
 

 

Abstract—Metabolic pathways are crucial to our 
understanding of biology. The speed at which new organisms are 
being sequenced is outstripping our ability to experimentally 
determine their metabolic pathway information. In recent years 
several initiatives have been successful in automating the 
annotations of individual proteins in these organisms, either 
experimentally or by prediction. However, to leverage the success 
of metabolic pathways we need to automate their identification in 
our rapidly growing list of sequenced organisms. We present a 
prototype system for predicting the catalysts of important 
reactions and for organizing the predicted catalysts and reactions 
into previously defined metabolic pathways. We compare a 
variety of predictors that incorporate sequence similarity 
(BLAST), hidden Markov models (HMM) and Support Vector 
Machines (SVM). We found that there is an advantage to using 
different predictors for different reactions. We validate our 
prototype on 10 metabolic pathways across 13 organisms for 
which we obtained a cross-validation precision of 71.5% and 
recall of 91.5% in predicting the catalyst proteins of all reactions. 

I. INTRODUCTION 

Understanding the complex metabolic processes of 
organisms has been a long-standing challenge for biologists. 
These processes consist of a map of chemical reactions, each 
catalyzed by special-purpose proteins. The complexity of the 
metabolic system motivated the creation of an abstraction to 
provide a simpler view of this complex network: the metabolic 
pathway. Metabolic pathways are a way to segment the map of 
the metabolic process into logical sections of related reactions. 
Each pathway contains two kinds of information:  the pathway 
structure and the pathway components.  

The pathway structure is the graph or map that defines the 
relationships between the reactions in the pathway, along with 
the compounds (small molecules) that are their reactants and 
products. For example, Fig. 1 shows the relationship between 
seven reactions in the Gluconeogenesis pathway. The reactant 
of reaction 1 is Lipoamide, the catalyst (enzyme) is a 
Dihydrolipoyl dehydrogenase protein (labeled by the enzyme 
classification number of this family of enzymes, EC 1.8.1.4) 
and the product is Dihydrolipoamide. Some reactions have 
more than one reactant or product. For example, reaction 3 has 
two reactants (2-Hydroxy-ethyl-Thpp and Lipoamide) and two 
products (ThPP and 6-S-Acetyl-dihydrolipoamide). Some 
reactions have more than one family of catalysts. In such 
cases, catalysts from any of these families can catalyze the 
reaction. For instance, reaction 4 has two potential catalyst 
families, Pyruvate dehydrogenase (EC 1.2.4.1) and Pyruvate 
decarboxylase (EC 4.1.1.1). 

 

Fig. 1. Seven reactions from the Gluconeogenesis pathway. 

The pathway components are the specific proteins that 
catalyze each of the pathway's reactions in a specific 
organism. For example, reaction 1 is catalyzed by protein 
HSA:1737(DLD)1 in the organism H. sapiens (NCBI-GI 
4557525, Uniprot P09622) and by protein CEL:LLC1.3 in the 
organism C. elegans. Sometimes more than one protein from 
the same catalyst family can catalyze the same reaction in a 
single organism. For example, in the organism A. thaliana, 
reaction 1 is catalyzed by three proteins in family EC 1.8.1.4: 
ATH:At1g48030, ATH:At3g16950 and ATH:At3g17240. 

Although two species may have similar metabolic 
pathways, evolution generates some organism-specific 
variations. We refer to the variants of a specific metabolic 
pathway across different organisms as pathway instances. 
Pathway instances can differ in their pathway components, as 
illustrated by the organism-specific proteins in a single 
enzyme family. However, pathway instances can also differ in 
their pathway structure. For example, in Fig. 1, two of the 
catalyst families denoted by gray boxes (EC 4.1.1.1) are 
present in the pathway instance for A. thaliana, but are not 
present in either C. elegans or H. sapiens. The other catalyst 
family in a gray box (EC 1.2.1.5) is present in C. elegans and 
H. sapiens, but is not present in A. thaliana. Since there is no 

                                                             
1 We use the notation of the Kyoto Encyclopedia of Genes and Genomes 

(KEGG) PATHWAY database for protein names. Each name consists of a 
three character organism identifier followed by an abbreviated gene name 
from the original source, such as NCBI, Wormbase, TAIR, TIGR, MIPS, etc. 
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catalyst for reaction 5 in C. elegans or H. sapiens, reaction 5 is 
not known to take place in either of these organisms, so it is 
not part of the structure of their pathway instances. 

