
  

Abstract—High performance and accurate protein function 
prediction is an important problem in molecular biology. Many 
contemporary ontologies, such as Gene Ontology (GO), have a 
hierarchical structure that can be exploited to improve the 
prediction accuracy, and lower the computational cost, of protein 
function prediction. We leverage the hierarchical structure of the 
ontology in two ways. First, we present a method of creating 
hierarchy-aware training sets for machine-learned classifiers and 
we show that, in the case of GO molecular function, it is the most 
accurate method compared to not considering the hierarchy 
during training. Second, we use the hierarchy to reduce the 
computational cost of classification. We also introduce a sound 
methodology for evaluating hierarchical classifiers using global 
cross-validation. Biologists often use sequence similarity (e.g. 
BLAST) to identify a “nearest neighbor” sequence and use the 
database annotations of this neighbor to predict protein function. 
In these cases, we use the hierarchy to improve accuracy by a 
small amount. When no similar sequences can be found (which is 
true for up to 40% of some common proteomes), our technique 
can improve accuracy by a more significant amount. Although 
this paper focuses on a specific important application—protein 
function prediction for the GO hierarchy—the techniques may be 
applied to any classification problem over a hierarchical 
ontology. 

I. INTRODUCTION 
The rate at which sequencing methods are producing 

genomic and proteomic data is far outpacing the rate at which 
these biological systems are being experimentally annotated. 
In response, there has been much research in automated 
protein function annotation, designed to provide biologists 
with the most likely functions that proteins perform [20]. 
These methods should be highly accurate to be useful, and 
they should be high-throughput so they can be used for a large 
amount of data. Here, we present a computational tool for 
predicting the Gene Ontology (GO) [25] molecular function of 
proteins from sequence data. 

A major concern in automated systems is the ontology used 
for prediction. The ontology is a set of terms describing the 
problem domain in a standardized way. In predicting 
molecular function, the ontology is a set of terms that describe 
the possible functions that proteins perform in the cell. 
Although non-hierarchical, flat ontologies such as GeneQuiz 
[8] and others are suitable for describing the general function 
of proteins, a more sophisticated approach is useful for 
describing more specific functions of proteins. Furthermore, 
different experiments to verify the function of proteins provide 

different levels of detail about that protein’s functions, which 
leaves many proteins with incomplete or overly general 
annotations. Hierarchical ontologies are an effective way of 
addressing both of these issues. 

In ontologies such as EC [2], SCOP [3] and GO, both 
general and specific knowledge is represented in a hierarchical 
structure where general terms are represented by nodes near 
the root of the ontology and specific terms are represented by 
nodes near the leaves of the ontology. The hierarchy defines 
an inheritance (is-a) relationship between the term nodes, 
where each term is a special case of its parent terms. That is, 
any term is-a special case of each of its ancestor terms, where 
an ancestor is any term along the path from the term to the 
root of the hierarchy. 

In the GO hierarchy, the inheritance relationship is called 
the true path rule [25]. For example, the link from ion binding 
to metal ion binding means that every protein associated with 
the term metal ion binding inherits the ion binding term (i.e., 
metal ion binding is-a special case of ion binding). As the 
knowledge of a particular protein is refined, new terms from 
the ontology can be added to it. Some of these new terms are 
newly discovered functions. In this case, the new term appears 
in the graph as a descendent node of a previously known, 
more general node. The true path rule plays an important role 
in our hierarchy-aware methodology for training machine-
learned classifiers and predicting protein function.  Without 
the true path rule, predictions within the hierarchy would be 
inconsistent. 

GO describes three aspects of protein annotation: cellular 
component, biological process, and molecular function. 
However, our work is focused on only the molecular function 
aspect of GO. We present Classification in a Hierarchy Under 
Gene Ontology (CHUGO), a system that exploits the 
hierarchical structure of the GO to make faster and more 
accurate predictions of protein function. CHUGO assigns each 
protein to one or more of a specified set of 406 GO functional 
classes, spanning a large spectrum of functionality. By 
contrast, the EC ontology is concerned with only enzymatic 
proteins, and the SCOP only deals with protein structures. 

Many proteins have multiple functions. For example, the 
average number of experimentally verified functions for the 
proteins in the Gene Ontology Annotation project (GOA) [1] 
is 1.35. One standard machine  learning approach in such 
cases is to build a series of local binary predictors that predict 
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“yes” or “no” for each term in the ontology. We argue that if 
the ontology forms a hierarchy, the speed and accuracy of 
local predictors can be improved by exploiting the relationship 
between the terms in the ontology. 

This work makes contributions in three main areas: 
 

1. Evaluation methodology:  In ontologies where 
multiple labels are possible, precision, recall, and 
cross-validation are concepts that must be re-
visited, especially given a hierarchical ontology.  
We define and examine a hierarchy-aware 
evaluation methodology (Section 2). 

2. Training set design:  Structured ontologies are 
encoded with important information about 
relationships between terms, and are a way of 
representing incomplete data. We present a novel 
and effective methodology that exploits the 
inherent structure of a hierarchical ontology 
(Section 3). 

3. Accurate and efficient protein function prediction:  
The structure of a hierarchical ontology can also be 
exploited at prediction time to improve predictive 
performance, and lower computational costs 
(Section 4). We also predict a large number of 
terms – 406 molecular functions. 

A. Related Work 
There is a large body of research seeking ways to predict 

the function of a given protein. One approach is to use the 
protein’s 3-dimensional structure to predict that protein's 
function [22]. Since this approach requires that the protein's 
structure be solved (or at least predicted accurately) it provides 
very limited coverage across all of the proteins in any 
particular organism. A second set of techniques uses 
documents describing proteins to predict the functions of these 
proteins [19]. This technique also has extremely limited 
coverage on a per-organism basis. Coverage can be improved 
by using a technique based on finding similar sequences using 
BLAST [16]. Such techniques use annotations from similar 
sequences to predict the function of the unknown protein (also 
called Nearest Neighbor). However, we demonstrate (Section 
4) that such approaches do not work well for predicting GO 
functions when the most similar sequences found by BLAST 
are above the 10-3 E-value threshold. This often limits the 
coverage of these predictors to only about 60% of the proteins 
in a proteome. 

