
University of Alberta

Library Release Form

Name of Author: Xiaozhen Niu

Title of Thesis: Recognizing Safe Territories and Stones in Computer Go

Degree: Master of Science

Year this Degree Granted: 2004

Permission is hereby granted to the University of Alberta Library to reproduce sin-
gle copies of this thesis and to lend or sell such copies for private, scholarly or
scientific research purposes only.

The author reserves all other publication and other rights in association with the
copyright in the thesis, and except as herein before provided, neither the thesis
nor any substantial portion thereof may be printed or otherwise reproduced in any
material form whatever without the author’s prior written permission.

Xiaozhen Niu
10742-86 Ave
Edmonton, Alberta
Canada, T6E 2M9

Date:

University of Alberta

RECOGNIZING SAFE TERRITORIES ANDSTONES IN COMPUTERGO

by

Xiaozhen Niu

A thesis submitted to the Faculty of Graduate Studies and Research in partial ful-
fillment of the requirements for the degree ofMaster of Science.

Department of Computing Science

Edmonton, Alberta
Fall 2004

University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of Grad-
uate Studies and Research for acceptance, a thesis entitledRecognizing Safe Ter-
ritories and Stones in Computer Gosubmitted by Xiaozhen Niu in partial fulfill-
ment of the requirements for the degree ofMaster of Science.

Martin Müller

Robert Hayes

Jonathan Schaeffer

Date:

Abstract

Computer Go is a most challenging research domain in the field of Artificial Intel-

ligence. Go has a very large branching factor, and whole board evaluation in Go is

hard. Even though many game-tree search methods have been successfully imple-

mented in other games such as chess and checkers, the AI community has not yet

created a strong Go program due to the above two reasons.

Currently most Go-playing programs use a combination of search and heuristics

based on an influence function to determine whether territories are safe. However,

to assure the correct evaluation of Go positions, the safety of stones and territories

must be proved by an exact method.

This thesis describes new, better search-based techniques including region-merging

and a new method for efficiently solving weakly dependent regions for solving the

safety of stones and territories. The improved safety solver has been tested in sev-

eral Go endgame test sets. The performance is compared in the Go programEx-

plorer and the state of the art Go programGNU Go.

Acknowledgements

First of all, thanks to my supervisor Martin Müller for all his guidance, comments,

and revisions throughout this endeavor. Working with someone with so many ideas

and so much experience in the field of computer Go has been a wonderful experi-

ence. Martin, I thank you for giving me this opportunity to do research with you

and to learn from you.

I would like to thank Jonathan Schaeffer for many reasons. In February 2002

Jonathan gave a talk about computer games in the University of Waterloo. I was

happened to be there and was totally fascinated. Then I decided to apply for Mas-

ter’s degree in the University of Alberta right after that wonderful seminar. If I

had not attended his seminar, I would not have had the opportunity to come to the

University of Alberta, its Computing Science Department, and its GAMES research

group. As time goes by, I am more and more convinced that I made the right choice.

In addition, Jonathan taught a course in September 2002, in which he explained all

the basic concepts about heuristic search so well. Even though at that time I was

struggling at his assignment “tournaments”, I still felt that it was a great experience

in my life. Thank you Jonathan!

To my external examiner Dr. Robert Hayes, I thank you for your time and

dedication to read this thesis and providing valuable feedback.

Thank you to my family for all of their support. Four and half years ago I was

a chemical engineer. I still remember the moment when I told my parents that I

decided to quit my job and switch to computer science. Even though my parents

were astonished, but they still supported and encouraged me. Dad and mom, thank

you for your understanding and encouragement over the years.

Thank you to Akihiro Kishimoto, Ling Zhao, Adi Botea, Yngvi Björnsson, and

the other members of the GAMES group for their helpful discussions and valuable

feedback during this research. In addition, thanks to Markus Enzenberger for his

helps and explanations to the programExplorer.

Thank you to Zhipeng Cai, Gang Xiao, Jun Zhou, Yi Xu, Jiyang Chen, Shoudong

Zou, Gang Wu, Xiaomeng Wu, and other graduate students and friends for the joy

they gave during the pass two years of graduate studies.

Finally, thank you to Xiaoni Liu for everything.

