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Abstract

This paper describes heuristic rules for static life/death analysis for general classes of

groups in the game of Go, as implemented in authorsÕ world championship computer

Go programs Go Intellect and HandTalk. We shall show that for many life and death

problems in Go, the e�ect of a tree search can be approximated by a static analysis on

the groupÕs interior and surroundings. We investigate eye-spaces with or without op-

ponentÕs dead stones and try to provide a foundation towards conquering the combi-

natorial explosion of Go game tree. Ó 1999 Elsevier Science Inc. All rights reserved.

Keywords: Heuristic programming; Approximation algorithms; Machine game playing;

Combinatorial game theory

1. Introduction

Recent success of the Deep Blue chess program draws vast attention and
excitement to machine game playing. Yet the ultimate programming challenge
in machine game playing undoubtedly lies with the ancient oriental game of
Go. It is well known that Go de®es computer chess type full board search
techniques.

Go is a two-person perfect information game. Two players alternately place
a black and a white stone on some empty intersection of a 19 by 19 grid. Placed
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stones are never moved, but may be removed (called captured or killed) if they
are completely surrounded. Basically every empty intersection is a legal move
point. The rare exceptions are the points that playing a stone would cause an
earlier board con®guration in the game to reoccur. They are referred as `ko'
situations. The objective of Go game is to secure more territory (grid points)
than the opponent does. Kierulf et al. [6] contains a lucid explanation of Go
game and the task of building a Go program. For more detailed descriptions of
the game and the rules of Go, readers can visit American Go Association web
site. Its home page address is http://www.usgo.org/ and its AGA Rules of Go
page is at http://www.cs.cmu.edu/People/wjh/go/

A Go game normally runs over 200 moves. Each turn o�ers about 250
choices of legal plays on average. Because of this high branching factor and
di�cult positional understanding, Go is considered a most challenging game
for the machine. It provides an excellent model for exploiting heuristic pro-
gramming techniques in arti®cial intelligence.

The determinations of Life/death for groups on the board are fundamental
tasks in Go games. Board evaluation, candidate move generation, and move
decision making all rely on the life/death knowledge of groups on the board.
Unfortunately group life/death problem in Go is just as hard as the whole game
of Go. Lichtenstein and Sipser [8] and Robson [11] have shown that life and
death problem in nXn Go is P-space hard and exponential time complete re-
spectively.

Life/death in Go is a combinatorial problem. It is to determine whether a
group can survive under any of the opponentÕs exponentially many attacking
sequences. Or equivalently, it is to ®nd the game theoretic value of a local game
tree. The natural approach is of course to perform a thorough tree search and
do the mini±max back up. But such approach runs into combinatorial explo-
sion as noted above. And it may not be practical under normal tournament
time constraints.

When facing NP-hard problems, computer scientists seek approximation
algorithms for real-time solutions. This paper will show that for some prob-
lems, an approximation algorithm may be entirely di�erent in characteristics
from the original exact algorithm ± the approximation of a tree search can be a
static analysis on a groupÕs surroundings!

2. Investigations of life and death in Go

Benson [1,2] investigated `unconditional life' ± life without the need of any
defense (the group is alive even if it passes on every turn). Popma and Allis [10]
proposed the notion of `X life' ± passing X times by the defense, the group can
still live. Wolf [12] investigated life and death problems using tree search.
Muller [9] introduced an algorithm for recognizing safety under alternating
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play for some restricted types of Go groups. Landman [7] studied combina-
torial game theoretic vales of various eye-spaces using an interesting Bargo
model. In this paper, we attempt to provide static life/death analysis for general
classes of Go groups without the involvement of `ko'. Performing tree search
for every group to determine its life and death status is too expensive. Both
authors use static analysis for Life/Death in their Go programs, Go Intellect
(K. Chen) and HandTalk (Z. Chen).

