case of
exclusive classifiers.

There are nodes in the ontology that are fundamentally
difficult to predict using sequence-based methods, especially
on proteins that are dissimilar to the set of experimentally
annotated proteins. By keeping these nodes from the ontology,
we can raise the overall predictive performance of CHUGO.

To evaluate a smaller ontology, we need a single measure of
how well we are performing on a set of proteins. We use the
hierarchical F-measure [21] as an overall measure of our
classifier's performance, with β = 1, which means that
precision and recall are weighted as equally important.

!

F "measure =
(# 2 +1) $Precision$Recall

2 $Precision$Recall

We apply an algorithm that starts with no nodes in the

ontology, and add the node that increases our hierarchical F-
measure the most. We continue on, until all 406 nodes have
been added. Fig. 3 depicts the scores from applying the
algorithm to CHUGO and to BLAST independently. Although
this algorithm can reach local maxima, it is a good way to
compare how well the two predictors perform when excluding
hard to predict GO terms. Furthermore, we can see that
CHUGO consistently has a higher F-measure than BLAST-
NN, even when the ontologies are pruned in each prediction
system’s favour.

Fig. 3. CHUGO produces better classifiers for dissimilar proteins even

when the ontology is pruned in each predictor’s favor.

V. ORGANISM COVERAGE
Knowing how often a good BLAST hit is found during

cross-validation is useful, but ultimately a predictive system
will be used on unknown proteins, possibly in newly
sequenced organisms. It is therefore important to know how
often each of the cases described in the preceding section
would occur in reality. To approximate how often future
unknown sequences would not result in a good BLAST hit, we
run a BLAST query for each sequence in two model
organisms against our entire data set of GOA experimentally
annotated proteins (Table VI).

TABLE VI

NOT FINDING A GOOD BLAST RESULTS AGAINST EXPERIMENTAL DATA ACCOUNTS
FOR A LARGE PERCENTAGE OF SEQUENCED PROTEOMES.

Organism Good BLAST Hit No Good BLAST Hit

D. melanogaster 60% 40%
S. cerevisae 62% 38%

Within an entire proteome, the number of proteins that do
not find a good BLAST hit against our experimental data set is
much higher than we have found during cross-validation. This
shows an increased importance in the case of no good BLAST
hits found, as there are more proteins that are not similar to
studied proteins in an entire proteome. This is most likely
because there are many more proteins in these proteomes that
have not been studied, whose function is unknown, and have
no well-studied homologues. The effects would be magnified
when examining an organism that is not well studied (relative
to those shown in Table VI).

VI. DISCUSSION
Since each of the methods presented (including BLAST) are

in fact sequence-based, their performance on disparate
proteins declines. When dealing with these proteins, which are
far from well-studied proteins (in terms of sequence similarity,
and thus homology), the biologists considering them would
likely appreciate any leads they can get before beginning
lengthy experiments on them. Although our predictors may
not be extremely reliable on these disparate sequences, they do
allow for a large increase in predictive performance over
simply using BLAST Nearest Neighbor. CHUGO is therefore
a way of pushing the boundaries of sequence analysis, and
ultimately a way of speeding up the process of protein
annotation in general.

In the future we would like to find an even more efficient
way of using our local predictor technology when there are no
good BLAST hits. Accepting a lower quality hit does not
appear to be a good way of finding candidate terms to
compute, but perhaps there are other global predictors that we
could use to seed the search in the hierarchy.

Another sequence-based approach we could take is to use
secondary structure predictors to get features for our SVMs.
Secondary structure predictors are quite accurate, quick to
compute, and have proven to be correlated with some protein
functions [12]. We would like to pursue this and other
sequence-based features [12].

To help us determine the most efficient classifier, we would
also like to have a better approximation of each predictor’s
cost, rather than assigning a constant value for each. Although
this is a good way of getting an initial idea of the total cost of
different prediction methods, a more accurate measure would
be desirable.

Finally, in the case when a good BLAST hit is found, there
are ways to improve our predictors. One obvious direction
would be to find better ways to tune the many variables
(parameters for each machine learning technology, feature
selection, kernels, combinations of predictors).

VII. CONCLUSION
High-throughput and accurate protein function prediction is

important to closing the gap between sequencing data and
biological experimental data. Ontologies such GO help to
alleviate this problem by providing standardized, hierarchical
vocabularies with which to define protein functions. We have

shown three novel methods to exploit this hierarchical nature
of GO to increase predictive performance, while retaining
efficiency. We utilize the hierarchy to increase the accuracy of
our term predictors, to lower the computational cost of
running all of these term predictors, and to make our
predictions more accurate by adhering to the true path rule.

The fact that many annotations in Gene Ontology are
incomplete is partially alleviated through the use of a
hierarchical ontology. Our method of building inclusive
classifiers is a way of exploiting this hierarchical structure,
and dealing with incomplete information. The methods we
have presented are therefore applicable to many other domains
where there is incomplete data, and a standardized,
hierarchical ontology, such as document classification,
medical diagnosis, and others.

ACKNOWLEDGMENT
We would like to thank the Protein Engineering Networks

of Centres of Excellence (PENCE), the Alberta Ingenuity
Centre for Machine Learning (AICML), the Alberta Science
and Research Authority (ASRA), the Natural Sciences and
Engineering Research Council of Canada (NSERC), Silicon
Graphics, Inc., and Sun Microsystems for supporting this
research.