King et al [13] presents another approach, one that is only 
based on the existing annotations of proteins. The system 
looks at existing annotations of the query protein, and predicts 
annotations that often correlate with the existing predictions. 
This is done because the authors correctly observe that protein 
annotations are often incomplete. They describe protein 
annotations as incomplete because “...there are genes whose 
attributes are not yet all known, and because there is literature 
that has not yet been digested by the database curators” [13]. 
However, in Section 3 we argue that even experimentally 
determined annotations fresh from the lab may be incomplete, 

since they may be overly general – and will become more 
specific in the future. The methodology presented by King et 
al also suffers from the fact that functions that are correlated 
may not always occur together. In CHUGO, each function is 
predicted individually, and correlations occur as a natural 
result of the prediction process. 

Our goal is to predict a protein's function starting from 
sequence data. Protfun [12] is another example of such an 
approach. It uses local sequence properties, such as predicted 
post-translational modifications, sorting signals and properties 
computed from amino acid composition. However, Protfun 
does not exploit knowledge of the hierarchy, and the set of 14 
GO terms that it predicts is relatively small. In addition to 
using local sequence properties, we also use the annotations 
from similar sequences in Swiss-Prot found by BLAST, when 
they are available. 

The machine learning literature has described attempts to 
utilize the structure of a hierarchical ontology to improve 
predictive accuracy. Kiritchenko et al [19] used the hierarchy 
to increase the number of training instances at each node, by 
first making the training data more consistent with the 
ontology. We extend this work by investigating different 
degrees of consistency with the hierarchy when creating our 
predictors. 

Chakrabarti et al [5] and King et al [13] both used the 
structure of the underlying ontology to build a Bayesian 
network. Similarly, the structure of the ontology has also been 
exploited to create a hierarchical mixture of experts model 
[11]. Although our system does not use more models as 
complex as these, they could be combined with our approach 
to potentially increase predictive performance. 

Some results [6] have shown that a statistical technique 
known as shrinkage can be used to set the parameters in a 
hierarchy of predictors. Here, the ontology is exploited as 
prior knowledge to understand which classes are related, and 
thus, which parameters should have similar settings. 

Other hierarchies have been exploited to change the 
formulation of Support Vector Machines [15], and Association 
Rules [7].  In principle, this approach could be combined with 
our own, since the two techniques are independent. 

Greiner et al observed that a top-down decision model in 
hierarchical classification could have poor results since all 
predictors along the path to the true label must agree [4]. Also, 
other methods of training individual term predictors were 
mentioned but not explored. Our methods of training set 
design allow for a more inclusive classifier in which the top-
down model is more feasible, and thus we can reduce 
computational complexity without a resulting loss of precision 
and recall. 

II. EVALUATION METHODOLOGY 

A. Scoring Predictions in a Hierarchy 
When annotating proteins with GO terms, each protein can 

be assigned multiple terms for two reasons. First, due to the 
hierarchical nature of GO, a protein annotated with a function 
is implicitly annotated with all of the function’s parents, up to 



  

the root node. For example, if a protein's function is metal ion 
binding, then it is implicitly also a binding protein due to the 
true path rule. Second, a protein could have multiple 
functional domains or react to more than one molecule. For 
example, the protein JIP1_MOUSE is annotated with kinesin 
binding and protein kinase binding. Neither of these terms is a 
direct specialization of the other, so there is no 
ancestor/descendent relationship between these terms in GO.  

The fact that each protein can have more than one GO term 
causes problems for the traditional machine learning measures 
of precision, recall, accuracy, and sensitivity. For classifiers, it 
is easy to evaluate a binary “correct” or “incorrect” prediction.  
But, intuitively, predictions that are “close” to the oracle label 
should score “better” than predictions that are in an unrelated 
part of the hierarchy. 

Our evaluation methodology is simple, intuitive, and 
consistent with the true path rule.  First, if a protein is assigned 
a label, then it is also assigned the label of all of its ancestors 
up to the root node.  This simple but important consequence of 
the hierarchy is easily overlooked.  If the protein has another 
predicted label in an unrelated part of the hierarchy, those 
labels and their propagations are also added to the set of 
labels. Only after propagation are the formulas for precision 
and recall applied to find hierarchical precision and recall. 

Failure to follow the true path rule (e.g. by propagating the 
labels via the is-a relationship to the root node), leads to 
inaccurate predictions and distorted evaluation metrics. 
Incorporating propagation into the evaluation of predictions 
allows for a graduated scoring system where distance in the 
ontology is intrinsically taken into account. Hierarchical 
precision and recall reflect how close, conceptually, 
predictions are to the correct labels in the ontology. 

For example, consider a term hierarchy where A is the 
parent of B which is the parent of C (Fig. 1).  Assume that 
protein P1 is labeled {B} and protein P2 is labeled {C}. By the 
true path rule, the labeling really should be {A, B} for P1, and 
{A, B, C} for P2 after propagation (shown by circles in the 
table within Fig. 1).  Assume that for protein P1 we predict the 
class to be {C}, which is different than the truth.  By the true 
path rule, we then assign P1 the labels {A, B, C} (shown by 
x’s in the table within Fig. 1).  Similarly, for P2 we predict the 
label to be {B} and propagate to get {A, B}.  Both of the 
initial labels for P1 and P2 are different than the oracle, which 
misleadingly suggests a poor prediction.  But, hierarchical 
precision and recall allow for an evaluation scheme which is 
more in tune with intuition. 

Intuitively, despite the differences with the oracle, our 
prediction for P1 should have perfect recall, since it correctly 
recalled that P1 has terms {A, B}.  But the precision is only 
2/3 since only 2 out of the 3 predicted labels were correct, 
which is an intuitively sound penalty for the imperfect 
prediction. Similarly, our prediction for P2 should have perfect 
precision, since every predicted term is correct, but recall is 
only 2/3 since only 2 out of 3 correct labels were recalled. 
This example shows that predicting too “high” in the hierarchy 
(e.g. P2) reduces recall, but does not affect precision and that 
predicting too “low” in the hierarchy (e.g. P1) reduces 
precision, but does not affect recall.  Lastly, predictions that 
are in a different part of the hierarchy altogether (e.g. 
predicting P1 is in D, is not shown in the example) will have 

neither high precision nor high recall.  The ability to handle 
“close” predictions and altogether wrong predictions are 
important aspects of our methodology. 

 
 

Fig.1. A simple evaluation example. Protein P1 is labeled as “B” but predicted 
as “C”, and protein P2 is labeled as “C” but predicted as “B”. 