Xiaozhen Niu April 30, 2004

Contents

1 Introduction 1

1.1 Computer Games Research . 1

1.2 Why Study Computer Go? . 2

1.3 Safety of Territory and the Weakly Dependent Region Problem . . . 4

1.4 Contributions . 6

1.5 Overview of the Thesis . 6

2 Game Tree Search 8

2.1 Minimax Search . 8

2.2 Alpha-Beta . 10

2.3 Alpha-beta Enhancements . 12

2.3.1 Selective Search . 12

2.3.2 Move Ordering . 13

2.3.3 Iterative Deepening and Transposition Tables 15

2.3.4 Variable Window Search 16

2.4 Summary . 18

3 Terminology and Previous Work 19

3.1 Terminology and Go Rules . 19

3.2 Previous Work . 23

3.3 Definitions . 25

3.4 Recognition of Safe Regions . 26

4 Safety Solver 27

4.1 Search Engine . 27

4.2 High-level Outline of Safety Solver 28

4.3 Region Merging . 35

4.4 Weakly Dependent Regions . 37

4.5 Other Improvements . 41

5 Search Enhancements 42

5.1 Move Generation and Move Ordering 42

5.2 Evaluation Functions . 43

5.2.1 Heuristic Evaluation Function 43

5.2.2 Exact Evaluation Function 44

6 Experiments 47

6.1 Experiment 1: Overall Comparison of Solvers 48

6.2 Experiment 2: Detailed Comparison of Solvers 50

6.3 Experiment 3: Comparison with GNU Go 53

7 Conclusions and Future Work 55

Bibliography 57

A Test Data 59

A.1 Test Positions . 59

List of Figures

1.1 Safe white stones, non-safe white region 5

1.2 An example of weakly dependent regions 6

2.1 Minimax tree . 9

2.2 Example tree for Alpha-Beta . 11

2.3 Minimal Alpha-Beta tree . 14

3.1 Blocks, basic regions and merged regions 19

3.2 The interior and cutting points of a black region 20

3.3 Accessible liberties (A) and potential attacker eye points (B) of a

black region . 21

3.4 Intersection points (A) of a black region 21

3.5 Strongly and weakly dependent regions 22

3.6 Two black nakade shapes . 22

3.7 An example of double ko . 23

3.8 An example of snapback. 23

3.9 Two examples of seki . 23

3.10 Two black regions are alive . 24

3.11 Two black regions are not alive . 24

4.1 A whole board example (before step 1) 29

4.2 The result of step 1 . 30

4.3 The result of step 2 . 31

4.4 The result of step 4 . 32

4.5 The black region is a 2-vital region 33

4.6 The black region is not a 2-vital region 33

4.7 The result of step 5 . 34

4.8 The result of step 6 . 35

4.9 Two related regions . 36

4.10 Strongly and weakly dependent regions 36

4.11 First type of weakly dependent regions 38

4.12 Second type of weakly dependent regions 38

4.13 Separate searches in regions X and Y 39

4.14 Search considering both region X and Y 39

4.15 White block in A has more than 1 liberty 40

4.16 Search for weakly dependent groups 40

4.17 Block with an external eye . 41

5.1 An example of miai . 45

6.1 Two examples of easy problems in group 2 51

6.2 Two examples of moderate problems in group 3. 52

6.3 Three examples of hard problems in group 4 54

7.1 Example of an unsolved region (Size: 18) 55

List of Tables

6.1 Search improvements in test set 1 48

6.2 Search improvements in test set 2 49

6.3 Search improvements in test set 3 49

6.4 Search results for Group 2, easy (62 regions) 51

6.5 Search results for Group 3, moderate (87 regions) 52

6.6 Search results for Group 4, hard (53 regions) 53

6.7 Comparison with GNU Go . 54

Chapter 1

Introduction

1.1 Computer Games Research

Games such as chess have long been accepted as useful research test-beds in com-

puting science, for many reasons. First, games have well-defined rules and clearly

specified goals, which makes it easier for researchers to measure progress and per-

formance. Second, games can be formally specified and provide non-trivial do-

mains to simulate real-world problems. The relative success obtained by game-

playing systems can be applied to problems in other non-game areas. In addition,

developing a game-playing program requires the application of theoretical concepts

and algorithms to practical situations. By using games as testbeds, many valuable

lessons can be obtained while studying the thought processes of the human brain.

These lessons will help researchers to reach the ultimate goal for AI, constructing

computers that exhibit the intellectual capabilities of human beings.

Over the past 40 years, amazing progress has been made in the field of games.

Today, computer programs can beat the strongest human players in many areas. As

early as in 1979, the Backgammon program BKG by Hans J. Berliner beat the hu-

man world champion Luigi Villa [3]. In 1994, a research team lead by Jonathan

Schaeffer developed the checkers program Chinook at the University of Alberta,

which won the world man-machine championship [23]. The Othello program Lo-

gistello by Michael Buro [5], which is based on a well-tuned evaluation function

1

and machine learning techniques, beat the world champion Mr. Murakami with

six straight wins 6-0. Perhaps one of the most remarkable achievements is that the

chess program Deep Blue defeated the world chess champion Garry Kasparov in

1997. Since then, the effectiveness of brute-force search has been confirmed in

many games. In addition, methods developed in game playing systems can also be

used in several areas within mathematics, economics, and computer science such as

combinatorial optimization, theorem proving, pattern recognition and complexity

theory [8].

1.2 Why Study Computer Go?

Go is a two-player perfect information game. Two players compete against each

other on a board with 19 by 19 lines for a total of 361 points. Each player puts

his stones on the board and seeks to occupy territory. Once the stones are put on

the board, they cannot move again, but may be removed if they are completely

surrounded by the opponent’s stones (captured). The elegant and fascinating com-

plexities of Go arise from the struggle to occupy the most territory. After a game,

the player who has the most territory wins the game.

Although many AI methods have been successfully applied to other games, they

do not enable the AI community to make a strong Go program. There are two major

features that make Go different from other games:

1. Go has a very high branching factor. A Go game normally runs over 200

moves. Each turn offers roughly 250 choices of legal moves on average. The

search tree is huge and it has been estimated as about10160 nodes. Such a

high branching factor makes a deep brute-force search method unfeasible for

Go.

2. It is very hard to make a good evaluation function for Go. For Chess and

2

other games, it is comparably easy to evaluate each piece’s value. In contrast,

deciding whether two stones have similar values in Go can involve a com-

plicated reasoning process. Humans use many powerful reasoning methods

and a lot of knowledge, but computers have difficulties to follow the same

approach. Currently no Go program can reach a reasonably high degree of

accuracy by using a static evaluation function. Dynamic evaluation is also

hard since there is no easy way to convert human knowledge and experience

to a program. So far, no clear theoretical model for evaluating Go positions

has emerged.

Due to the above reasons, the brute-force search techniques used in other games

do not work in Computer Go. As early as in 1978, Berliner predicted [2]:

. . . even if a full-width search program were to become World Chess

Champion, such an approach cannot possibly work for Go, and this

game may have to replace chess as the task par excellence for AI.

Although much encouraging progress has been made in the past few decades, the

strength of current Computer Go programs is still relatively weak. Human amateur

players of 8-kyu level (beginner) can beat them easily.

In general, there are plenty of research problems and a large variety of possi-

ble methods to investigate in Computer Go. To understand how Go knowledge is

gained, processed and used by human players may provide fruitful lessons which

lead not only to progress in Go programs, but can also have wide applicability to

other applications such as pattern recognition, knowledge representation, machine

learning and planning. Thus, Computer Go will remain an attractive and challeng-

ing domain for AI research for a long time.

3

1.3 Safety of Territory and the Weakly Dependent
Region Problem

The objective of this thesis is to develop search-based methods to recognize safe

territory in the game of Go. The project builds on Müller’s previous work [14].

The effort is concentrated on developing a high performance safety solver for Go

endgames.

In practice, although most games of Go last roughly 250 moves, the difference

in final score of a game between two strong players usually turns out to be small.

Therefore, no matter how well a program performs in the beginning and the middle

of the game, a failure to recognize the safety of territories in the endgame can

completely change the game result. Such mistakes even happen occasionally in the

games of professional players.

Recognizing the safety of territory is similar to solving a Life and Death prob-

lem, but there are several differences. First, a Go program needs to recognize Life

and Death throughout the whole game. However, recognizing safe territory nor-

mally is used in the endgame or close to the endgame of Go. Second, the goal of

the Life and Death recognition is to prove whether target stones in a specific area

(region) can live or not. However, to prove that a territory is safe, not only the sur-

rounding boundary stones need to be proved safe, but also the surrounded region

needs to be proved safe. This means that no opponent stones can live inside. There-

fore, proving territory safe needs to deal with a more complicated goal. Figure 1.1

shows an example where the white surrounding stones are safe but the surrounded

region is not.

Several methods have been proposed to prove the safety of territory and stones.

Benson proposes an algorithm forunconditionally alive blocks[1]. It identifies sets

of blocks and basic regions that are safe, even if the attacker can play an unlimited

number of moves in a row, and the defender always passes. Müller [14] defined

4

������
��� ��
��� �

������
�� ����
�����

Figure 1.1: Safe white stones, non-safe white region

static rules for detecting safety byalternating play, where the defender is allowed

to reply to each attacker move. Müller also introduced local search methods for

identifying regions that provide one or twosure libertiesfor an adjacent block [14].