 A goal of biology is to understand the pathway instances of 
all known organisms. Biologists who study pathways tend to 
approach their work in one of two ways. The first approach is 
to study a particular pathway over many organisms. The 
second is to study one organism by trying to analyze all of its 
pathways. The current rate of knowledge acquisition prompts 
a broader systems approach. Genomic and proteomic sequence 
data is being generated so fast that analytical experimental 
methods to determine pathway structure and components 
cannot keep pace. To cope with this deluge of sequence data, 
we propose an automated computational approach to the 
prediction of organism-specific metabolic pathways that can 
assist the study of many pathways in many organisms. We 
hypothesize that the biological and sequence similarities 
between organisms can be exploited to predict the structure 
and the components of metabolic pathway instances. This 
paper makes three main research contributions: 
1. We describe Pathway Analyst, a prototype high-

throughput system that predicts metabolic pathway 
reactions and catalysts 

2. We demonstrate a simple but effective pathway prediction 
algorithm that incorporates machine learning techniques. 

3. We provide empirical results that suggest the need for    
reaction-specific classifiers. 

II.  REPRESENTING METABOLIC PATHWAYS 
We represent the reactions in each metabolic pathway as a 

directed graph. Each reaction node is annotated with the 
identifier of the reaction it represents (in this paper we use 1, 
2, 3 …), and a set of proteins that catalyze it. The EC number 
of the enzyme family that catalyzes the reaction is also 
displayed in this paper for easy reference. The arcs of the 
graph follow the flow of chemical compounds through the 
metabolic process. Fig. 2 shows an example of this data 
model. 

 

Fig. 2. A data model of three reactions from the 
Gloconeogenesis pathway in C. elegans expressed as a graph 

of reaction nodes. 

This graph represents a section of the instance of the 
Gluconeogenesis pathway for C. elegans that spans reactions 
1, 2 and 3 from Fig. 1. Each node contains the names of the 
proteins in C. elegans that catalyze the reaction. The arcs from 
reactions 1 and 3 to reaction 2 indicate that the chemical 
products of 1 and 3 are the reactants of 2. 

III. THE PATHWAY PREDICTION ALGORITHM 
Having a data model to represent pathways in a structured 

way lays the foundations for an algorithm that can use the 
pathway model to make predictions. To exploit the similarity 
between organisms, we would like to learn from well-studied 
versions of a pathway (such as in model organisms) to predict 
what the pathway may look like in an organism of interest, 
where the pathway is not as well characterized. We first 
introduce some terminology. The target organism is the 
organism whose pathway instance we are predicting. A 
training pathway is a pathway instance that is given as input to 
the prediction algorithm. A training reaction is a reaction in a 
training pathway. A training protein is a protein that labels a 
training reaction. We devise a prediction algorithm that takes 
as input a single training pathway2 and the proteome of a 
target organism. The goal of the algorithm is to predict: 
1) whether the pathway exists in the target organism and, if it 

exists, then 
2) the structure of the pathway, and 
3) for every reaction in the pathway, its set of potential 

catalyst proteins. 
To achieve the goal, we analyze each of the training 

pathway's reactions. For each of these reactions, we must 
decide whether or not it exists in the target organism. We 
assume that the reaction needs to have at least one protein 
catalyst to occur. Therefore, we determine whether the 
reaction exists in the target organism by determining whether 
the target organism has one or more proteins capable of 
performing the same function as the training reaction's 
proteins. If such candidate proteins are found, the reaction is 
added to the predicted pathway. In addition, the predicted 
reaction is annotated with the candidate proteins from the 
target organism's proteome. On the other hand, if no such 
proteins are found then we predict that the training reaction 
does not exist in the target organism. Finally, if none of the 
training reactions are predicted to exist in the target organism 
then the algorithm decides that the entire pathway does not 
exist in the organism. The pathway prediction algorithm 
appears as Algorithm 1. 

The prediction algorithm is quite intuitive. However, it 
abstracts a critical step – how to decide whether a protein from 
the target organism is capable of performing the same function 
as the training protein. This particular task is handled by a 
classifier and is hidden in the algorithm as the 
find_able_proteins_in(proteome) invocation. 