 
The original, formal presentation of our approach to multi-

class precision and recall was introduced by Poulin [17].  In 
this paper, we extend it to hierarchies by applying the true 
path rule.  Independently, the same approach was used by 
Kiritchenko et al. [19], also in the domain of GO, and a formal 
definition was published later [21].  A similar scoring metric 
which considers the hierarchy was also presented by Wu et al 
[52], but it is a single measure, and thus lacks the intuitive 
value of precision and recall. 

B. Evaluation using Global Fold Selection 
To approximate how well a classifier will perform when 

presented with new data, cross-validation is often used. For all 
of our experiments, we use 5-fold cross-validation. In 5-fold 
cross-validation, the data set is first randomly split into 5 parts 
of equal size. Then, for 5 iterations, one fold is withheld as the 
test set, and the remaining 4 folds are used as the training set 
to create a classifier. It is important that random fold 
generation ensures that the same ratio of positive and negative 
training instances is placed in each fold. For example, if there 
are 100 positive training instances and 900 negative training 
instances, each fold should have 20 positive training instances 
and 180 negative training instances. We refer to this property 
as fold balance. Fold balance ensures that each classifier 
trained during cross-validation behaves as closely as possible 
to the final classifier created by training on all of the folds. 
This assumes that the training instances have the same 
distribution of positive and negative training instances as the 
unknown query data on which the classifier will be invoked. 
Of course the folds may not be perfectly balanced due to 
integer division, but they should be as close as possible.  

Precision, recall and F-measure are computed for the 
classifiers created for each fold. The statistics for the 5 folds 
are averaged to give an accurate representation of the 
predictive performance of the classifier on future instances. 
Statistics from cross-validation are a good indicator of how 
well a classification system will predict new data due to the 
fact that no information from a test fold is used to build the 



  

predictor that will be applied to that test fold. We refer to this 
principle as fold isolation. An alternate set of statistics can be 
computed by using all training data to build a classifier and 
then applying this classifier to each training instance in turn 
and counting re-substitution errors. Statistics based on re-
substitution do not exhibit any isolation, since test data is used 
in making predictions on test data. Therefore these statistics 
are not useful in predicting statistics for future instances. 

Hierarchical classification causes problems for cross-
validation since in this case, it is difficult to maintain both fold 
balance and fold isolation, in the presence of the true path rule. 
First, we assert that fold isolation requires that the same folds 
be used for all node classifiers across the hierarchy. We will 
refer to this as global fold selection.  The following example 
shows the difficulty of having folds that satisfy both. Assume 
a protein P is in fold 1 for node B and in fold 2 for its parent 
node A, and assume we are evaluating the classifiers when the 
test set is fold 2. It is possible for the classifier at node B to 
predict positive for protein P and the classifier at node A to 
predict negative for protein P. However, the true path rule will 
propagate the positive prediction from node B to parent node 
A. This means that protein P was used as a training instance to 
make a classifier for node B and this classifier was used to 
propagate a positive prediction for protein P to class A. Using 
a protein in a training set to make a prediction about the same 
protein in a test set violates the fold isolation rule. Therefore a 
single global fold split must be used for all nodes. 

Unfortunately, global fold selection makes it difficult (and 
in some cases impossible) to ensure fold balance. To address 
this problem, we randomly generate 5,000 candidate splits of 
the data set, and choose the split that has the best fold balance. 
Assume that at node Ni there are Pi positive training instances 
out of Ti total training instances of which Pij positive training 
instances and Tij total training instances are in fold Fj. We 
define the deviation Dij of fold Fj at node Ni to be ((Pij/Tij) – 
(Pi/Ti)) / (Pi/Ti). For example, if at node N1 there are 10 
positive training instances out of 90 total training instances 
and in fold F2 for N1 there are 4 positive training instances out 
of 40, then the deviation of fold 2 for node 1 is D12 = (4/40 – 
10/90) /(10/90) = -0.1. For each split we compute the standard 
deviation of all folds for all nodes:  
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The best fold balance occurs for the split whose standard 

deviation is the smallest (0.064) and the worst fold balance 
occurs for the split whose standard deviation is the largest 
(0.079). This suggests that although perfect fold balance 
cannot be guaranteed, global folds are feasible using a simple 
randomized approach. 

III. TRAINING SET DESIGN 

A. Data Set 
Our data set consists of 14,362 proteins annotated with their 

GO function terms. To create this data set, we first 

downloaded the Gene Ontology from the GO website [25], 
and then obtained our candidate set of proteins by examining 
all proteins in the UniProt database [14]. We looked up each 
of these proteins in the Gene Ontology Annotation project 
(GOA) [1]. We wanted to build a conservative training set 
based only on experimentally determined annotations, to avoid 
any bias in our data set due to other electronic annotation 
systems. The GOA project includes annotation codes with 
each of their GO annotations. A protein was retained in the 
training set if its GOA indicated it was not derived from 
another electronic annotation system.  We included annotation 
codes IDA, IEP, IGI, IMP, IPI, RCA, TAS, and excluded 
codes IC, IEA, ISS, NAS, ND - since the latter are either 
annotated using electronic means, or are ambiguous in their 
origin. We used the August 28, 2004 version of the GO 
molecular function ontology, and the August 11, 2004 version 
of the GOA mapping file. For protein sequence data we used 
release 27 of TrEMBL, and release 44 of Swiss-Prot (which 
together comprise UniProt release 2.0).  

Originally, there were 7,399 nodes in the GO molecular 
function hierarchy. However, to create reasonably accurate 
local GO term predictors, we required a sufficient number of 
positive training instances. Therefore, we only considered 
those GO terms that have at least 20 proteins annotated at or 
below them in the hierarchy. This decreased the size of the 
ontology to 406 nodes. Note that CHUGO will only make a 
prediction into one or more of these 406 categories. 

 

B. Term Predictors 
CHUGO uses hierarchy-aware ‘local’ predictors to predict 

GO function. In hierarchical prediction, local predictors are 
those that predict a single GO term. In contrast, BLAST 
Nearest Neighbor (BLAST-NN) (that is, using the top BLAST 
hit’s annotations as the predictions for a query instance) is a 
global predictor, as a single call to BLAST can assign a 
protein to one or more nodes. In contrast, CHUGO’s local 
predictors train a binary classifier to predict each term 
separately in the GO hierarchy, using a variety of supervised 
learning techniques. Supervised learning is a two-stage 
process where proteins whose GO terms are known are used to 
train (that is, create) a classifier, and then the classifier is used 
to make predictions on proteins whose GO terms are not 
known.  During training, each classifier must be presented 
with positive examples (those that represent the node), and 
negative examples (those that represent instances outside of 
the node). Since we are able to choose our training data as we 
wish, we evaluate a spectrum of methods to construct the 
training data for each node. 