The state of the art safety solver in [14] implements Benson’s algorithm, static

rules and a 6 ply search in the programExplorer. However, there are still many

remaining problems in recognizing territory safe. One of them is the Weakly De-

pendent Regions problem. Towards the end of a Go game, the board tends to be

divided into many regions. If two regions with the same color share only one bound-

ary block, we call these regionsWeakly Dependent Regions. Figure 1.2 provides an

example. In this figure, the common boundary black block� has only 1 liberty in

each of the regions A and B. In local region A, whenever White plays X, the com-

mon boundary block� is in atari. So the safety of region B is affected. A similar

situation happens in local region B. Therefore, the safety of region A depends on

region B and vice-versa. However, simply merging two regions together will make

the search space too large, thus it is not feasible in practice.

The previous solver sequentially processes regions one by one and ignores the

relationships between them. Therefore, it is unable to solve a problem involving

weakly dependent regions.

5

��������������
�������� ������È
�� �� ��� ����
A � ������ B � ���

X ���� Y ��
Figure 1.2: An example of weakly dependent regions

1.4 Contributions

The research contributions of this thesis include:

• Identifying the major requirements of a high-performance safety solver in

Go.

• New region processing techniques. A new, more efficient technique for se-

lectively merging regions is developed.

• A solution to the problem of weakly dependent regions.

• Problem-specific game tree search enhancements such as move ordering and

forward pruning.

• The new solver improves the percentage of points proved safe in a standard

test set from 26% in [14] to 51%. The speedup observed in our experiments

is about 70 times faster than the solver in [14].

1.5 Overview of the Thesis

The structure of this thesis is as follows: Chapter 2 introduces basic game-tree

algorithms. Chapter 3 surveys relevant work in the field of Computer Go. The

basic definitions that are relevant to following chapters are also provided. Chapter

4 describes the techniques used to process regions and to solve weakly dependent

regions. Chapter 5 describes the search enhancements. Chapter 6 presents and

6

analyzes experimental results. Chapter 7 summarizes the research and discusses

future work on this project.

7

Chapter 2

Game Tree Search

This chapter provides some background on game tree search and Computer Go. We

briefly introduce the concepts of game-tree and minimax search in Section 2.1. In

Section 2.2, the standard algorithm of minimax search, Alpha-Beta, is introduced.

Section 2.3 discusses common enhancements to Alpha-Beta. Section 2.4 provides

a summary of this chapter.

2.1 Minimax Search

Go is a two-player zero-sum game, in which the loss of one player is the gain of the

other. A player selects a legal move that maximizes the score, while his opponent

tries to minimize it. Both players move alternately.

In order to analyze a game, we can construct a graph representation to analyze

all possible positions and moves for each player in a game. Figure 2.1 provides an

example of such a graph. It is called agame tree.

In a typical minimax tree as shown in Figure 2.1, the two players are calledMax

player andMin player. By convention, the max player plays first. Anodein the

minimax tree represents a position in a game. The possible moves from a position

are represented by unlabelled links in the graph calledbranches. The node at the

top which represents the start position is calledroot node. The nodes in which the

max player is to play are calledMax nodes, while nodes in which the min player is

8

to play are calledMin nodes. By considering all possible moves for both the max

and min player, the tree is constructed. If in one node the next player to move has

no legal move to continue, then the value of the node is decided by the rules of the

game. Such a node is called aterminal node. Samuel introduced the termply [20],

which represents the distance from the root, i.e. the depth of a game-tree. Ad-ply

searchmeans the program searchesd moves ahead from the root node.

Figure 2.1 illustrates a minimax tree. For example, the value of C is 23 because

C is a max node, and the max player will choose the maximal value of its children,

which is 23. Then the value of 23 is backed up to B by comparing the values of C

and J, because B is a min node. After traversing the whole minimax tree, the value

39 is achieved by the path of node A, N, O and R, showing the best play by both

players. This path is called aprincipal variation (PV). The nodes on this path are

also calledPV nodes. In case of ties, there may be severalPV’s, all with the same

value.

A

JC

39

B N

D G K P R V

O U

23

23 51 39

39

128

Max Player Min Player Principal Variation

7 23 40 51 14 39 40 128

L W

Figure 2.1: Minimax tree

A d-ply search of a minimax tree visits all the leaf nodes at the depth ofd to

determine the minimax value. Letd be the search depth andb the average branching

factor at each node, andNminimax be the total number of leaf nodes visited by the

minimax algorithm. Then:

Nminimax = bd

9

Since the search grows exponentially as a function of the depthd, the search depth

reached in game-playing programs is limited, especially under tournament condi-

tions. However, the minimax value can be found by visiting fewer leaf nodes. Knuth

and Moore showed that the least number is [10]:

Nbest = bbd/2c + bdd/2e − 1

This is a big improvement over minimax. It means that with proper pruning, pro-

grams can search up to twice as deep as in full minimax. This is achieved by elimi-

nating nodes from the search that can be shown to be irrelevant to determining the

value of the tree. The rest of this chapter discusses enhanced minimax algorithms

that try to achieve this best-case result.

2.2 Alpha-Beta

In a minimax tree, it is not necessary to explore every node to get the correct min-

imax value. Some branches can be cut off safely. For example, max(5, min(2, X))

will always return 5 no matter what the value of X is. This is the basic idea of

Alpha-Beta pruning.

The Alpha-Beta algorithm has been in use by the computer game-playing com-

munity since the end of the 1950’s [4, 24, 10]. Alpha-Beta uses two parametersα

andβ, which form asearch window(α, β) to test pruning conditions.α represents

a lower bound andβ represents an upper bound. Values outside the search window

do not affect the minimax value of the root.

Alpha-Beta starts searching the root node withα = -∞ andβ = +∞, and it

traverses the game tree in a depth-first manner until a leaf node is reached. Then

the value of the leaf node is evaluated and backed up to its parent node to become

a bound. As more nodes are explored, the bounds become tighter, until finally a

minimax value is found inside the search window.

10

Figure 2.2 shows an example of the Alpha-Beta algorithm’s progress, which

is modified from [17]. Let us assume that Alpha-Beta searches in a left-to-right

order. At the root node A, Alpha-Beta is called with a search window (-∞, +∞)

and passes the initial window to search A, B, C, D and E. Node E is a leaf. It returns

its minimax valueg of 22 to its parent. At node D, the values ofg andβ are updated

to 22. Sinceg > α (because22 > −∞) the search continues to its next child F.

This node is searched with a window of (-∞, 22). Parent D returns 7, which is the

minimum of 22 and 7. Parent C updatesg andα to 7. In node C, its next child G is

searched since7 < +∞. The search window for node G becomes (7, +∞). Node

G returns the minimum of 19 and 71 to C, and C returns the maximum of 7 and 19

to B. Since node B is already as low as 19 and B is a min node, the value of B will

never increase. In node B the search is continued to explore node J. Since node J is

a min node and theg-value 19 becomes an upper bound, the search window for J is

reduced to (-∞, 19), which means that parent B already has an upper bound of 19.