The classifier is a critical component of the pathway 
prediction algorithm. It is a computational device that predicts 
which proteins from the target organism are capable of 
catalyzing a training reaction. The classifier is a "black box" 
whose inputs consist of the target proteome and a training 
reaction. The classifier filters the target organism's proteome, 
returning only those proteins that are functionally compatible 
with the training reaction's catalysts. Therefore, the classifier 
in the pathway prediction problem must make a very specific 
function prediction based on a small number of positive 
training samples. In our experimental data set the number of 

                                                             
2In the next section we generalize this approach to utilize multiple training 

pathways. 



 

 

catalysts in a single reaction of a single pathway instance 
varies from 1 to 17, with a mean of 1.8. In the next section we 
illustrate how the number of positive training samples can be 
increased to the range 1 to 50 with a mean of 11.5. However, 
even with this increase, the problem is different from many 
other protein function prediction problems, such as high level 
Gene Ontology [1] classification, because a much more 
specialized function must be predicted for the target protein 
and the number of positive training samples is still very low.  

In Section VI we describe the different classifiers we have 
used in our pathway prediction architecture. In Section VII, 
we compare the prediction accuracies of these classifiers.  

 
Algorithm Pathway prediction algorithm. 
Require: training_pathway 
Require: proteome 
Ensure: prediction 
 prediction ← Pathway.new 
 for all reaction in training_pathway do 
  pred_proteins ← reaction.find_able_proteins_in(proteome) 
  if not pred_proteins.empty? then 
   new_reaction ← prediction.add_reaction(reaction) 
   new_reaction.add_catalysts(pred_proteins) 
  end if 
 end for 
 if prediction.empty? then 
  prediction ← nil 
 end if 
 return prediction 

Algorithm 1. The pathway prediction algorithm. 

IV. THE MODEL PATHWAY 
There are two major problems in using a pathway prediction 

algorithm that tries to predict the structure and components of 
a pathway based on a single pathway instance. First, we have 
shown that the structure of a pathway varies between 
organisms. Using only a single training pathway increases the 
chance that the training pathway has a different structure than 
the target pathway. In this case, predicting the true structure of 
the target pathway becomes impossible since no predictions 
would be attempted on any reaction not found in the training 
instance. For example, if the training pathway is the C. 
elegans pathway for Gluconeogenesis and the target pathway 
is the same pathway in A. thaliana then there is no chance of 
finding the reaction denoted 5 in Fig. 1, since this reaction 
does not appear in the training pathway. Second, as indicated 
in the last section, if a classifier uses only a few positive 
training instances to predict the pathway components, then the 
classifier will have poor accuracy. 

Our approach is to make our structure and component 
predictions using all available pathway instances. This enables 
the algorithm to use all of the diverse instances of the training 
pathway to match the structure of the target pathway and to 
predict components more accurately. To add this capability to 
the algorithm we introduce the notion of a model pathway. A 
model pathway is an abstract version of a pathway that 
combines multiple pathway instances. To create a model 
pathway we effectively take the "union" of a number of 
training pathways. At the structural level, we define the union 

of two pathways A and B as 

! 

U = A"B , where U is a new 
pathway whose structure includes all the reactions occurring 
in either A or B. For each reaction in pathway U, if that 
reaction existed in both A and B, then the reaction’s protein 
catalyst set in U is the union of the catalyst sets from the same 
reaction in A and B. Fig.  illustrates the union of part of the C. 
elegans instance of the Gluconeogenesis pathway (left 
subfigure) and part of the S. pombe instance of the same 
pathway (middle subfigure). C elegans has reaction 6 and 7, 
from Fig. 1, but not reaction 5. S. pombe has reaction 5 and 7, 
but not reaction 6. The union pathway has all three reactions. 
The catalyst set for reaction 7 contains all of the proteins that 
catalyzed this reaction in either organism, regardless of the EC 
family where the protein originated. For brevity, reactions 5 
and 6 are shown with only one of their protein catalysts. 

 

Fig. 3. The union of two partial pathway instances in a model 
pathway. 