In hierarchical classification, all resulting predictions must 
obey the true path rule. Therefore, as a post-processing step, 
we propagate all positive predictions upwards in the ontology. 
Assuming that we have a perfect classification system, there 
are two major situations where local predictors in a hierarchy 
could perform perfectly on test data.  These two styles of local 
predictors act differently when presented with a query protein, 
but both have the potential to result in perfect accuracy. 



  

First, if a protein is to be assigned GO node Ni, every node 
in the hierarchy will return a negative prediction, except for 
node Ni that returns a positive prediction. During evaluation, 
this prediction is propagated, and evaluates at 100% precision 
and recall, if the prediction is correct. In this case, we call 
these classifiers exclusive classifiers, since they exclude every 
instance except for those that belong exactly at node Ni (and 
not those that are more general or more specific).  Exclusive 
classifiers are traditionally used for non-hierachical, flat 
ontologies, however, in theory, a system of exclusive 
classifiers can perform perfectly in a hierarchy if each local 
predictor predicts perfectly. But, as we will show, they 
perform poorly on Gene Ontology function prediction. 

Second, given a protein that belongs at node Ni, the term 
predictor for Ni predicts positive, and so do all of Ni’s 
ancestors in the hierarchy. Here, the classification would 
evaluate at 100% precision and recall as well. In this case, we 
call these classifiers inclusive classifiers. 

Between the extremes, from exclusive to inclusive, there is 
a grey area of classifier design where we sporadically find 
positive and negative predictions between Ni and the root 
node.  Since it is possible for both exclusive and inclusive 
designs to have perfect precision and recall, there is no a 
priori reason to choose between inclusive or exclusive 
classifiers. Thus, we will evaluate 4 schemes to construct 
training data that range from exclusive to inclusive in their 
nature.  Ultimately, we conclude that the inclusive schemes 
are preferable, for a variety of reasons. 

For a particular GO node Ni, the “exclusive” approach to 
training set construction (Table I) would use all proteins 
explicitly labeled with the term Ni as the positive training set 
and all proteins not explicitly labeled with Ni as the negative 
training set. 

One argument against this approach is that it does not 
consider the hierarchy in training set construction. However, 
the descendent nodes of Ni are not good negative instances for 
the predictor at Ni. Therefore we could decide to exclude these 
instances from the set of negative examples. This is labeled as 
“less exclusive” in Table I. 

Next we could observe that all descendents of Ni are not 
only poor negative examples, but they could be used as 
positive training examples, due to the nature of the is-a 
relationship in the GO hierarchy. This has previously been 
done in [21], but we wish to quantify the difference in each of 
these schemes for constructing training data. This method is 
called “less inclusive” in Table I. 

Finally, to be most consistent with the hierarchy, we could 
observe that those proteins that are annotated as ancestors of 
Ni could in fact be instances of Ni. According to the GO 
specifications, proteins are annotated with the most specific 
function term for which an experiment has been performed. 
For example, if a protein is annotated with term ion binding, it 
is due to an experiment that confirmed this. However, this 
does not mean that the protein does not belong to one of the 
child classes: anion binding, cation binding or metal ion 
binding, just that no experiment has determined that it belongs 
to one of these subclasses. Since it is common for future 

experiments to supply more specialized terms, it could be 
dangerous to include proteins annotated with ancestor terms in 
constructing a negative training set for a term. Therefore, our 
final training set rule disallows any proteins labeled ion 
binding in the negative training sets of predictors for the three 
child terms. One could also argue that future experiments 
could add any arbitrary new term to a protein, so that no 
negative training instances can be used with confidence. This 
is a good point, and it applies anytime a classification task can 
have multiple positive answers and negative (experimental) 
evidence is not available, not recorded, or incomplete. 
However, we need negative training instances and at least we 
guard against the more common case of more specific 
annotations following less specific ones. We term this final 
approach an inclusive classifier, and it is shown in Table I in 
the row marked “inclusive”. 

 
TABLE I 

A VARIETY OF TRAINING STRATEGIES CAN BE USED TO CONSTRUCT A PREDICTOR 
FOR NODE A IN THE HIERARCHY. 

 
Method Positive 

Examples 
Negative Examples Not Used 

Exclusive A Not A - 
Less 

Exclusive 
A Not [A + 

Descendents(A)] 
Descendents(A) 

Less 
Inclusive 

A + 
Descendents(A) 

Not [A + 
Descendents(A)] 

- 

Inclusive A + 
Descendents(A) 

Not [A + 
Descendents(A) + 

Ancestors(A)]  

Ancestors(A) 

 
We evaluated these four training methods. For simplicity, 

we chose to evaluate the training methods using a single local 
predictor technology for this experiment. We used Proteome 
Analyst [18] features in conjunction with Support Vector 
Machines (more details in Section 4). Table II summarizes the 
results of cross-validation for each of the 4 training set 
construction methodologies.  The precision of all 4 techniques 
is comparable, but there are significant differences in recall 
and F-measure (The F-measure in each row of the table also 
has a 95% confidence interval of less than 0.01, which is not 
shown).   

 
TABLE II 

CROSS-VALIDATION PERFORMANCE ON TRAINING STRATEGIES FOR EACH NODE 
PREDICTOR USING PA FEATURES. THE BEST VALUES IN EACH COLUMN ARE BOLDFACE. 

RESULTS SHOWN USE THE PA-SVM LOCAL PREDICTORS. 
 

Method Precision Recall F-Measure Exceptions 
per Protein 

Exclusive 0.758 0.326 0.456 1.517 
Less 
Exclusive 

0.774 0.401 0.528 1.736 

Less 
Inclusive 

0.772 0.634 0.696 0.049 

Inclusive 0.754 0.648 0.697 0.087 
 

Our goal is to maximize precision, recall, and F-measure.  
The column “exceptions per protein” in Table II describes 
how often we see a positive prediction for a node predictor, 
and a negative prediction for that node’s ancestor term(s) – 
violations of the true path rule. By their nature, exclusive 



  

classifiers are more likely to have many exceptions, while 
inclusive classifiers are likely to have few. The data in Table 
II matches this intuition. But, as previously discussed, the 
evaluation methodology requires that we first propagate 
positive predictions upward in the ontology, which 
ameliorates the effect of exceptions, so our test is fair to all 
four strategies. In fact, the differences between techniques can 
be explained via differences in the size of the positive training 
set (exclusive classifiers have fewer positive training instances 
and more negative training instances), and noise in the data 
used for training. 