Most of the concepts and rules we derive in this paper will be heuristic in
nature so they can cover a wide variety of groups. Even though the heuristic
rules described in this paper provide the correct results most of the time, there
exist exceptions. If we try to de®ne everything strictly and try to prove rules
mathematically, then the life and death problem will become too di�cult to
solve.

We shall follow the terminology of Benson [1,2] and Chen [4]. A block, also
known as string, is a maximal connected set of stones of one color. A group is a
collection of closely related blocks plus the empty points under their strong
in¯uence and surrounded opponentÕs dead stones. These empty points are
called the groupÕs interior spaces and these opponentÕs dead stones are called
prisoners. A group is alive if it can always prevent being captured, no matter
how the opponent, playing ®rst, attacks. Experienced Go players know if a
group can make 2 eyes or can manage a co-life (seki), it lives. A group is dead if
the opponent can always capture it, no matter how we, playing ®rst, defend. A
group is critical if it will be alive if the group side moves ®rst and it will be dead
if the opponent moves ®rst. We shall investigate the life/death/critical status of
groups via static local analysis in the following sections. Ko requires a global
analysis and the situation can become extremely complicated (see [11]), this
paper will not deal with it. For those groups involve in ko, we can assume,
based on a separate ko-threat analysis, a speci®c winner for the ko before
performing static analysis, or simply revert it to global search.

3. Eye-points

Our static analysis is based on heuristic estimation of a groupÕs eye-making
ability. Both empty points and opponentÕs dead stones can become eyes. We
shall investigate empty eye-points ®rst. Prisoner eye-points will be studied in a
later section.

An empty point surrounded or nearly surrounded by the playerÕs stones is
referred to as a controlled point. Controlled points are usually inaccessible by
the opponent. They include points forbidden to the opponent by rules of the
game and those points at which entered stones of the opponent can be killed.
Practically, it is di�cult to judge controlled points according to accessibility of
the opponent, as it needs considerable search e�ort to judge accurately. The
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concept of interior space points of a group, see [4], is a good static approxi-
mation of controlled points.

Controlled points may be full, partial, or false eye-points. Full and partial
eye-points are referred jointly as eye-points. False eye-points are not eye-
points.

In all examples in this paper, we assume that we take white, and the op-
ponent plays black.

Points As in Fig. 1 are obviously non-eye-points. However, some accessible
points to the opponent may become inaccessible after our move; thus they can
be turned into eye-points. Points Cs in Fig. 1 are examples. They are now
accessible by the opponent. But they will become inaccessible after we move at
A on the right. These potential eye-points cannot be neglected and should be
treated as partial eye-points. Hence frontier spaces, see [4], are candidates for
partial eye-points and should also be examined.

The discrimination among full, partial and false eye-points depends on the
opponentÕs accessibility at the adjacent and diagonal-adjacent points of the
controlled point. If the adjacent points are all inaccessible to the opponent, it
depends on the status of the diagonal points. Even when a controlled point
has an opponent accessible adjacent point, such as E in Fig. 1 (its left ad-
jacent is accessible to the opponent), its diagonal points should also be in-
vestigated.

A controlled point in line 1 (margin line of the go-board) is a false eye-point
if any diagonally adjacent point is occupied by a live opponent-stone. For a
point above line 1, it is a false eye-point if two or more diagonally adjacent
points are occupied by live opponent-stones. Both points marked by A in Fig. 2
are false eye-points. A controlled point that will inevitably become a false eye-
point is also classi®ed as a false eye-point. The point A in Fig. 3 has a diag-
onally adjacent point occupied by opponent and two others accessible to
opponent, one of which will inevitably be occupied by the opponent, so A is
also a false eye-point.

A controlled point is a full eye-point if the opponent's move cannot change
it to a false eye-point. A controlled point is a partial eye-point (usually half eye-
point) if opponent's move can change it to a false eye-point and our move can
change it to a full eye-point.

Fig. 1.
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A full eye-point is an eye if it is not adjacent to any empty point. A half eye-
point is a half-eye if it is not adjacent to any empty point. In Fig. 4 both Es are
eyes, and H is a half-eye.