Algorithm 1 is not modified, except that the model pathway 
is used as the training pathway input instead of using a single 
instance pathway. By using model pathways, the pathway 
prediction algorithm can even predict instances of a pathway 
with variations in structure that were never observed in the 
training pathway set – and perhaps never found in any 
physical laboratory. Such emergent structures can be 
computationally predicted before being observed. 

V.   EXPERIMENTAL METHODOLOGY 
To evaluate the effectiveness of our automated pathway 

prediction technique, we performed a cross-validation of 
pathway predictions to simulate the situation where the 
pathways of one organism are completely unknown. We began 
with a data set consisting of n instances of the same pathway, 
where each instance was from a different organism. We used n 
- 1 organisms to build a model pathway and then used this 
model pathway to build a classifier. We used this classifier to 
predict the remaining nth pathway instance and compared the 
predictions to the known structure and components of this nth 
pathway instance. We repeated this cycle n times, each time 
predicting the pathway instance of a different one of the 
organisms. Since our data set had 125 different pathway 
instances, we repeated this cross-validation process 125 times, 
once for each instance. Finally, we aggregated all of the 
results to compute overall statistics.  

Our algorithm is evaluated by comparing the structure 
(reactions) and components (catalysts) of the predicted 
pathway instance to the known pathway information. We 
computed statistics for the components predicted to catalyze 
each reaction in a pathway, and called these statistics the 
catalyst scores. We also separately computed statistics for the 



 

 

existence of each reaction in a pathway. We call these 
statistics reaction scores. We computed three standard 
statistics for the catalyst and reaction scores: precision (P), 
recall (R) – also called sensitivity – and f-measure (F).  In the 
calculation of these statistics, a true positive (TP) is a correct 
(according to the known information) positive prediction, a 
false positive (FP) is an incorrect positive prediction (e.g., a 
protein is predicted to catalyze a reaction, but it is not known 
to do so), and a false negative (FN) is an incorrect negative 
prediction (e.g., a protein is not predicted to catalyze a 
reaction, when it is known to do so).  Precision, recall, and f-
measure are defined by: 

! 

P =
TP

TP + FP
R =

TP

TP + FN
F =

2" PR

P + R
 

In particular, f-measure is important, since it combines 
recall and precision. It is easy to inflate either precision or 
recall separately at the expense of the other. For example, a 
classifier that always predicts “yes” has perfect recall since FN 
= 0. A classifier that always predicts “no” has perfect 
precision since FP = 0. Note also that we do not compute the 
specificity, which gives credit for true negatives, since in the 
context of this problem the negative set is extremely large 
compared to the positive set so the specificity would be high 
even for a poor classifier that always predicts negative.  

A. False positives versus discoveries 
In imperfect information situations there is an alternative to 

the standard definition of true positive (TP). In the case of 
pathway data (and other biological data), we cannot assume 
that our empirical testing data is complete. Most publications 
usually report only positive results, so the absence of a protein 
from a reaction's list of catalysts could indicate that an 
experiment has not been performed to determine whether or 
not that protein catalyzes that reaction. Given that the data is 
incomplete, it may be desirable not to penalize the algorithm 
for predicting the existence of a catalyst that is not known to 
catalyze a particular reaction. Such a prediction may not really 
be a false positive – it may be a discovery. On the other hand, 
every false positive could be treated as a discovery, causing 
the predictor that always says "yes" to result in a perfect score.  
This is not desirable either. 

We propose a compromise. To predict pathways, an 
algorithm makes catalyst predictions and reaction predictions. 
The probability of discovering another protein that catalyses a 
reaction that is known to occur in an organism is higher than 
the probability of discovering that a reaction occurs in an 
organism, when it was previously not known to occur. In other 
words, small discoveries are more probable than large 
discoveries. When evaluating reaction scores, false positives 
should be considered normally, since discoveries are 
improbable. For example, there is no reaction 5 for C. elegans 
in the Gluconeogenesis pathway. If a predictor predicted such 
a reaction then it would be considered a false positive reaction. 
The predictor knows about reaction 5, since the model 
pathway contains this reaction (from S. pombe). Therefore, it 
would be possible for the classifier to predict a catalyst for it. 
In fact, to predict such a reaction for C. elegans, the classifier 
would only need to predict that a single protein in C. elegans 
has the same function as a protein in S. pombe that catalyzes 

reaction 5. However, this would be the first protein ever 
discovered in C. elegans that catalyses this reaction, which is 
improbable. On the other hand, if a reaction is known to exist 
in an organism and a false positive occurs in predicting a 
catalyst for it, we could have discovered another protein that 
catalyses the reaction (many reactions have multiple 
catalysts). This is a small discovery so it is more probable. 