Therefore, if in any of the children of B alowerbound > 19 occurs, the search can

be stopped. In node J the search is continued to its child K, which returns a value

of 53. This causes a cutoff of its siblings in node J because 53 is not less than 19.

A

TSQMLIHFE

JC

W X

Alpha = +
Beta = - g = 27

B N

D G K P R V

O U

+
-

+
-

+
-

+
-

22
-

+
7

+
7

19
7

19
-

19
-

19
-

+
19

+
19

+
19

+
19

19
-

+
19

+
19

27
19

27
19

28
19

27
19

27
19

19

19

197

>=53

53

27

27

<=15 27 42

>=42

Max Player Min Player Principal Variation

22 7 19 71 84 53 15 28 27 49 42

Figure 2.2: Example tree for Alpha-Beta

11

At the root node A the g-value is updated to the new lower bound of 19. Search-

ing the sub-tree below N can still increase thisg-value. Nodes N, O, P and Q are

all searched with the window (19, +∞). Node Q returns 15, and it causes a cutoff

at its parent P since 15 is outside of the search window. Consequently, node P also

returns 15. Next nodes R, S, T, U, V, W and X are searched. The sub-tree below V

returns 42. This causes a cutoff in its parent U since 42 is not smaller than 27. Node

U returns 42 and node N returns the minimum of 27 and 42, and root A returns the

maximum of 19 and 27. Finally, the minimax value of the tree has been found,

which is 27.

2.3 Alpha-beta Enhancements

2.3.1 Selective Search

In Alpha-Beta, the backed-up values of leaves are used for pruning. A pruning

method like this is sometimes called backward pruning. A drawback of this ap-

proach is that it searches all nodes to the same depth. Thus, a bad move gets

searched as deeply as a promising good move. To address this problem, many

selective search methods have been developed. The main idea of selective search is

that some of the “non-promising” branches should be discarded in order to reduce

the size of the search tree. In contrast to backward pruning, pruning methods used

in selective search are called forward pruning. One example of selective search is

N-best search [9]. It only considers the N best moves at each node; all other moves

are directly pruned. When the search depth becomes larger, the value of N is de-

creased accordingly. In addition, a successful example of selective extension is the

ProbCut algorithm, presented by Buro [6]. ProbCut uses information from a shal-

low Alpha-Beta search to decide with a certain probability whether a deep search

would yield a value outside the current window. In the game of Othello, ProbCut

has been shown to be effective in investigating the relevant variations more deeply.

12

Selective search is an effective way to reduce the size of the search tree, perhaps

to even less than the minimal game tree. However, it has several drawbacks. First,

the heuristics used to select “good” or “bad” moves are very application-dependent.

An obviously “bad” move at a low level (close to the root) could turn out to be a

winning move after a deeper search. Therefore, ignoring such a “bad” move might

slow down the search or even miss the win. Second is the performance measure-

ments. In fixed-depth search, improvements mean more cutoffs in the search tree.

Therefore, one only needs to compare the sizes of the tree and the search speed

while measuring the algorithm performance. However, since selective search artifi-

cially cuts off the search tree, the quality of decision becomes more important.

Despite these disadvantages, developing a good forward pruning method is still

worth trying, because in the search tree really bad moves should not be considered

at all. How to develop a reliable forward pruning strategy combined with sound

heuristic knowledge, is still an open problem.

2.3.2 Move Ordering

To improve the efficiency of Alpha-Beta pruning, the moves at each node should be

ordered so that the most promising ones can be examined first. A minimax tree that

is ordered so that the first child of a max node has the highest value, or a value high

enough to cause a cutoff. And the first child of a min node has the lowest value

or low enough, is called abest-ordered tree (minimal tree). Figure 2.3 shows the

minimal tree of the example in Figure 2.2.

The minimal tree has three kinds of nodes, which are defined by Knuth and

Moore in [10]. Type 1 nodes form the path from the root to the best leaf (the

principal variation). Therefore they are also calledPV nodes. Type 2 nodes in the

minimal tree have only one child; other children have been cut off. They are also

calledCUT nodes. Type 3 nodes have all children, therefore they are also called

13

A

FHWXQST

UO

N B

R P V G D

C12

Max Player Min Player Principal Variation

27 28 15 42 49 19 7

Figure 2.3: Minimal Alpha-Beta tree

ALL nodes. For the PV nodes, the minimax value is computed. The value in CUT

and ALL nodes can only be worse or equal to the minimax value. Therefore, CUT

and ALL nodes are only used to prove that it is unnecessary to search further.

Many approaches have been proposed to improve move ordering. A first ap-

proach is to use application-dependent knowledge. For example in chess, a capture

normally leads to an advantage in material. Therefore, moves can be ordered by

the value of captured pieces. In addition, several other approaches do not rely on

application-dependent knowledge. These approaches are proven to be powerful

for ordering moves at an interior node. For example, Slate and Atkin developed

the killer heuristic [25], which maintains only the two most frequently occurring

”killer” moves at each search depth. Schaeffer presents another powerful technique

called history heuristic, which automatically finds moves that are repeatedly good

[21, 22]. The history heuristic is a generalization and improvement upon the killer

heuristic. It contains a history table for moves. Whenever a move causes a cut-off

or turns out to be a good move, the history score of this move increases accordingly.

For a node in the search tree, the possible moves are ordered by their scores stored

in the history table. In this way, the history heuristic provides an effective way to

identify good moves throughout the tree, rather than using information of nodes at

the same search depth.

14

2.3.3 Iterative Deepening and Transposition Tables

The basic idea of iterative deepening arose in the early 1970’s for the following

two reasons. First, for many early game-playing programs, a simple fixed depth

search normally can only reach a very shallow depth, especially if it has to be done

under tournament conditions. Therefore, it is necessary to find a good time control

mechanism. Second, a shallow search in a game-playing system is normally a good

approximation of a future deeper search. Slate and Atkin proposed the iterative

deepening approach in 1977 [25]. The basic idea is as follows: before doing a d-

ply search, perform a 1-ply search, which can be done almost immediately. Then

increase the search depth step by step to 2, 3, 4, . . . , (d-1) ply searches. Since

the search tree grows exponentially, the previous iterations normally take much

less time compared to the last iteration. If an iteration takes too long to return the

solution, the program can just abort the current iteration and use the result from the

previous iteration.

Although at first sight iterative deepening seems very inefficient because interior

nodes have been searched over and over again, in experiments iterative deepening is

actually more efficient than a direct d-ply search. The efficiency of iterative deepen-

ing is based on the transposition table. The best moves from the previous iteration

can be stored and reused to improve the move ordering. Therefore, the overhead

cost of the d-1 iterations is usually recovered through a better move ordering, which

leads to a faster search in iteration d.