We can see that as our classifiers become more and more 
inclusive, recall and F-measure are increased. The first reason 
is that we are increasing the number of positive training 
examples (going from less exclusive to less inclusive), so the 
predictors become better at recognizing those proteins that 
should belong at or below each node. The second reason 
classifiers perform better is that noise is removed from the 
training sets. That is, as we become more and more inclusive 
we are not using instances that are intuitively positive in the 
negative training set, when going from exclusive to less 
exclusive. Also, by excluding ambiguously labeled instances 
from the negative training set, when going from less inclusive 
to inclusive classifiers, noise is further removed.  

As we make our classifiers more inclusive, there is a higher 
chance that a false negative at a node will be offset by a true 
positive prediction at a descendent node, and the false 
negative will be overruled by the true path rule. In a sense, 
inclusive classifiers reinforce each other along the path in a 
hierarchy, whereas in a system of exclusive classifiers, we are 
relying on one predictor to make the correct call for each 
assigned label. 

The inclusive strategy has the best overall recall and F-
measure and we recommend it as the best overall strategy.  
Admittedly, our cross-validation experiment shows that 
excluding ancestors from the negative training instances set 
only has a small advantage over the less inclusive strategy.  
However, we speculate that the actual advantages of excluding 
ancestors are greater than shown by this experiment. We 
believe that the nature of cross-validation tests, and the fact 
that an absence of a label in the GO hierarchy does not 
necessarily mean a label is wrong, leads to lower quantitative 
results for what is, arguably, a more accurate predictor in the 
future, where more information is obtained about the training 
data. Specifically, proteins may not be annotated with all the 
labels that are appropriate. As discussed earlier, a missing 
experiment results in a missing label, but the label may be 
correct. For example, a protein that is annotated as an ion 
binding protein, but in actuality is a anion binding protein 
(which is a child of ion binding in the hierarchy), would non-
intuitively give us a better score when we predict it as NOT 
anion binding. This is because “not anion binding” matches 
the annotations, which we consider as the correct answer 
during cross-validation, but “not anion binding” may not 
match reality. Our predictor may answer “anion binding” 
because of legitimate, machine-learned similarities between 
the protein and other proteins in the anion binding set.  A 

future experiment may show that the protein is indeed “anion 
binding”.  In fact, the overall goal is to have predictors that 
can predict labels that are not currently known.  This systemic 
side-effect of taking the annotation as “complete truth” (even 
when it is not complete) is a difficult issue to measure and 
address. However, we note that our hierarchy-aware 
definitions for recall, precision, and F-measure minimize these 
side-effects, and we plan on investigating the issue as future 
work. 

IV. PREDICTING PROTEIN FUNCTION 
Biologists strive to understand the function of a protein.  

Ultimately, a laboratory experiment is needed to confirm the 
function of a protein, but a computational prediction can be 
useful both in itself and in suggesting an appropriate 
experiment. 

A variety of computational techniques have been studied, 
ranging from sequence comparison, to machine learning, to 
structure analysis and simulation.  As well, the techniques 
range from local predictors to global predictors, either of 
which may or may not exploit knowledge of the hierarchy. 

We argue (and demonstrate) that the hierarchical structure 
of ontologies such as GO should be exploited.  First, not 
exploiting the hierarchical structure of GO can violate the true 
path rule, which implies inconsistent predictions.  Second, as 
already discussed, the construction of training sets for 
machine-learned classifiers benefits from a hierarchy.  In 
general, it can be difficult to accumulate a sufficient number 
of positive and negative training instances, and we can exploit 
the hierarchy to address this problem.  Third, the performance 
cost of using machine-learned classifiers can be controlled 
when the hierarchy is considered. 

Sequence comparison is commonly used to give biologists 
an initial idea of what a protein's role in the cell is. The most 
commonly used method of sequence comparison is BLAST 
[1]. A typical use case of BLAST would be running a new 
protein against a trusted database (such as Swiss-Prot), and 
then manually reviewing the annotations for the similar 
proteins found by BLAST. Assuming that the top BLAST hits 
are homologous to the query protein, the user may then decide 
that it is likely that their query protein is similar in function, 
and then proceed with further experiments based on this data. 
However, proteins that are not similar to well-studied proteins 
will not return a good BLAST result (measured in terms of E-
value), so the biologist is faced with either looking at proteins 
that are very disparate from their protein of interest, looking 
for other sequence information, or proceeding with “wet lab” 
experiments without any initial idea of the protein’s function. 
Due to the ubiquitous use of BLAST, we compare CHUGO to 
BLAST in terms of predictive accuracy, coverage, and 
computational cost, even though BLAST itself does not take 
into account hierarchy information. 

During cross validation, BLAST is run for each of the test 
proteins against the current fold's training set of proteins. A 
BLAST hit is a match for this test protein against the current 
training set. Each BLAST hit is scored with an E-value that 
represents the similarity of the two protein sequences. As the 



  

E-value increases, the less similar the match is to the query 
protein. Our experiments have found that the BLAST 
predictor performs the best when we set our threshold for 
accepting BLAST hits at an E-value of 10-3. The sequences 
that do not have a BLAST hit with E-value ≤ 10-3 are proteins 
that are quite different from well-studied proteins. These two 
cases - when the protein has high sequence similarity to our 
training set, and when it does not - will be examined 
separately. 

A. Proteins with one or more good BLAST Hits 
During cross-validation, 89% (12,725 out of 14,362) of the 

proteins in our data set had a good BLAST hit. Our goal is to 
try to exploit the hierarchical structure of GO to make the 
predictions for these proteins more accurate. 

Our predictors at each node are created using an ensemble 
classifier. The ensemble is composed of several classifiers: 

1. SVM with PFAM as features 
2. SVM with Proteome Analyst (PA) features 
3. Probabilistic Suffix Trees (PSTs) 
4. BLAST. 

We use PFAM [10] matches within each sequence as 
features for a Support Vector Machine (SVM) classifier. We 
also use SwissProt annotation-based features, extracted by 
Proteome Analyst [18], with an SVM classifier.  Probabilistic 
Suffix Trees (PSTs) have been used to predict high level GO 
functions with some success in the past [17].  PSTs are trained 
for each GO term, and a brute force search through their 
parameter space (window length, prune depth, and 
pseudocount) is performed for each predictor to optimize their 
accuracy.  