For a molecular biologist, a false positive on a catalyst in an 
organism that is known to have a reaction could be considered 
a “lead” for an experiment that makes a “small” discovery of a 
new catalyst for a known reaction in the metabolic pathway of 
this organism. A false positive on a catalyst in an organism 
that is not known to have this reaction, is a “lead” for a riskier 
experiment that could lead to a “large” discovery of a new 
reaction in the metabolic pathway for this organism. 

In this paper, all of the statistics we quote use the 
traditional (more conservative) definition of false positive, 
even though some false positives are probably discoveries. 
Therefore the actual accuracies of our classifiers are probably 
higher than we report. 

B. Experimental data set 
To perform an experiment that fairly and reliably tests the 

utility of the pathway prediction algorithm, we placed some 
requirements on the data set. 
1) There must be at least two instances of every pathway 

(necessary for cross-validation), though more are preferred 
to favor fair training data sets. 

2) The structure and components should be experimentally 
verified or at least manually curated - not automatically 
generated by computational methods. 

3) All data must be available in machine-readable format. 
The structure and components of every pathway in the data 

set must be specified. 
TABLE I 

THE 13 SPECIES SELECTED FOR THE EXPERIMENTAL DATA SET. 
Species Strain 
Agrobacterium tumefaciens C58 (Cereon) 
Arabidopsis thaliana  
Bacillus subtilis  
Caenorhabditis elegans  
Chlamydia trachomatis  
Drosophila melanogaster  
Escherichia coli K-12 MG 1655 
Helicobacter pylori J99 
Homo sapiens  
Mycobacterium tuberculosis CDC1551 
Mycoplasma pneumoniae  
Saccharomyces cerevisiae  
Schizosaccharomyces pombe  

 
Many potential data sources were evaluated—for examples 

see [3]-[7]—but only one satisfied our requirements, the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
PATHWAY database [3]. A subset of KEGG numbering 10 
metabolic pathways spanning 13 organisms—a total of 125 
pathway instances—was extracted from the database to be 
used as our experimental data set. The complete listing of 
pathways and organisms are in Tables I and II respectively. 



 

 

Two organisms do not have instances of all 10 pathways. 
Therefore, only 8- or 9-fold cross-validation was done for 
those pathways. The missing instances are listed in Table III. 

 
TABLE II 

THE 10 PATHWAYS IN THE EXPERIMENTAL DATA SET. 
Category Pathway 
Amino acid Alanine and aspartate metabolism 
metabolism Cysteine metabolism 
 Glutamate metabolism 
 Methionine metabolism 
 Urea cycle and metabolism of 

amino groups 
Carbohydrate Aminosugar metabolism 
metabolism Citrate cycle (TCA cycle) 
 Galactose metabolism 
 Glycolysis / Gluconeogenesis 
 Propanoate metabolism 

 
TABLE III 

SPECIES MISSING TEST PATHWAYS. 
Species Pathways 
C. trachomatis Galactose m., Urea cycle 
M. pneumoniae Aminosugars m., TCA cycle, Urea 

cycle 

VI. CLASSIFIERS 
Several different classifiers were implemented, tested, and 

evaluated in our prototype pathway prediction system. The 
classifiers were based on three different technologies: BLAST, 
hidden Markov models (HMM) and Support Vector Machines 
(SVM). Several of the classifiers used combinations of these 
techniques. Other classification technology could be used, but 
these technologies were sufficient to establish the utility of our 
approach to high-throughput pathway prediction. 

A. BLAST-based classification 
One approach to the classification problem is to compare 

the primary sequence of the training proteins—which are 
known to catalyze a specific reaction node—to the target 
organism's proteins, and select the most similar ones. BLAST 
[8] is a tool that performs this type of comparison. Two 
classifiers based solely on BLAST were implemented. 