In many application domains, the search space is a graph, not a tree. Transpo-

sition tables can also be used to prevent re-expansion of searched nodes that have

multiple parents [12, 22]. After searching a node, information about this node such

as the best score, depth, upper bound, lower bound, and whether the score is exact,

is stored in the table. During the search, whenever the same position recurs, the tree

search algorithm checks the table before searching it. If the current node is found,

15

then the information from the previous search might be used directly. From this

point of view, using a transposition table is an example of exact forward pruning.

In general, transposition tables are implemented as hash tables. By far the most

popular method for implementing a transposition table is proposed by Zobrist in

1970 [28]. By using Zobrist’s method to generate the hash key, the information

stored in the hash table can be retrieved directly and rapidly.

2.3.4 Variable Window Search

In the Alpha-Beta algorithm, the boundsα andβ form the search window. If the

value of a node falls outside the search window, a cut-off can occur when value is

larger thanβ but not when value is smaller thanα. Normally using a wider search

window means visiting more nodes, and using a smaller search window means

visiting fewer nodes. By default, the search window for Alpha-Beta is set to (-

∞, +∞). Therefore, reducing the window artificially seems to be a good way to

achieve more cut-offs. However, Alpha-Beta already uses all the return values from

leaves to reduce the window as much as possible, and guarantees that the minimax

value can be found. Reducing the search window artificially runs the risk that the

minimax value cannot be found. In this case, re-search in the window with proper

bounds is necessary.

In practice, many studies have reported that the cost of re-search is relatively

small compared to the benefits of having a well-narrowed search window [12, 7, 16]

because of the transposition table. Since variable window search is not used in this

thesis, here we only briefly discuss several widely used techniques.

In many games the values of parent nodes and child nodes are related. If we

can estimate an initial value for Alpha-Beta to narrow the search window in the

beginning of the search, then we can achieve more cut-offs. This window is called

anaspiration windowbecause we expect the result will fall into the bounds of the

16

window.

Knuth and Moore introduced the following three properties of Alpha-Beta [10].

Let g be the return value of Alpha-Beta andF (n) be the minimax value of noden.

The postcondition has the following three cases:

1. α < g < β (success),g = F (n).

2. g ≤ α (fail low), theng ≤ F (n).

3. g ≥ β (fail high), theng ≥ F (n).

By using an aspiration window in an Alpha-Beta search, in the first case we

have found the exact minimax value cheaply. In the other two cases, we need to

perform a re-search. Since the failed search also returns a bound, the re-search

can benefit from a window smaller than the initial window (-∞, +∞). In general,

aspiration window search is used at the root of the tree. A reasonable estimation

can be derived from a relatively cheap shallow search. In practice, this estimation

can be derived from iterative deepening.

Null-windowpushes the narrowed-window-plus-re-search technique to its limit.

If a window is set to (α, α +1) instead of (α, β), it is called a null window. For

example, let alpha be the value of the leftmost child. When performing the null

window search for the rest of siblings, if the returned value is smaller than or equal

to alpha, we can prune this node safely because it is not better than the leftmost

node. In this case, the null window search ensures the maximum cutoffs. If the

returned value is bigger than alpha, then this node becomes the new candidate as

a PV node. Therefore, it should be re-searched with a wider window to get its

exact value. Many studies have proven that the savings outweigh the overhead of

re-search [12, 7, 16].

Several widely used Alpha-Beta improvements have been proposed such as

Scout [15], NegaScout [19], and Principal Variation Search (PVS) [11] . They

17

all use the idea of null window search.

A further improved Alpha-Beta algorithm is MTD(f) [18], which is simpler

and more efficient than previous algorithms. MTD(f) gets its efficiency by using

only null window search. Since null window search will only return a bound on

the minimax value, MTD(f) has to call Alpha-Beta repeatedly to adjust the search

towards the minimax value. In order to work, MTD(f) needs a first estimate of the

minimax value. The better the first guess is, the more efficient MTD(f) performs

because it will call Alpha-Beta less times. In general, MTD(f) works in an iterative

deepening framework. A transposition table is necessary for MTD(f).

2.4 Summary

The Alpha-Beta tree-searching algorithm has been in use since the end of the 1950’s.

Most successful game-playing programs use the Alpha-Beta algorithm with en-

hancements like move ordering, iterative deepening, transposition tables, narrow

search windows. Forty years of research have improved Alpha-Beta’s efficiency

dramatically. However in Computer Go, there is no direct evidence that deeper

search will automatically lead to better performance of a Go program.

18

Chapter 3

Terminology and Previous Work

3.1 Terminology and Go Rules

Our terminology is similar to [1, 14], with some additional definitions. Differences

are indicated below. Ablock is a connected set of stones on the Go board. Each

block has a number of adjacent empty points calledliberties. A block that loses

its last liberty iscaptured, i.e. removed from the board. A block that has only one

liberty is said to bein atari. Figure 3.1 shows two black blocks and one white block.

The small black block� contains two stones, and has five liberties (two marked

A and three marked B).

Given a colorc ∈ {Black,White}, let A¬c be the set of all points on the Go

board which arenot of color c. Then abasic regionof color c (called a region in

[1, 14]) is a maximal connected subset ofA¬c. Each basic region is surrounded by

blocks of colorc. In this thesis, we also use the concept of amerged region, which

����
�� A A ��
� B �� B �
� B B BB�
������

Figure 3.1: Blocks, basic regions and merged regions

19

����
� C� C�
� Aa �
� A a �
� ��
�����

Figure 3.2: The interior and cutting points of a black region

is the union of two or more basic regions of the same color. We will use the term

region to refer to either a basic or a merged region. In Figure 3.1A andB are basic

regions andA ∪B is a merged region.

We call a blockb adjacentto a regionr if at least one point ofb is adjacent to

one point inr. A block b is calledinterior blockof a regionr if it is adjacent tor

but no other region. Otherwise, ifb is adjacent tor and at least one more region it is

called aboundary blockof r. We denote the set of all boundary blocks of a region

r by Bd(r). In Figure 3.1, the black block� is a boundary block of the basic

region A but an interior block of the merged regionA ∪ B. The defenderis the

player playing the color of boundary blocks of a region. The other player is called

theattacker.

Given a region, theinterior is the subset of points not adjacent to the region’s

boundary blocks. There may be both attacker and defender stones in the interior. A

cutting pointis a point that is adjacent to two or more boundary blocks. In Figure

3.2, the black region has two boundary blocks marked by triangles and squares

separately. The interior consists of four points markedA, and this region contains

two cutting points markedC.

Theaccessible libertiesof a region is the set of liberties of all boundary blocks

in the region. A pointp in a region is called apotential attacker eye pointif the

attacker could make an eye there, provided the defender passes locally. Figure 3.3

20

���
� A A A �
� A � B A �

� A � B A �
� A B B A �
� A A A �
����

Figure 3.3: Accessible liberties (A) and potential attacker eye points (B) of a black
region

�����
� � � �
� A A �
�������

Figure 3.4: Intersection points (A) of a black region

shows some examples.