 
TABLE III 

PERFORMANCE ON PROTEINS FOR WHICH BLAST RETURNS A GOOD HIT (EVALUE ≤ 
0.001 DURING CROSS-VALIDATION.  BLAST-NN ASSIGNS THE FUNCTIONS OF THE MOST 

SIMILAR PROTEIN TO THE QUERY PROTEIN. VOTING IS OUR ENSEMBLE CLASSIFIER 
. 

Method Precision Recall Average 
Cost 

BLAST-NN 77% 78% 1 
Ensemble Voting 77% 80% 1219 

 
The ensemble classifier is a simple voting scheme, where 2 

or more predictors assigning a term to a protein will predict 
that GO term. The results of using a voting scheme are shown 
in Table III, compared to a BLAST Nearest Neighbor search. 

However, to achieve these results, the predictors for each 
node in the ontology must be computed for each query 
sequence. This results in a far greater computational cost than 
running BLAST alone. The cost in Table III is a rough 
estimate at the average cost of running each prediction 
method, per protein. Each node predictor is assigned a cost of 
1, and BLAST is assigned a constant cost of 1 since it is a 
global predictor. Thus, the cost of 1,219 for voting over the 
ontology is derived by the formula (Number of Nodes) × 
(Number of Predictors at Each Node) + (Cost of BLAST). 
Since we use three predictors at each node (PA-SVM, PFAM-
SVM, and PSTs in a voting ensemble) this value is 406 × 3 + 
1 = 1,219. We do not add a cost of calculating the result of 
voting since this is a trivial computation. Although the costs of 

these predictors would in fact vary, this method will give us an 
initial idea of how computationally intensive each approach is. 

BLAST is a global predictor of molecular function. This 
means its computational complexity does not depend on the 
size of the predicted ontology (it only depends on the size of 
the database that we are searching against). As Table III 
shows, the results of a BLAST search are quite accurate when 
highly similar sequences are found. Furthermore, the 
information gained from running a BLAST search is very 
important since it is both accurate, and computationally 
efficient compared to running many local predictors at each 
node. We can use the results of BLAST to give us a set of 
candidate nodes to run our local predictors on, which will 
decrease computational cost from running all node predictors. 

If we examine the annotations that BLAST-NN returns, we 
can see that when the annotations are incorrect, they tend to be 
near the actual annotations (Fig. 2). We can exploit this fact in 
two ways. First, if there is more than one good BLAST hit, we 
can use these additional hits as guidelines for prediction. 
Second, since we know the structure of the ontology during 
prediction, we can look at classes that are nearby (in terms of 
path length within the ontology) to the annotations found by 
BLAST-NN. In both methods, the results of the BLAST 
search are used as a seed to begin searching. As will be shown 
later, searching from the root downward is a viable option, 
however, it is more costly. 

 

 
Fig. 2. When BLAST-NN does not return the correct nodes, the nodes that are 

returned tend to be close to the correct answer. 
 

The first option, called B-N-Union, is to look at more than 
one BLAST hit's annotation. N is the number of hits whose 
annotations are used.  For example, if the top 2 BLAST hits 
for a given protein are used to generate a union set of 
annotations, then N=2.  Intuitively, if we take the union of 
more than one BLAST hit's annotations, we will get a wider 
range of predictions. This should increase recall, and decrease 
precision. However, since this set is smaller than the entire 
ontology, and the recall is high, we can run our predictors on 
this set of labels and get good performance while keeping 
computational cost low.  

The second option, called SearchN, is to exploit the 
annotations returned by BLAST and search in the 
neighborhood of the top BLAST hit's annotations. N is the 



  

graph distance from the seed annotations in which we add 
nodes to our set of candidate nodes.  In this case, we exploit 
the structure of the GO hierarchy to know which terms are 
close by. Since BLAST tends to come close to the actual 
predictions when it is wrong (Fig. 2), we know that there is a 
high chance of the correct labels being within those that 
BLAST-NN returns, or nearby. In this case we can start with 
the set of GO terms that BLAST-NN returns and add the terms 
in the neighborhood to the set of candidate terms. As in the 
first method, recall will be increased by this method, and the 
node predictor is used as a validation to compensate for this by 
removing false positives. Also, similar to the first proposed 
method, the computational runtime is less than running the 
validating predictors for all nodes.  

The advantage of the SearchN and B-N-Union approaches 
is that they decrease the computational cost from running all 
of the node predictors to running only predictors for likely GO 
nodes. An interesting side effect is that constraining our 
candidate nodes for our predictors raises precision since we 
never consider those GO terms that are unlikely to be assigned 
to an instance. An important note is that regardless of which 
method is computationally cheaper for finding the set of 
candidate GO term predictors to run, the neighborhood search 
method must be used when only a single good BLAST hit is 
found (since there are no other good hits to union). In total, 
1,259 proteins had a single good BLAST hit, 944 had 2, and 
10,522 had 3 or more. A comparison of the methods is shown 
in Table IV.   

 
TABLE IV 

COMPARING METHODS OF USING BLAST TO FIND CANDIDATE LABELS, AND THEN 
VALIDATING THESE SETS USING OUR PREDICTORS. 

 
Candidate 

Method 
Precision  Recall Average 

Cost 
B-1-Union 81% 75% 16 
B-2-Union 79% 78% 20 
B-3-Union 78% 79% 22 
B-10-Union 77% 80% 32 

Search1 80% 77% 82 
Search2 78% 78% 221 
Search3 78% 79% 430 

 
Although the B-2-Union and Search-3 method produce the 

same precision and recall, the Search-3 method is very costly. 
Therefore, we recommend using B-2-Union whenever 
possible (when there are enough good BLAST hits) but use 
Search-3 when only a single BLAST hit is found. 

Although using a simple voting technique for our predictors 
is not very sophisticated, it works quite well in practice. As a 
comparison, we used SVM to learn the weights on each 
predictor, given all of the prediction data (which is a violation 
of fold isolation). As the predictive performance in this case 
was almost the same as using a simple voting ensemble, we 
did not pursue weighting functions further. 
 

B. Proteins with no good BLAST Hit 
The case when there are no BLAST hits is the most 

challenging, and arguably most important scenario.  The more 
novel the protein or organism, the less likely a protein will 
appear in well-curated and well-annotated databases. In 

particular, 11% (1,637) of the proteins in our data set did not 
have a good BLAST hit during cross-validation. These are 
sequences that are very disparate from those that have been 
studied, and thus, BLAST will not be able to find a good 
similar sequence in the database of experimentally verified 
proteins. One option the user has is to simply accept the top 
BLAST result, regardless of its E-value. However, this method 
proves to be quite inaccurate, as shown in Table V. Since our 
predictors of protein function model the sequences in a variety 
of ways, rather than simply looking for similarities between 
the sequences directly, our predictors can make predictions on 
a wider range of protein sequences. For these results, the 
PFAM-SVM and PA-SVM predictors prove to be the best 
combination for our ensemble classifiers (since BLAST and 
PSTs do not perform well on these sequences). 