If the full eye-point condition on diagonals is satis®ed, the controlled point
has only one empty adjacent point, and the empty adjacent is accessible to the
opponent, then this controlled point is a half-eye. Point D in Fig. 5 is thus a
half-eye.

Therefore, a controlled point is a full eye-point if all adjacent empty points
are controlled points and one of the following is true:
1. It is in line 1 and all diagonal points are occupied by our live stones or are

our controlled points.
2. It is above line 1 and at least 3 diagonals are occupied by our live stones or

are our controlled points.

Fig. 2.

Fig. 3.

Fig. 4.
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3. It is above line 1 and 2 diagonals are occupied by our live stones or are our
controlled points and the other 2 are (opponent-accessible) empty points.
A full eye-point is not necessarily able to produce an eye. A full eye-point

with an adjacent false eye-point and no other empty adjacent is only a half-eye.
In Fig. 6, D is a full eye-point with an adjacent false eye-point marked by A. If
White moves at A, the point at D is an eye. If Black moves at A, White cannot
make eye at D.

There is no di�erence between the Ds in Figs. 5±7 at their diagonal neigh-
bors. The only di�erence between them is the opponent-accessibility at their
left adjacent. Such a di�erence has no e�ect on the possibility of eye making.
Furthermore, Both As in Figs. 5 and 6 are the same at their diagonal adjacent
points. Point A in Fig. 6 is a typical false eye-point. Point A in Fig. 5 can also
be regarded as a false eye-point. We can also regard the D in Fig. 5 to be a full

Fig. 6.

Fig. 7.

Fig. 5.
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eye-point in our initial assessment. As a matter of fact, the status of diagonal
adjacent is comparatively easy to judge, so the eye-point analysis can be con-
siderably simpli®ed if we initially discriminate full, half, and false eye-points
according only to the situation at its diagonal adjacent points. The short-
coming of such a simpli®cation can be remedied by adjustments based on the
situations of the adjacent points.

We summarize the above discussion into an e�cient discrimination method
for our initial assessment. Heuristic eye-point downgrading rules will be in-
troduced in later sections for the needed adjustments. Let call a point on the
Go board a controlled point, if it is occupied by our live stone or by opponentÕs
dead stone, or it is a border point or our controlled empty point. An empty
board point is said to be a non-controlled point if it is accessible by both sides.
The diagonal index of a board point is the number of our controlled board-
points, plus 1/2 times the number of non-controlled empty points, of the di-
agonal neighbors.

We can classify all space and prisoner points of a group according to Tables
1 and 2.

4. Perfect pure eye-regions

A set of adjacent eye-point is referred to as an eye-region. An eye-region
consisting of only empty eye-points without any prisoners is called a pure eye-
region. We shall investigate the number of eyes that a pure eye-region can
provide in Sections 4±6. And we shall study eye-regions containing prisoners in
Sections 8±10. Combining multiple eye-regions will be discussed in Section 7.

If a pure eye-region composes of only full eye-points without other adjacent
empty point, and the surrounding boundary does not have defect, it is referred
to as a perfect pure eye-region. Obviously, a perfect pure eye-region with one
or two eye-points can produce exactly 1 eye.

The following eye-regions have their customary names:
· A perfect eye-region with 3 eye-points, referred to as Straight-Three or

Table 1

Initial eye-point classi®cation for points in line 1

Diagonal index 6 3 31
2

4

Classi®cation eye-point False eye-point Half eye-point Full eye-point

Table 2

Initial eye-point classi®cation for points above line 1

Diagonal index 6 2 21
2

P 3

Classi®cation eye-point False eye-point Half eye-point Full eye-point

K. Chen, Z. Chen / Information Sciences 121 (1999) 113±134 119



Curved-Three corresponding to its straight or curved shape, has 1.5 eyes.
· A perfect eye-region with 4 eye-points in a square shape, referred to as