1) BLAST nearest-neighbour classifier: The BLAST 
nearest-neighbour (NN) classifier selects the protein from the 
target organism's proteome that is most similar to any of the 
training reaction's proteins (as determined by BLAST). In 
other words, for a given reaction and target proteome, the 
BLAST NN classifier compares all the training proteins to all 
the sequences of the target proteome, and then returns the 
single protein with the smallest e-value. This simplistic 
classifier provides a baseline for comparison with the other 
classifiers. In particular, the classifier's limitation of only 
selecting a single protein from the target proteome makes it 
impossible for the classifier to attain good recall scores, since 
most reactions have more than one catalyst. In addition, the 
fact that the BLAST NN classifier always makes a prediction 
– regardless of the dissimilarity of the best-matching protein – 
undoubtedly harms its precision. 

2) BLAST threshold classifier: Like the BLAST NN 
classifier, the BLAST threshold classifier uses BLAST as a 
metric to compare each training protein to each of element of 
the target proteome. However, it eliminates some of the 
BLAST NN classifier’s obvious limitations by predicting all 
those proteins from the proteome whose comparison with any 
of the training proteins resulted in an e-value no greater (i.e. 
no worse) than a significant threshold. 

B. Profile-HMM-based classification 
 In cases where the functionality of a protein depends 

mainly on a small conserved portion of its amino acid 
sequence (called a motif), profile HMMs may be more 
sensitive than alignment methods such as BLAST for 
identifying candidate catalysts. Profile HMMs can weigh 
similarity to these conserved regions more heavily than 
similarity to the rest of the sequence. They are constructed to 
recognize recurring protein segments, or motifs, that are 
common to most of the model catalysts. 

 To use profile HMMs for pathway prediction, we built a 
profile HMM model for each reaction in the training pathway. 
This process involved computing a multiple alignment of all 
the training reaction's catalysts with ClustalW [9], and then 
using HMMER [10] to build a profile hidden Markov model. 
The model was calibrated [10] to determine score significance.  

1) Profile HMM Threshold Classifier. Our Profile HMM 
classifier uses HMMER to iterate over the organism's 
proteome and calculate for each protein the likelihood of being 
emitted by the training reaction's hidden Markov model. Like 
BLAST, HMMER returns an e-value for each protein 
(although the e-values for the two tools do not have exactly 
the same meaning), so our predictor uses a threshold to filter 
out proteins that do not match well enough. 

2) Mixing BLAST and HMMs: The evaluation of both the 
BLAST threshold and the HMM classifiers shows a 
significant trade-off between precision and recall. In an 
attempt to take advantage of the strengths of each, we 
implemented a classifier that combines the BLAST and HMM 
threshold classifiers (our BLAST-HMM classifier). The 
BLAST-HMM classifier's prediction consists of the 
intersection of the predictions of the two component 
classifiers. This classification rule implies a tougher standard 
to be met by proteins before being classified as catalysts, since 
both BLAST and HMM classifiers need to agree. We used 
lower e-value thresholds to allow more true positive catalysts 
to be predicted by each classifier (increasing recall), while the 
requirement for agreement filtered the extra false positives 
generated by the individual classifiers because of their lower 
thresholds (increasing precision). 

C.  SVM-Pfam-based classification  
A Support Vector Machine is a statistical classification 

technique to compute a separator for a two-class data set. 
Indeed, our classifier's task is to separate the proteins that 
catalyze a reaction from the ones that do not. Unlike BLAST 
and HMMER, the SVM itself is not a sequence analysis 
technique. Therefore, it cannot work with raw amino acid 
sequences. Instead, it is necessary to produce a representative 
feature vector for each protein and use it for training and 
prediction. Given that motifs and domains often determine 



 

 

enzymatic activity, the Pfam families [11] identify motifs and 
domains that may be used as features for our problem. The 
feature vectors used by our SVM classifier consisted of 7,673 
boolean values, each stating the presence of absence in the 
protein of the corresponding Pfam motif. 

Using the hmmpfam [10] tool we computed the motifs for 
each of the 120,054 proteins in our 13 test organisms. The 
training set for the classifier consisted of feature vectors for all 
the proteins of all the training organisms. The proteins that 
catalyze the reaction of interest were positive examples for the 
training process while the rest were negative examples. The 
training data set was used to compute a Support Vector 
Machine using LibSVM software [12]. The SVM was then 
used to predict which of the target organism's proteins were 
catalysts for the reaction, given their Pfam motifs. 