 
TABLE V 

PERFORMANCE ON PROTEINS THAT DO NOT RETURN A GOOD BLAST HIT DURING 
CROSS-VALIDATION. 

 
Method Precision Recall Average 

Cost 
BLAST NN 

(Any E-Value) 
19% 20% 1 

CHUGO Local Voting 55% 32% 812 
CHUGO Top-Down 

Local Voting 
56% 32% 58 

 
Each of these methods (accepting a lower quality BLAST 

hit, or using our local predictors) increase the coverage of just 
using a BLAST predictor and only accepting good BLAST 
hits. However, our local predictor strategies (i.e., Local Voting  
and Top-Down Local Voting) result in a large increase in 
precision and recall. 

Running the voting classifiers for each of the nodes in the 
hierarchy is expensive. However, as the low exceptions in 
Table II show, our predictions tend to be consistent with each 
other. In other words, when a label is predicted as positive for 
an instance, it is likely that the parent term in the ontology was 
predicted as positive as well. This is because our classifiers are 
as inclusive as possible. Due to the fact that we are using an 
inclusive scheme for training our classifiers, we can do a top-
down search on the hierarchy without any significant loss in 
predictive performance. In fact, as Table IV shows, we 
actually see an increase in precision when using a top-down 
model, since we do not consider some nodes that are very 
unlikely to be positively labeled. 

It should be noted that this scheme would not be possible 
with an exclusive classifier (even if it performed perfectly), 
due to the inconsistent predictions that it would produce. 
Therefore, inclusive classifiers have the added advantage that 
a top-down search will decrease computational cost without 
the penalty to accuracy that we would see in the case of 
exclusive classifiers.  

There are nodes in the ontology that are fundamentally 
difficult to predict using sequence-based methods, especially 
on proteins that are dissimilar to the set of experimentally 
annotated proteins. By keeping these nodes from the ontology, 
we can raise the overall predictive performance of CHUGO. 



  

To evaluate a smaller ontology, we need a single measure of 
how well we are performing on a set of proteins. We use the 
hierarchical F-measure [21] as an overall measure of our 
classifier's performance, with β = 1, which means that 
precision and recall are weighted as equally important. 

 

! 

F "measure =
(# 2 +1) $Precision$Recall

# 2 $Precision$Recall
 

 
We apply an algorithm that starts with no nodes in the 

ontology, and add the node that increases our hierarchical F-
measure the most. We continue on, until all 406 nodes have 
been added. Fig. 3 depicts the scores from applying the 
algorithm to CHUGO and to BLAST independently. Although 
this algorithm can reach local maxima, it is a good way to 
compare how well the two predictors perform when excluding 
hard to predict GO terms. Furthermore, we can see that 
CHUGO consistently has a higher F-measure than BLAST-
NN, even when the ontologies are pruned in each prediction 
system’s favour. 

 
Fig. 3. CHUGO produces better classifiers for dissimilar proteins even 

when the ontology is pruned in each predictor’s favor. 

V. ORGANISM COVERAGE 
Knowing how often a good BLAST hit is found during 

cross-validation is useful, but ultimately a predictive system 
will be used on unknown proteins, possibly in newly 
sequenced organisms. It is therefore important to know how 
often each of the cases described in the preceding section 
would occur in reality. To approximate how often future 
unknown sequences would not result in a good BLAST hit, we 
run a BLAST query for each sequence in two model 
organisms against our entire data set of GOA experimentally 
annotated proteins (Table VI). 

  
TABLE VI 

NOT FINDING A GOOD BLAST RESULTS AGAINST EXPERIMENTAL DATA ACCOUNTS 
FOR A LARGE PERCENTAGE OF SEQUENCED PROTEOMES. 

 
Organism Good BLAST Hit No Good BLAST Hit 

D. melanogaster 60% 40% 
S. cerevisae 62% 38% 

 

Within an entire proteome, the number of proteins that do 
not find a good BLAST hit against our experimental data set is 
much higher than we have found during cross-validation. This 
shows an increased importance in the case of no good BLAST 
hits found, as there are more proteins that are not similar to 
studied proteins in an entire proteome. This is most likely 
because there are many more proteins in these proteomes that 
have not been studied, whose function is unknown, and have 
no well-studied homologues. The effects would be magnified 
when examining an organism that is not well studied (relative 
to those shown in Table VI). 

VI. DISCUSSION 
Since each of the methods presented (including BLAST) are 

in fact sequence-based, their performance on disparate 
proteins declines. When dealing with these proteins, which are 
far from well-studied proteins (in terms of sequence similarity, 
and thus homology), the biologists considering them would 
likely appreciate any leads they can get before beginning 
lengthy experiments on them. Although our predictors may 
not be extremely reliable on these disparate sequences, they do 
allow for a large increase in predictive performance over 
simply using BLAST Nearest Neighbor. CHUGO is therefore 
a way of pushing the boundaries of sequence analysis, and 
ultimately a way of speeding up the process of protein 
annotation in general. 

In the future we would like to find an even more efficient 
way of using our local predictor technology when there are no 
good BLAST hits. Accepting a lower quality hit does not 
appear to be a good way of finding candidate terms to 
compute, but perhaps there are other global predictors that we 
could use to seed the search in the hierarchy.  

Another sequence-based approach we could take is to use 
secondary structure predictors to get features for our SVMs. 
Secondary structure predictors are quite accurate, quick to 
compute, and have proven to be correlated with some protein 
functions [12]. We would like to pursue this and other 
sequence-based features [12]. 

To help us determine the most efficient classifier, we would 
also like to have a better approximation of each predictor’s 
cost, rather than assigning a constant value for each. Although 
this is a good way of getting an initial idea of the total cost of 
different prediction methods, a more accurate measure would 
be desirable. 

Finally, in the case when a good BLAST hit is found, there 
are ways to improve our predictors. One obvious direction 
would be to find better ways to tune the many variables 
(parameters for each machine learning technology, feature 
selection, kernels, combinations of predictors). 