Square-Four, has only 1 eye.
· A perfect eye-region with 4 eye-points in a T-shape, referred to as T-Four,

has 1.5 eyes.
· A perfect eye-region with 4 eye-points in a straight or curved line, referred to

as Straight-Four or Curved-Four respectively, has 2 eyes.
· A perfect eye-region with 5 eye-points in a shape like `+', referred to as

Flower-Five, has 1.5 eyes.
· A perfect eye-region with 5 eye-points in which 4 in a square shape, referred

to as Knife-Five, has 1.5 eyes.
· A perfect eye-region with 6 eye-points in which 4 in a square shape and other

two adjacent to one corner of the square, referred to as Flower-Six or
Grape-Six, has 1.5 eyes.

· A perfect eye-region with 6 eye-points in a rectangular shape, referred to as
Rectangular-Six, has 2 eyes.
When we say an eye-region has 2 eyes, we mean it can produce 2 eyes re-

gardless how the opponent attacks. Similarly, When we say an eye-region has 1.5
eyes, we really mean that the region produces 2 eyes if the group side plays ®rst
and 1 eye when the opponent moves ®rst. Using the notation of combinatorial
game theory, we can indicate the eye number situation precisely in this case as
f2j1g. The number to the left (resp. right) of vertical bar indicates the number of
eyes the region has when the group side (resp. the opponent) plays ®rst. Thus, T-
Four has f2j1g eyes. Often we simply use the average and say T-Four has 1.5 eyes.

A group containing more than 2 eyes is the same as 2 eyes, being alive, so we
will regard more than 2 eyes as 2 eyes. A perfect eye-region with 5 or 6 eye-
points in a shape other than Flower-Five, Knife-Five, or Flower-Six has 2 eyes.
Any perfect eye-region with 7 or more eye-points has 2 eyes.

A group containing just 1 eye-region with 1 eye or less and no other fa-
vorable factors (half eye-points, exit, or defect of surrounding opponent) is
dead. A group containing just 1 eye-region with 1.5 eyes and no other favorable
factors is critical.

Let us de®ne external boundary of a region R, Ext(R) following BensonÕs
notation, as follows:

Ext(R) is the set of grid and border points which are adjacent to some point
in R but themselves are not in R.

The number of eyes that a perfect eye-region can produce, can be deter-
mined by the length of its external boundary according to the Table 3.

For example, Knife-Five has the length of external boundary 9 and it
contains a Square four, so it provides 1.5 eyes. The readers are encouraged to
check other common shapes of eye-regions. The idea of using length of Ext(R)
to estimate the number of eyes was originally proposed by Mark Boon (per-
sonal communication).
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5. Imperfect pure eye-regions

An eye-point adjacent to a false empty eye-point should be downgraded by
one level i.e. a full eye-point is downgraded to a partial eye-point and a partial
eye-point is downgraded to a false eye-point. If the opponent plays at the false
eye-point neighbor, the eye-point will become a non-eye-point. If the group
side plays at the false eye-point neighbor, the original status of the eye-point
will regain. So a full eye-point adjacent to a false eye-point plays a similar role
as a half eye-point not adjacent to a false eye-point.

The number of eyes that a region provides can be determined by the fol-
lowing rule.

Estimating rule for space eye-regions: After downgrading rules are applied,
Case 1: The region has only false eye-points left: it provides 0 eyes.
Case 2: The region has partial eye-points but no full eye points: it provides

1/2 eyes.
Case 3: The region has contiguous full eye-points left: we neglect partial eye-

points to get a condensed pure eye region. Then use Table 3 on the condensed
region to get the number of eyes. When a half eye-point is adjacent to a square
four and with two or less empty neighbors, we add 1/2 to the result. If this
number exceeds the one for the region counting both full and partial eye-points
according to Table 3, then use the number for the combined region.

Case 4: The region has noncontiguous full eye-points: look-ahead search is
needed in this case. We can use the region counting both full and partial eye-
points to access Table 3 for an upper bound on the number of eyes.