REFERENCES
[1] S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman, “A basic

local alignment search tool,” Journal of Molecular Biology, vol. 215, no.
3, pp. 403–410, 1990.

[2] C. Li, editor. “Biochemical nomenclature and related documents”,
Portland Press, second edition, 1992.

[3] Murzin A. G., Brenner S. E., Hubbard T., Chothia C. “SCOP: a
structural classification of proteins database for the investigation of
sequences and structures”. J. Mol. Biol. 247, pp. 536-540, 1995.

[4] R. Greiner, A. Grove, D. Schuurmans. “On learning hierarchical
classifications”. Available from http://citeseer.ist.psu.edu/38202.html,
1997.

[5] S. Chakrabarti, B. E. Dom, R. Agrawal, P. Raghaven. “Using
taxonomy, discriminants, and signatures for navigating in text
databases”, Proceedings of VLDB 97, pp. 446-455, 1997.

[6] A. K. McCallum, R. Rosenfeld, T.M. Mitchell, A. Y. Ng. “Improving
text classification by shrinkage in a hierarchy of classes”. 15th
International Conference on Machine Learning, pp. 359-367, 1998.

[7] K. Wang, S. Zhou, S. C. Liew. “Building Hierarchical Classifiers Using
Class Proximity”, Proceedings of the 25th International Conference on
Very Large Databases, pp. 363-374, 1999.

[8] M. Andrade, N. Brown, C. Leroy, S. Hoersch, A. de Daruvar, C. Reich,
A. Franchini, J. Tamames, A. Valencia, C. Ouzounis, and C. Sander,
“Automated genome sequence analysis and annotation,” Bioinformatics,
vol. 15, pp. 391–412, 1999.

[9] M. Ashburner et al. “Gene Ontology: Tool for the Unification of
Biology”. Nature Genetics, 25(1):25-29, 2000.

[10] A. Bateman et al. “The Pfam protein families database”, Nucleic Acids
Research, 30(1) pp. 276-280, 2002.

[11] M. E. Ruiz, P. Srinivasan, “Hierarchical text categorization using neural
networks”, Information Retrieval, Volume 5, No. 1, pp. 87-118, 2002.

[12] L. J. Jensen, H. Staerfeldt, and S. Brunak, “Prediction of human protein
function according to gene ontology categories.” Bioinformatics, vol. 19,
pp. 635–642, 2003.

[13] O. D. King, R. E. Foulger, S. S. Dwight, J. V. White, and F. P. Roth.
Predicting gene function from patterns of annotation. Genome Research,
13, pp. 896–904, 2003.

[14] R. Apweiler, et al. “UniProt: the universal protein knowledgebase”.
Nucleic Acids Research, 32 pp. D115-D119, 2004.

[15] O. Dekel, J. Keshet, Y. Singer. “Large margin hierarchical
classification”. The 21st ICML, pp. 209-216, 2004.

[16] A. Vinayagam, R. Konig, J. Moormann, F. Schubert, R. Eils, K.
Glatting, and S. Suhai, “Applying support vector machines for gene
ontology based gene function prediction,” BMC Bioinformatics, vol. 5,
2004.

[17] B. Poulin, “Sequence-based protein function prediction,” Master’s
thesis, Department of Computing Science, University of Alberta,
Edmonton, Alberta, Canada, 2004.

[18] D. Szafron, P. Lu, R. Greiner, D. S. Wishart, B. Poulin, R. Eisner, Z. Lu,
J. Anvik, C. Macdonell, A. Fyshe, and D. Meeuwis, “Proteome Analyst:
Custom Predictions with Explanations in a Web-based Tool for High-
throughput Proteome Annotations”, Nucleic Acids Research, Volume
32, July 2004, pp. W365-W371.

[19] S. Kiritchenko, S. Matwin, and A. F. Famili, “Hierarchical text
categorization as a tool of associating genes with gene ontology codes,”
in Proc. of the Second European Workshop on Data Mining and Text
Mining for Bioinformatics, Pisa, Italy, 2004, pp. 26–30.

[20] “The Automated Function Prediction Special Interest Group Meeting”,
ISMB 2005, http://ffas.burnham.org/AFP

[21] S. Kiritchenko, S. Matwin, and F. Famili, “Functional annotation of
genes using hierarchical text categorization,” in Proc. of the BioLINK
SIG: Linking Literature, Information and Knowledge for Biology (held
at ISMB-05), Detroit, USA, 2005.

[22] D. Pal and D. Eisenberg, “Inference of protein function from protein
structure,” Structure, vol. 13, no. 1, pp. 121–130, 2005.

[23] H. Wu, Z. Su, F. Mao, V. Olman, and Y. Xu. Prediction of functional
modules based on comparative genome analysis and Gene Ontology
application. Nucleic Acids Research, 33(9), pp. 2822–2837, 2005.

[24] “Gene Ontology Annotation @ ebi,” http://www.ebi.ac.uk/GOA/, 2005.
[25] “the Gene Ontology website,” http://www.geneontology.org/, 2005.