VII. CONCLUSION 
High-throughput and accurate protein function prediction is 

important to closing the gap between sequencing data and 
biological experimental data. Ontologies such GO help to 
alleviate this problem by providing standardized, hierarchical 
vocabularies with which to define protein functions. We have 



  

shown three novel methods to exploit this hierarchical nature 
of GO to increase predictive performance, while retaining 
efficiency. We utilize the hierarchy to increase the accuracy of 
our term predictors, to lower the computational cost of 
running all of these term predictors, and to make our 
predictions more accurate by adhering to the true path rule.  

The fact that many annotations in Gene Ontology are 
incomplete is partially alleviated through the use of a 
hierarchical ontology. Our method of building inclusive 
classifiers is a way of exploiting this hierarchical structure, 
and dealing with incomplete information. The methods we 
have presented are therefore applicable to many other domains 
where there is incomplete data, and a standardized, 
hierarchical ontology, such as document classification, 
medical diagnosis, and others. 

ACKNOWLEDGMENT 
We would like to thank the Protein Engineering Networks 

of Centres of Excellence (PENCE), the Alberta Ingenuity 
Centre for Machine Learning (AICML), the Alberta Science 
and Research Authority (ASRA), the Natural Sciences and 
Engineering Research Council of Canada (NSERC), Silicon 
Graphics, Inc., and Sun Microsystems for supporting this 
research. 

REFERENCES 
[1] S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman, “A basic 

local alignment search tool,” Journal of Molecular Biology, vol. 215, no. 
3, pp. 403–410, 1990. 

[2] C. Li, editor.  “Biochemical nomenclature and related documents”, 
Portland Press, second edition, 1992. 

[3]  Murzin A. G., Brenner S. E., Hubbard T., Chothia C. “SCOP: a 
structural classification of proteins database for the investigation of 
sequences and structures”. J. Mol. Biol. 247, pp. 536-540, 1995. 

[4] R. Greiner, A. Grove, D. Schuurmans.  “On learning hierarchical 
classifications”. Available from http://citeseer.ist.psu.edu/38202.html, 
1997. 

[5] S. Chakrabarti, B. E. Dom, R. Agrawal, P. Raghaven.  “Using 
taxonomy, discriminants, and signatures for navigating in text 
databases”, Proceedings of VLDB 97, pp. 446-455, 1997. 

[6] A. K. McCallum, R. Rosenfeld, T.M. Mitchell, A. Y. Ng.  “Improving 
text classification by shrinkage in a hierarchy of classes”. 15th 
International Conference on Machine Learning, pp. 359-367, 1998. 

[7] K. Wang, S. Zhou, S. C. Liew.  “Building Hierarchical Classifiers Using 
Class Proximity”, Proceedings of the 25th International Conference on 
Very Large Databases, pp. 363-374, 1999. 

[8] M. Andrade, N. Brown, C. Leroy, S. Hoersch, A. de Daruvar, C. Reich, 
A. Franchini, J. Tamames, A. Valencia, C. Ouzounis, and C. Sander, 
“Automated genome sequence analysis and annotation,” Bioinformatics, 
vol. 15, pp. 391–412, 1999. 

[9] M. Ashburner et al. “Gene Ontology: Tool for the Unification of 
Biology”. Nature Genetics, 25(1):25-29, 2000. 

[10] A. Bateman et al. “The Pfam protein families database”, Nucleic Acids 
Research, 30(1) pp. 276-280, 2002. 

[11] M. E. Ruiz, P. Srinivasan, “Hierarchical text categorization using neural 
networks”, Information Retrieval, Volume 5, No. 1, pp. 87-118, 2002. 

[12] L. J. Jensen, H. Staerfeldt, and S. Brunak, “Prediction of human protein 
function according to gene ontology categories.” Bioinformatics, vol. 19, 
pp. 635–642, 2003. 

[13] O. D. King, R. E. Foulger, S. S. Dwight, J. V. White, and F. P. Roth. 
Predicting gene function from patterns of annotation. Genome Research, 
13, pp. 896–904, 2003. 

[14] R. Apweiler, et al.  “UniProt: the universal protein knowledgebase”.  
Nucleic Acids Research, 32 pp. D115-D119, 2004. 

[15] O. Dekel, J. Keshet, Y. Singer.  “Large margin hierarchical 
classification”.  The 21st ICML, pp. 209-216, 2004. 

[16] A. Vinayagam, R. Konig, J. Moormann, F. Schubert, R. Eils, K. 
Glatting, and S. Suhai, “Applying support vector machines for gene 
ontology based gene function prediction,” BMC Bioinformatics, vol. 5, 
2004. 

[17] B. Poulin, “Sequence-based protein function prediction,” Master’s 
thesis, Department of Computing Science, University of Alberta, 
Edmonton, Alberta, Canada, 2004. 

[18] D. Szafron, P. Lu, R. Greiner, D. S. Wishart, B. Poulin, R. Eisner, Z. Lu, 
J. Anvik, C. Macdonell, A. Fyshe, and D. Meeuwis, “Proteome Analyst: 
Custom Predictions with Explanations in a Web-based Tool for High-
throughput Proteome Annotations”, Nucleic Acids Research, Volume 
32, July 2004, pp. W365-W371. 

[19] S. Kiritchenko, S. Matwin, and A. F. Famili, “Hierarchical text 
categorization as a tool of associating genes with gene ontology codes,” 
in Proc. of the Second European Workshop on Data Mining and Text 
Mining for Bioinformatics, Pisa, Italy, 2004, pp. 26–30. 

[20] “The Automated Function Prediction Special Interest Group Meeting”, 
ISMB 2005, http://ffas.burnham.org/AFP 

[21] S. Kiritchenko, S. Matwin, and F. Famili, “Functional annotation of 
genes using hierarchical text categorization,” in Proc. of the BioLINK 
SIG: Linking Literature, Information and Knowledge for Biology (held 
at ISMB-05), Detroit, USA, 2005. 

[22] D. Pal and D. Eisenberg, “Inference of protein function from protein 
structure,” Structure, vol. 13, no. 1, pp. 121–130, 2005. 

[23] H. Wu, Z. Su, F. Mao, V. Olman, and Y. Xu. Prediction of functional 
modules based on comparative genome analysis and Gene Ontology 
application. Nucleic Acids Research, 33(9), pp. 2822–2837, 2005. 

[24] “Gene Ontology Annotation @ ebi,” http://www.ebi.ac.uk/GOA/, 2005. 
[25] “the Gene Ontology website,” http://www.geneontology.org/, 2005.  