The eye-region in Fig. 8 has 5 full eye-points, two of which marked by P are
adjacent to false eye-points marked by A. These two Ps should be downgraded
to partial eye-points. Now the condensed eye-region conforms to a Straight-
Three after neglecting points Ps, so it has 1.5 eyes. When one (or both) of the
white stones on line 1 is absent, the adjacent A is opponent-accessible, the
number of eyes is the same as that in the ®gure.

Table 3

Number of eyes in a perfect pure eye-region

Length of Ext(R) No. of eyes

6 6 1

7 1.5

8 (Square Four) 1

8 (Curved Four) 2

8 (Any other shape) 1.5

9 (Containing a Square Four) 1.5

9 (Not containing a Square Four) 2

P 10 2
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In Fig. 9, neglecting the E, which is downgraded to a partial eye-point for
being adjacent to a false eye-point, the eye-region conforms to Knife-Five, so it
has 1.5 eyes. Note that if the upper left F is occupied by a white stone, then the
region with point E neglected is of 2-eye shape but the original region is a
Knife-Five with 1.5 eyes. We should take the smaller number ± the region has
1.5 eyes.

In Fig. 10, neglecting E, the eye-region is square four, so the basic rule
predicts 1 eye. However, E is adjacent to a Square-Four of full eye-point and it
has no more than two empty neighbors, so it has 1.5 eyes. White can rescue the
group by moving at the right adjacent of E. A group conforming to square four

Fig. 9.

Fig. 10.

Fig. 8.
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with the neglecting of a full eye-point that is adjacent to a false eye-point can
generally be rescued.

The white group in Fig. 11 conforms to knife ®ve after neglecting the
downgraded point E, but E is adjacent to a Square-Four. So the region has
1.5 + 0.5 eyes. It is already alive.

LetÕs re-state our ®rst downgrading rule on eye-points below.
Downgrading rule 1: For each false empty eye-point, the adjacent empty eye-

point should be downgraded by one level.
The following are some additional examples.
In Fig. 12, A is a false eye-point, so we should downgrade B. Resulting

condensed eye-region has two adjacent full eye-points. It has only 1 eye.
If the black stone diagonal to A were not there. The condensed eye-region

forms a Straight-Three with 1.5 eyes.
In Fig. 13, after downgrading B, the eye-region contains only one partial

eye-point, so it has 0.5 eyes.

Fig. 11.

Fig. 12.

Fig. 13.
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In Fig. 14, since A is a false eye-point, we downgrade D to a partial eye-
point. Now B is also a false eye-point, so we further downgrade D to a false
eye-point. Hence the region has no eyes.

In Fig. 15, again here D is downgraded to a false eye, so we should
downgrade its neighbor P to partial eye-point. Hence the region has 0.5
eyes.

If neglecting a point breaks the eye-region into two parts, we should not
neglect the point. In this case, if the region without the neglecting has n < 2
eyes, then we use the n as the number of eyes; otherwise a look-ahead search is
needed for determining the number of eyes.

6. Combinatorial eye values

Numeric eye numbers are sometimes inappropriate.
In Fig. 16, if we play ®rst at C, it produces 2 eyes. If the opponent moves

®rst at C, it has no eyes. Thus it has f2j0g eyes. In this case it is rather dan-
gerous to use the average value 1. Since this eye-region plus one ordinary eye
do not guarantee 2 eyes. The region in Fig. 17 has ff2j1gj0g eyes. The white
block has no eye if Black moves at C, while it becomes the shape similar to
Knife-Five if White moves at A, getting 1.5 eyes. Landman [7] contains many
example eye-regions with complicated combinatorial game theoretic eye
number values. We shall focus on simple common eye-regions frequently oc-
curred in actual games, so a set of generally applicable heuristic rules for life/
death recognition can be developed.

Fig. 14.