An intersection point of a region is an empty pointp such thatregion − {p}
is not connected andp is adjacent to all boundary blocks. In Figure 3.4, the black

region has two intersection points, which are marked by letter A.

If two basic regions have one or more common boundary blocks, we call these

two regionsrelated. By further analyzing the relationship between related regions,

we distinguish betweenstrongly dependentregions, which share more than one

common boundary block, andweakly dependentregions with exactly one com-

mon boundary block. In Figure 3.5 on the left, two basic black regions A and B

are related. Further, they are strongly dependent because they have two common

boundary blocks (marked by triangles). In Figure 3.5 on the right, the two basic

black regions C and D are weakly dependent because they have only one common

boundary block (marked by a square).

A Nakade shape is a region that will end up as only one eye [27]. Therefore it

21

���� ���� ����
�������������������
�� �������� ���� ��
�� A �� B ���� C���� D��
�� � ���� � ��

Figure 3.5: Strongly and weakly dependent regions

���� ���
� � ��� �
� A � � � B �
��� ����

Figure 3.6: Two black nakade shapes

is not sufficient to live. In Figure 3.6 left and right, both black regions A and B are

nakade shapes.

Our results are mostly independent of the specific Go rule set used. As in previ-

ous work [1, 14], suicide is forbidden. Our algorithm is incomplete in the sense that

it can only find stones that are safe by two sure liberties [14]. Because ko requires

a global board analysis and the problem can turn out to be very complicated, we

exclude cases such as conditional safety that depends on winning a ko, and also

less frequent cases of safety due to double ko or snapback. Figure 3.7 provides an

example of double ko. In this figure, neither black nor white can win both ko fights

in A and B in one move. Therefore, the black block� and white block� are

safe even though they only have one sure eye.

Figure 3.8 provides an example of snapback. In this figure, the white block�
has only 1 liberty. However, if black captures this block by playing at A, white can

immediately recapture the black block� and remains safe.

In addition, the safety solver does not yet handle coexistence inseki. Figure 3.9

22

������������
���������� �
������� ����
A �� �� B ��� �

Figure 3.7: An example of double ko

����
�������
����� �
��� A ����
����� �

Figure 3.8: An example of snapback.

provides two examples of seki. On the left, black block� and white block�
share two common liberties marked A and B. On the right, black block� and

white block� both have one sure eye, and share one common liberty marked C.

3.2 Previous Work

Benson’s algorithm forunconditionally alive blocks[1] identifies sets of blocks

and basic regions that are safe, even if the attacker can play an unlimited number of

moves in a row, and the defender passes on every turn. Benson’s algorithm is a start-

����
����� � � �
� �È� È���������
������� � ��������
������� ���� �� ��
A ��� B �� � ���� C���

Figure 3.9: Two examples of seki

23

��� È���
� �� � �

��� � ��� ��
� A � � B �

Figure 3.10: Two black regions are alive

�� ���
��È�� �����
����� �� ��
����� � � �
���� ����

Figure 3.11: Two black regions are not alive

ing point for recognizing safe territories and stones, and it is also the first theorem

in the theory of Go. However, it has limited applications in practice. Müller [14]

defined static rules for detecting safety byalternating play, where the defender is

allowed to reply to each attacker move. Müller also introduced local search meth-

ods for identifying regions that provide one or twosure libertiesfor an adjacent

block. Experimental results for a preliminary implementation in the programEx-

plorer were presented for Benson’s algorithm, static rules and a 6 ply search.

Van der Werf implemented an extended version of Müller’s static rules to pro-

vide input for his program that learns to score Go positions [26]. Vilà and Cazenave

developed static classification rules for many classes of regions up to a size of 7

points [27].

The following figures provide several examples that are modified from [27].

They all can be identified by using the static eye classification. In Figure 3.10, both

black regions A and B are alive no matter who plays first and no matter what the

surrounding conditions are. In Figure 3.11, both black regions are not uncondition-

24

ally alive. In the left, if black loses all the external liberties, then it will be in atari.

In the right, the black region is not alive due to a ko fight inside. If black wins the

ko, then the region is alive. If white wins the ko, then the region turns out to be a

size 6 nakade shape.

3.3 Definitions

The following definitions, adapted from [14], are the basis for our work. They are

used to characterize blocks and territories that can be made safe under alternating

play, by creating two sure liberties for blocks, and at the same time preventing the

opponent from living inside the territories. During play, the liberty count of blocks

may decrease to 1 (they can be in atari), but they are never captured and ultimately

achieve two sure liberties.

Regions can be used to provide either one or two liberties for a boundary block.

We call this number theLiberty TargetLT (b, r) of a blockb in a regionr. A search

is used to decide whether all blocks can reach their liberty target in a region, under

the condition of alternating play, with the attacker moving first and winning all ko

fights.

Definition: Let r be a region, and letBd(r) = {b1, . . . , bn} be the set of non-

safe boundary blocks ofr. Let ki = LT (bi, r) , ki ∈ {1, 2}, be the liberty target of

bi in r. A defender strategyS is said toachieve all liberty targetsin r if eachbi has

at leastki liberties inr initially, as well as after each defender move.

Each attacker move inr can reduce the liberties of a boundary block by at most

one. The definition implies that the defender can always regainki liberties for each

bi with his next move inr. The following definition of life under alternating play is

analogous to Benson’s:

Definition: Let EL(b) be the external safe liberties of a blockb. A set of blocks

B is alive under alternating playin a set of regionsR if there exist liberty targets

25

LT (b, r) and a defender strategyS that achieves all these liberty targets in each

r ∈ R and

∀b ∈ B EL(b) +
∑

r∈R

LT (b, r) ≥ 2

Note that this construction ensures that blocks inB will never be captured.

Initially each block has two or more liberties. Each attacker move in a regionr

reduces only liberties of blocks adjacent tor, and by at most 1 liberty. By the

invariant, the defender has a move inr that restores the previous liberty count.

Each block inB has at least one liberty overall after any attacker move and two

liberties after the defender’s local reply. In addition, if a block has one sure external

liberty (EL(b) = 1), then the sum of liberty targets for such a block can be reduced

to 1. If EL(b) = 2, then the block is already safe ad need not be considered here.

Definition: We call a regionr 1-vital for a blockb if b can achieve a liberty

target of one inr, and2-vital if b can achieve a liberty target of two.

3.4 Recognition of Safe Regions

The attackercannot live insidea region surrounded by safe blocks if there are no

two nonadjacent potential attacker eye points, or if the attacker eye area forms a

nakade shape (as introduced in Section 3.1). The current solver uses a simple static

test for this condition as described in [14].