The unbalanced nature of the training set—there are far 
more negative samples than positive samples—can be 
problematic in the application of SVM to this particular 
problem. In particular, when no perfect separator can be found 
between the set of catalysts and non-catalysts the SVM 
training algorithm may find it better – according to its 
optimization function – to take a small penalty for leaving the 
few known catalysts on the wrong side of the separator rather 
than leaving a larger number non-catalysts on the wrong side. 
To combat this symptom we raised the weight associated with 
the positive training samples. This raised the penalty for 
placing a positive training sample on the wrong side of the 
partition, making the training algorithm behave as if there 
were more positive samples in the training set. 

VII.   EXPERIMENTAL RESULTS 
The effectiveness of the pathway prediction algorithm using 

each of the classification techniques described in Section VI 
was evaluated via the experimental methodology described in 
Section V. The results of those experiments are presented in 
this section. In the interest of saving space, only catalyst 
prediction scores are presented in detail. This test is certainly 
the more stringent one, since good catalyst predictions will 
imply good reaction predictions, while the converse is not 
necessarily true. In fact, comparing the two measurements 
showed that for all of the tested classifiers the reaction 
prediction score was always higher than the corresponding 
catalyst prediction score. Most of the classifiers have 
parameters that affect their performance. Over the course of 
these experiments we varied some of them in an effort to 
obtain the best possible performance from each classifier. 
Results specific to each classifier type are presented in the 
following subsections, while all the classifiers' best component 
and structure scores are summarized together in Table V and 
Table VI for easy comparison. 

A. BLAST NN and BLAST threshold 
When testing the BLAST NN classifier, we used default 

values for all BLAST parameters. With the BLAST threshold 
classifier, only the e-value was changed.  Figure 4 shows the 
precision, recall, and f-measure statistics for the pathway 
predictor using these two classifiers. The graph shows how the 
effectiveness of the classifier is significantly affected by its 
threshold. The threshold classifier is better than the baseline 

NN classifier over most of the range of reasonable e-values 
(10−14 to 10−128) when comparing the results by f-measure. The 
threshold classifier’s curves show that a reasonable threshold 
value needs to be chosen to guarantee good performance, so 
that enough similarity is required to try to match the functional 
parts of the protein, but enough variation is permitted to allow 
for the divergence between species. 

 

Fig. 4 Statistics for catalyst prediction using BLAST 
classifiers. 

B. Profile HMM 
A variety of threshold e-values were used for the profile 

HMM classifier. The results of the experiments are plotted in 
Fig. 5. This classifier is slightly more accurate than its 
BLAST-based counterpart. We see that both classifiers exhibit 
similar behavior when varying their e-value thresholds, with 
optimal overall performance at specific e-value. 

 

Fig. 5. Statistics for catalyst prediction using HMM classifiers. 

C. BLAST-HMM 
By intersecting the predictions of the BLAST Threshold 

and profile HMM classifiers (with lowered respective 
thresholds), the BLAST-HMM classifier reached an f-measure 
2% above the HMM classifier and 3% above the BLAST 
Threshold classifier. This classifier represents an improvement 



 

 

in precision over both the individual classifiers (13% over 
BLAST, 3% over HMM), with a small increase in recall when 
compared to the HMM classifier. The relatively constant recall 
indicates that there probably is a large overlap between the 
true positive predictions of the two individual techniques. 

D. Motif SVM classifier 
The Motif SVM classifier was tested with a linear kernel 

and varying weights for the positive class instances. The 
results in Fig. 6 show that a slight increase in the weight of the 
positive training samples is necessary to obtain good 
prediction scores. This classifier did not outperform any of the 
BLAST or HMM classifiers in the catalyst predictions, though 
it achieved high structure prediction scores.  

 
Fig. 6. Pfam motif linear kernel SVM classifier statistics. 