Fig. 15.
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7. A group with multiple eye-regions

When a group has several mutually independent eye-regions, the number
of eyes individual regions have can be combined to determine the number of
eyes that the group has. The eye number of a region can be presented as a
binary tree with nonnegative integers attached to the leaves as our notation
in Section 6 suggests. A crisp integer number of eyes can be viewed as a
degenerated binary tree with just one leaf (the root) attached with the integer
value. Kao [5] proposed e�ective numerical algorithms for ®nding the means
and temperatures of such binary game trees. For our eye number evaluations,
some simple computational methods will su�ce, which we shall discuss in this
section.

The exact number of eyes can be calculated through a simple combinatorial
search on the binary trees as follows: total number of eyes is initialized to the
sum of values of the degenerated trees. The group side gets to select a non-
degenerated tree and to replace it with the left subtree. The opponent gets to

Fig. 17.

Fig. 16.
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select a non-degenerated tree and replace it with its right subtree. When a tree
becomes a single leaf node, the attached number is added to the total number
of eyes. The group side wants to maximize the total number of eyes and the
opponent wants to minimize it. This mini±max search is much simpler than
regular life and death search of the group with grid points as options.

When all the binary trees involved, one for each eye-region, are integers ai or
switches fbjjcjg where ai, bj, cj are all non-negative integers. Combinatorial
game theory, see [3], tells us to play at the biggest switch, i.e. the one with
biggest bjÿcj. As a consequence, the number of eyes that a group has can be
easily calculated without search:

Proposition 1. Assume a group has multiple mutually independent eye-regions
with eyes a1; a2; . . . ; an; fb1jc1g; fb2jc2g; . . . ; fbmjcmg, such that b1ÿ c1 P
b2ÿ c2 P � � � P bmÿ cm. Then the group has fpjqg eyes where p � a1�
a2� � � � � an� b1� c2� b3� c4� . . . and q � a1� a2� � � � � an �c1� b2�
c3� b4� . . . eyes.

If p < 2 then the group is dead.
If q P 2 then the group is alive.
If p P and q < 2 then the group is critical.

Proposition 2. If all the switches in Proposition 1 are of size 1 (i.e. biÿ ci � 1).
Then we can simply add average number of eyes of each region to get total
number of eyes � a1� a2� � � � � an� 1=2�b1� c1� � 1=2�b2� c2� � � � � �
1=2�bm� cm�.

So if each eye-region can provide a whole number or a whole number plus a
half eyes, then we can simply add all eye numbers in an ordinary way. If the
sum is P 2, the group is alive. If the sum is 6 1, it is dead. If the sum is 1.5, the
group is critical.

In Fig. 18, the two eye-region of the white group are mutually independent.
One is a curve-three with 1.5 eyes; the other has 0.5 eye. Total number of
eyes� 1.5 + 0.5� 2. The group is alive. Mutual independence of the eye-regions
is an important precondition for summing up eye numbers. For example,
Fig. 19. The two eye-regions of the white group are not mutually independent.
BlackÕs move at A can threat both eyes. We can not just add 1 + 1 and claim it
has 2 eyes.

8. Semi-pure eye-region

An eye-region containing both empty eye-points and prisoner eye-points is
said to be semi-pure if all prisoners are single stones with one liberty.
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The eye-regions in Figs. 20±22 are all semi-pure. Pure eye-regions and semi-
pure eye-regions are collectively called space eye-regions.

The following is a set of heuristic rules to deal with prisoners and their
surrounding points in semi-pure eye-region:

Downgrading rule 2: If the one-liberty prisoner is a full eye-point, then its
liberty is immune from any downgrading rules.

Downgrading rule 3: If the prisoner is a false eye-point, doubly downgrade its
liberty to false eye-point (and then, applying rule 1, downgrade this libertyÕs
empty neighbors by one level.

A downgraded eye-point should not be neglected, if it may increase the eye
number estimation or it may break the region into two or more parts.

Fig. 20.

Fig. 19.

Fig. 18.
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After the neglecting non-full-eye points as required by downgrading rules,
we can treat the resulting region as a perfect pure eye-region and use Table 3 to
determine the number of eyes.