The state of the art safety solver in [14] implements Benson’s algorithm, static

rules and a 6 ply search in the programExplorer. However, there are still many

remaining problems in recognizing territory safe. One of them is the Weakly De-

pendent Regions problem. The solver sequentially processes regions one by one

and ignores the relationships between them. Therefore, it is unable to solve a prob-

lem involving weakly dependent regions.

26

Chapter 4

Safety Solver

4.1 Search Engine

The search engine in the programExplorer [13] is an Alpha-Beta search frame-

work with enhancements including iterative deepening and transposition table as

described in Chapter 2). Other enhancements to this Alpha-Beta framework such

as move ordering and heuristic evaluation functions will be described in Chapter 5.

The safety solver uses this search engine and includes the following sub-solvers:

Benson solver Implements Benson’s classic algorithm [1] to recognize uncondi-

tional life.

Static solver Uses static rules to recognize safe blocks and regions under alternat-

ing play, as described in [14]. No search is used.

1-vital solver Uses search to find regions that are 1-vital for one or more boundary

blocks. As in [14] there is also a combined search for 1-vitality and con-

nections in the same region, that is used to build chains of safely connected

blocks.

Generalized 2-vital solver Uses searches to prove that each boundary block of a

given region can reach a predefined liberty target. Forsafe blocks, the target

is 0, since their safety has already been established by using other regions.

27

Blocks that have one sure external liberty (eye) outside of this region are

defined asexternal eye blocks. For these blocks the liberty target is 1. For all

other non-safe boundary blocks the target is 2 liberties in this region. All the

search enhancements described in the next section were developed for this

solver.

The 2-vital solver in [14] could not handle external eye blocks. It tried to

prove 2-vitality for all non-safe boundary blocks.

Expand-vital solver Uses search to prove the safety of partially surrounded areas,

as in [14]. This sub-solver can also be used to prove that non-safe stones can

connect to safe stones in a region.

4.2 High-level Outline of Safety Solver

Figure 4.1 shows the processing steps on a final position of a 19×19 game from test

set 1 in Section 6.1. In this typical example, much of the board has been partitioned

into relatively small basic regions that are completely surrounded by stones of one

player.

The basic algorithm of the safety solver for this example is as follows:

1. The static solver is called first. It is very fast and resolves the simple cases.

The result is shown in Figure 4.2. In this position, the static solver can solve

a total of 9 basic regions A, B, C, D, E, F, G, H and I. The stones that have

been proved safe or dead for attacker stones inside are marked by triangles.

2. The 2-vital solver is called for each region. As a simple heuristic to avoid

computations that most likely will not succeed, searches are performed only

for regions up to size 30. Many small regions remaining in this position can

not be solved because they are related regions. In this step, since the 2-vital

solver treats regions separately, it only solves 2 more regions J and K. The

28

��� ��� ��
���� ��� � ���

�������� �� ��
���������� ��
������������� ���
�������������� ���
�������� � ��� ��

����������� ������
�������������������
���� ����������� ��
� ��� �������������

� ���������� ����
���� �� ��������

����� ������������
������������� ���
����������� ������
� �������������� �
� ����� ������

� ���� � ��
Figure 4.1: A whole board example (before step 1)

29

��� ��� ��
���� ��� � ���

�������� �� ��
���������� ��
������������� ���
�������������� ���
�������� C� ��� ��

����������� E ������
�������������������
���� ����������� G��
� ��� �������������

� ���������� F ����
���� B �� D��������

����� A ������������
������������� I ���
����������� H ������
� �������������� �
� ����� ������

� ���� � ��
Figure 4.2: The result of step 1

30

��� ��� ��
���� ��� � ���

�������� �� �� K

���������� ��
������������� ���
�������������� ���

J �������� C� ��� ��
����������� E ������

�������������������
���� ����������� G��
� ��� �������������

� ���������� F ����
���� B �� D��������

����� A ������������
������������� I ���
����������� H ������
� �������������� �
� ����� ������

� ���� � ��
Figure 4.3: The result of step 2

sizes of these two regions are small, 12 and 7 points respectively. Figure 4.3

shows the result.

3. The expand-vital solver is called for regions that have some safe boundary

blocks. The safety of those blocks has been established by using other re-

gions. In this example, the expand-vital solver does not solve any region at

this step.

Müller’s previous solver [14] only used the steps so far. The result is shown

in Figure 4.3.

4. (New) Region merging. After the previous steps, all the easy-to-prove safe

basic regions have been found. In this step the remaining unproven related

31

��� P ��� R ��
���� ��� � ���

�������� Q�� �� K

���������� ��
������������� ���
�������������� S ���

J �������� C� ��� T ��
����������� E ������

�������������������
���� N����������� G��
� ��� O�������������

� M���������� F ����
L ���� B �� D��������
����� A ������������

������������� I ���
����������� H ������
� �������������� W�
� ����� ������

� ���� U� V ��
Figure 4.4: The result of step 4

regions are merged. For each small-enough merged region (up to size 14

in the current implementation) the generalized 2-vital solver is called. The

mechanism is described in detail in Section 4.3. Figure 4.4 shows the result

of this step. The solved merged regions areP ∪Q, L ∪M ∪N ∪O, W ∪ V

with an external eye U for white andR ∪ S ∪ T for black. Most of the

remaining related regions have been solved except for two weakly dependent

black regions at the bottom.

5. (New) Weakly dependent regions. A new algorithm deals with weakly de-

pendent regions. In this step both the 1-vital solver and the 2-vital solver

are used to prove whether a region is 2-vital safe or not. A detailed descrip-

32

����
����
� ���
� ������

�� ��� � �
��@ ��

Figure 4.5: The black region is a 2-vital region

È�������
���������

���� ����
�� � �����

Figure 4.6: The black region is not a 2-vital region

tion about processing weakly dependent regions is given in Section 4.4. One

of the remaining weakly dependent black regions X is solved. Figure 4.5

demonstrates the proving process.

However, the other remaining black region Y cannot be proved as a 2-vital

region in this step, even though it has a safe boundary block. Figure 4.6

provides a modified example of region Y to demonstrate the reason. In this

figure, when white plays move 1 black has to connect because it is atari.

After white plays move 3, the black region turns out to be a nakade shape.

Therefore it is not 2-vital safe.

Figure 4.7 shows the result of this step.

6. (New) As in step 3, the Expand-vital solver is called for those regions for

which one or more new safe boundary blocks have been found. In this step,

the expand-vital solver can easily solve the last weakly dependent black re-

gion Y. Figure 4.8 shows the result of this step. In this example, the solver

33

��� P ��� R ��
���� ��� � ���

�������� Q�� �� K

���������� ��
������������� ���
�������������� S ���

J �������� C� ��� T ��
����������� E ������

�������������������
���� N����������� G��
� ��� O�������������

� M���������� F ����
L ���� B �� D��������
����� A ������������

������������� I ���
����������� H ������
� �������������� W�
� ����� ������

X � Y ���� U� V ��
Figure 4.7: The result of step 5

34

��� P ��� R ��
���� ��� � ���

�������� Q�� �� K

���������� ��
������������� ���
�������������� S ���

J �������� C� ��� T ��
����������� E ������

�������������������
���� N����������� G��
� ��� O�������������

� M���������� F ����
L ���� B �� D��������
����� A ������������

������������� I ���
����������� H ������
� �������������� W�
� ����� ������

X � Y ���� U� V ��
Figure 4.8: The result of step 6

succeeds in proving the safety of every point on the board.