VIII.   REACTION-SPECIFIC CLASSIFIERS 
The experimental results for both the BLAST threshold and 

HMM threshold classifiers show that different overall e-value 
thresholds vary the effectiveness of the predictor. However, 
when analyzing these overall scores, any sense of the success 
of the classifier at the individual reaction nodes is lost. A more 
detailed analysis shows that at different reaction nodes, a 
different e-value threshold maximizes the f-measure. Table IV 
shows the f-measure scores at different e-values for predicting 
reaction 1 (EC 1.8.1.4 - Dihydrolipoyl dehydrogenase) and 
reaction 2 (EC 2.3.1.12 - Dihydrolipoyllysine-residue 
acetyltransferase) for the C. elegans instance of the 
Gluconeogenesis pathway. This example shows that choosing 
a single e-value threshold for both nodes results in sub-optimal 
performance for the two classifiers. 

 
TABLE IV 

F-MEASURE METRIC AT DIFFERENT E-VALUE THRESHOLDS FOR THE BLAST 
THRESHOLD CLASSIFIER. 

e-value f-measure 
1.8.1.4 

f-measure 
2.3.1.12 

0.001 0.250 0.750 
1e-10 0.333 0.857 
1e-20 0.400 0.857 
1e-50 0.667 0.800 
1e-100 1.000 0.500 
1e-160 1.000 0.000 

 
We analyzed the results of our experiments with the 

BLAST and HMM threshold classifiers and calculated the 
overall scores that could be achieved by using the best 
threshold at each reaction node. The results of this analysis are 
presented in Table V and Table VI, with the other predictors. 
They are named Opt BLAST and Opt HMM. The results show 
that the BLAST predictor gains 19% in precision and 12% in 
recall, while the HMM predictor gains 8% in precision and 
17% in recall over their constant-threshold counterparts. 

 
TABLE V 

BEST CATALYST PREDICTION SCORES (SELECTED BY F-MEASURE) FOR EACH 
CLASSIFIER TYPE. 

Classifier F-measure Precision Recall 
Opt BLAST 0.803 0.715 0.915 
Opt HMM 0.767 0.706 0.839 
BLAST-HMM 0.667 0.657 0.677 
HMM 0.650 0.627 0.674 
BLAST Thresh 0.639 0.527 0.810 
Motif SVM 0.635 0.586 0.693 
BLAST NN 0.468 0.453 0.484 

 
TABLE VI 

BEST PATHWAY STRUCTURE PREDICTION SCORES (SELECTED BY F-MEASURE) 
FOR EACH CLASSIFIER TYPE. 

Classifier F-measure Precision Recall 
Opt BLAST 0.889 0.857 0.924 
Opt HMM 0.864 0.847 0.881 
Motif SVM 0.862 0.837 0.889 
BLAST-HMM 0.860 0.850 0.871 
BLAST Thresh 0.860 0.840 0.880 
HMM 0.831 0.880 0.787 
BLAST NN 0.665 0.506 0.970 

 
Another interesting observation arises from the histogram of 

the best thresholds for the BLAST classifier (Fig. 7). The 
histogram shows two significant peaks, indicating that there 
are two categories of metabolic reactions. The first one (near 
1e-100) is very sensitive to the variations in the catalyst's 
amino acid sequence. The second (near 1e-3) is rather 
forgiving of variations, perhaps only being functionally 
affected by a small section of the protein.  

 

Fig. 7. Best e-values for BLAST threshold classifiers. 



 

 

 This evidence suggests that for accurate pathway 
prediction, the decision as to whether a particular protein from 
the target organism is suitable to catalyze a reaction node 
should be made by a reaction-specific classifier. The classifier 
should adopt prediction techniques and parameters that are 
specialized for recognizing proteins that meet its particular 
requirements. The parameter searching involved in 
constructing a large number of specialized classifiers may 
seem like a daunting task – choosing which of the presented 
classifiers to use, in addition to its particular parameters. 
However, we believe that this burden can be eased by utilizing 
machine learning techniques to select and tune the classifiers. 
We have started this process, but the results are beyond the 
scope of this paper. 

IX. CONCLUSION 
In this paper, we have presented a computational technique 

for predicting metabolic pathway reactions and catalysts that 
analyse the entire proteomes of organisms. We have shown 
that our algorithm and the classifiers that it uses can make 
accurate predictions, as measured by cross-validation. We 
have also shown that to achieve the best results, it is necessary 
to use reaction-specific classifiers, or classifiers that are tuned 
differently for each reaction. We are currently translating our 
prototype to a web-based tool that we plan to make available 
on-line. 
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