For example, after applying downgrading rules, the group in Fig. 20 has two
full eye-points side by side, so it has 1 eye. The group in Fig. 21 has a Curved-
Three full eye-point region, so it has 1.5 eyes.

Adjustment: When the region is a corridor and two ends of the corridor are
both prisoner false eye-points, we should adjust the eye evaluation by adding
1/2 eyes unless there are no eye-points (full or partial) left after downgrading.
For example, Fig. 23, Case 2 of Eye number estimating rule in Section 5 says
the group in Fig. 23 has 1/2 eyes. Since both ends of this linear region are
prisoner false eye-points, we should adjust the answer by adding 1/2 eyes. This
region really provides 1 eye.

Fig. 23.

Fig. 21.

Fig. 22.
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If there is a prisoner half eye-point, such as the left end of Fig. 22, we
can estimate the number of eyes as {NL|NR} where NL (NR) is number of
eyes of the region with the empty point A replaced by a white stone (black
stone).

9. Prisoner eye-region

Dead opponent stones may provide eye-points for a group. Dead opponent
stones may be full, half, or false eye-point just the same as empty points.
Opponent dead stones can form eye-region by themselves or together with
empty eye-points. We note that the liberties of opponentÕs dead stones make
little contribution to the number of eyes. To convert opponent's dead stones
into eyes, we have to take them o� the board. The adjacent empty points
(liberties) are thus ®lled with our stones and the group makes no eye at those
points. If an eye-region consists of one block of prisoners (dead opponent
stones) and its liberties only, then the eye-region is called a prisoner eye-region.
We shall investigate the number of eyes in prisoner eye-regions in this Section.

Estimating rule for Prisoner eye-region: we can neglect prisoner false eye-
point and its immediate neighboring prisoner. We can downgrade prisoners
adjacent to an empty false eye-point by one level.

Case 1: The dead opponent block has no more than one full eye-point lib-
erty. If the full prisoner eye-points of the dead block has the shape of a pure
eye-region with 6 1:5 eyes, the region has 1 eye. If it is of a shape worth 2 eyes,
then the region has 2 eyes. For example, Figs. 24 and 25.

The prisoner eye-region in Fig. 24 only has one full eye-point liberty and the
dead block is of Knife-Five shape, so the white group has only 1 eye.

In Fig. 25, the left most two prisoners should be ignored. We have a prisoner
eye-region of shape Straight-Three. So it has 1 eye.

Case 2: The dead opponent block has two full eye-point liberties and no
other liberties.

Fig. 24.
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Subcase 2.1: The full prisoner eye-points of the dead block form the shape of
a pure eye-region with 2 eyes.

If both Black expansion at liberty are of 2-eye shape, then the region has 2
eyes otherwise it has 1.5 eyes.

Subcase 2.2: The full prisoner eye-points of the dead block form the shape of
a pure eye-region with <2 eyes.

If White has no other eye-regions then BlackÕs `dead' block is actually alive
(either seki or the white group is dead). If at least one expansion is <2 eye
shape then the region has only 1 eye, otherwise, it is seki. For example, Figs.
26 and 27.

In Fig. 26, the dead black block is of 2-eye shape but there is one expansion
of the dead black block of <2 eye-shape. The region has 1.5 eyes and the white
group is critical.

In Fig. 27, the Straight Three is of <2-eye shape and either expansion of the
black dead block is of 2-eye shape (Straight-Four). So this is a seki, both white
and black are alive.

Fig. 26.

Fig. 27.

Fig. 25.
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Case 3: The dead opponent block has n > 2 full eye-point liberties. This can
be settled recursively in terms of dead block with nÿ 1 full eye-point liberties as
follows. We note that an eye-region is reducible to under 2 eyes if and only if
there is a one stone black expansion that can make the resulting region worth
6 1 eye according to rules in Case 2 and that an eye-region is ®xable for 2 eyes
if and only if White can play at one of the dead black blockÕs liberties to make
the resulting region worth 2 eyes according to rules in Case 2.

Thus our rule for Case 3: if the eye-region is reducible to less than 2 eyes
then if the eye-region is ®xable for 2 eyes then it has 1.5 eyes else it has 1 eye
else it has 2 eyes. For example, Fig. 28. Since the eye-region is both reducible to
under 2 eyes and ®xable for 2 eyes (the key point is the empty point in the
middle), the white group in Fig. 28 has 1.5 eye.

Case 4: The region has a prisoner half eye-point.
We will do the estimate as xjy, where x is the number of eyes of the region

with the half eye-point treated as a full eye-point and y is the number of eyes of
the region with the half eye-point treated as a false eye-point. For example, Fig.
29 , the white group in Fig. 29 has 2j1, or 1.5, eyes.

Case 5: The region has two half eye-points.
We count one half eye-point as a full eye-point and the other as a false eye-

point to get eye estimate e1 then reverse the roles of the two half eye-points to
get eye estimate e2. The region has d1jd2 eyes where d1 is the max(ceiling of
e1, ceiling of e2), d2 is the min(¯oor of e1, ¯oor of e2), where ceiling of e is
the smallest integer which is P e, and ¯oor of e is the largest integer which is
6 e.

Fig. 28.

Fig. 29.
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For example, Fig. 30. After we ignore one half eye-point prisoner and its
neighbor prisoner in Fig. 30, the black dead block becomes Straight Three
shape; so it has only 1 eye.

10. Mixed region

If an eye-region, consisting of empty points and dead opponent stones, does
not conform to any of the types discussed in Sections 4±9, it is called a mixed
region. Additional downgrading rules will be needed for prisoners.

Downgrading rule 4: For each false empty eye-point that is not forbidden to
the opponent, the adjacent prisoner eye-point should be downgraded by one
level.

Downgrading rule 5: For each prisoner, the empty neighbors should be
downgraded to non-eye-points.

Downgrading rule 6: For each false prisoner eye-point, the adjacent prisoner
eye-point should be downgraded to non-eye-point.

We shall call an empty point in the region a separating point for the region if
after White plays at the point, the region becomes two separate eye-regions
with total number of eyes P 2.

Eye estimating rule for mixed regions:
Case 1: If the region has two or more non-opponent-sente separating points,

or has one separating point that is a forbidden point for opponent, it has 2 eyes.
The group side can get to play at least one separating point and make 2 eyes.

If the opponent gets to play the separating point as sente, then we can not rely
on that separating point.

Fig. 30.
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Case 2: The region has one non-forbidden separating point. The number of
eyes is 2jx. x can be determined as follows: let Black place a stone at the
separating point. If the resulting region has at least 1.5 eye, then x � 2 else
x � 1.

11. Implementation

The rules mentioned in this paper are fully implemented in Go Intellect. The
®rst author has tested the implementation with the 60 problems in the book
(Chinese translation version) `Basic Life & Death in Go' edited by Nihon Kiin.
On the 20 questions in Chapter 2, which tests human playersÕ intuition, GI gets
17 of them correct using the static analysis. On the 30 questions in Chapter 3,
which requires look-ahead, GI gets 21 of them correct by doing only the static
analysis. On the more open problems in Chapter 4, GI gets only 3 out of 10
without performing look-ahead. Overall, the static analysis scores 41 out 60
and is ranked as 5th kyu by the book. HandTalk implements a variation of the
static rules in the paper and performs very well on life/death judgements at
computer Go tournaments.

Life and death is a fundamental problem in the game of Go and is intrin-
sically highly complex. In order to conquer combinatorial explosion, we believe
the best approach for a Go program to handle the life/death problems is as
follows:

Let static analysis handle those cases covered by the heuristic rules (90% or
so), and leave the other 10% to heuristic search using static analysis as a base to
determine and to evaluate terminal nodes in the search tree. Full-blown tho-
rough searches take place only during opponentÕs time as bonuses.
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