4.3 Region Merging

One of the major drawbacks of Müller’s previous solver [14] is that it processes

basic regions one by one and ignores the possible relationship between them. Figure

4.9 shows an example of two strongly dependent regions. The previous solver treats

regions A and B separately, and neither region can be solved. However the merged

region A∪ B can be solved easily.

The first algorithm step of region merging scans all regions and merges all re-

lated regions. They are either strongly or weakly dependent. After the merging

35

�����
����������
� ��� ��

����� B ��
���� �����
�� A ��

Figure 4.9: Two related regions

����
���� ���������

������� �� ��� �
����� B ������ E �����
���� A � ���� �������
�� � C ��� D ���
�� X � Y � F

Figure 4.10: Strongly and weakly dependent regions

step, the 2-Vital solver is used to recognize safe merged regions.

This method can solve simple cases such as the one in Figure 4.9. However,

since merging all related regions often creates a very large merged region, the search

space can become too large.

Our current solver uses a two-step merging process. In the first step, strongly

dependent basic regions are merged. In the second step groups ofweakly dependent

regionsare formed. A group can contain both basic regions and merged regions

computed in the first step. Figure 4.10 shows an example.

In this figure, there are a total of 6 related black regions A, B, C, D, E, and F.

Since the huge outside region contains surrounding white stones that are already

safe, we do not need to consider it here.

A simple merge yields a combined new region with size 32, which is too large

36

to be fully searched in a reasonable time. Two-step merging creates the following

result: The first step identifies connected components of strongly dependent regions

and merges them. A, B and C are strongly dependent and are merged into a new

regionR1 = A ∪ B ∪ C. Next D and E are merged intoR2 = D ∪ E. Region F

is not strongly dependent on any other region and is not merged. The second step

identifies weak dependencies betweenR1, R2 and F and builds the group.R1 and

R2 are weakly dependent through block� , andR2 and F are weakly dependent

through block� . The result is a group of weakly dependent regions{R1, R2, F}
with region sizes of 15, 14 and 3 respectively. The regions within a group are not

merged but searched separately, as explained in the next section.

The common boundary block between two weakly dependent regions has both

internal andexternalliberties relative to each region. For example, for block�
andR2 = D ∪ E, the liberty Y is internal and the liberty X is external.

4.4 Weakly Dependent Regions

We distinguish between two types of weak dependencies. In type 1, the common

boundary block has more than one liberty in both weakly dependent regions. For

example, in Figure 4.11 the shared boundary block of regions A and B has more

than 1 liberty in each region. In type 1 dependencies, our search in one region does

not consider the external liberties of the common block.

In type 2 weak dependencies, the common boundary block has only one liberty

in at least one of the weakly dependent regions. Figure 4.12 provides a typical

example of type 2 weakly dependent regions. The black block� has only 1

liberty in each of the regions X and Y. We need to consider the external liberties for

the common block because moves in region X will affect the result of the region

Y. However, we do not want to merge these two regions because of the resulting

increase in problem size.

37

����������
����������
�� �� ��
��� A � B ��
�� � ���

����������
��������

Figure 4.11: First type of weakly dependent regions

���� ����
���� �����
� ����� ���
� X ����� Y ���

B � A C ��
Figure 4.12: Second type of weakly dependent regions

38

Figure 4.13 demonstrates the separate 2-vital search processing for regions X

and Y. In local region X, considering an external attacker move at A is necessary.

Whenever White plays A, the common boundary block� loses its external liber-

ties. Therefore, it is in atari. In this case, Black will connect at B in response. A

similar situation happens in region Y. If White plays at A, since common boundary

block� is in atari, Black is forced to answer at C to capture this white block. In

addition, considering one external move in B is also necessary for proving region Y

safe. Therefore, if we consider region X and Y locally, both regions can be proved

safe.

White A

Black B

Proof of region X

.

.

.
X is safe

Proof of region Y

White A

Black C

.

.

.
Y is safe

Figure 4.13: Separate searches in regions X and Y

However, from the global point of view we need to handle the relationship be-

tween regions. In real game if White plays at A, for region X Black should connect

at B while for region Y Black should play a move at C to capture the white stone. In

this situation, which move should Black play? Figure 4.14 demonstrates the 2-vital

search processing for both weakly dependent regions X and Y.

If White plays in A, since A is located at region Y, we look at that region first.

If the white block at A only has one liberty, we always play the capture move in

region Y. After removing the white block in A, from X’s point of view the common

boundary block� will gain one external liberty again. Therefore, in this case

after White A and Black C in region Y the result will not affect the local search in

39

White A

Does white block at A have more
than 1 liberty?

Combined proof of region X and region Y

Region Y is not safe, only
search for region X

Play local capture move at c,
continue local searches in

both region X and Y

.

.

.
X is safe and Y is not

. .

. .

. .
X is safe Y is safe

Yes No

Figure 4.14: Search considering both region X and Y

���� ����
���� �����
� ����� ���
� X ����� Y ���

B �A�� ��
Figure 4.15: White block in A has more than 1 liberty

region X.

If the white block at A has more than one liberty such as in the example shown

in Figure 4.15, then the situation is different. In region Y, since the black block

� already lost all its internal liberties and we can not guarantee that it can achieve

more external liberties outside of region Y, the safety search for region Y will fail

immediately. For region X, even if the region Y is not safe, since white A is an

external move for its local search, black will answer at B locally. Therefore, in this

example, region X can be proved safe and region Y can not.

The pseudo code in Figure 4.16 describes the method for processing groups of

weakly dependent regions.

40

for each weakly dependent groupG
if (total size of all regions inG < 14) // 14 is a constant determined empirically

rG = merge all regions inG;
call 2-vital solver forrG;

else
for each regionr ∈ G

for each shared boundary blockb betweenr and another regionr2 ∈ G
do a 1-vital search forb in r2;

if (all 1-vital searches succeed)
reduce liberty target for all tested boundary blocks to 1;
call 2-vital solver forr;

else
reduce liberty target for all successfully tested boundary blocks to 1;
take unproved (1-vital search not successful) blocks as special blocks;
generate external moves for special blocks (for both attacker/defender);
call 2-vital solver forr;

Figure 4.16: Search for weakly dependent groups

4.5 Other Improvements

The following further enhancements were made to the solver beyond the version

described in [14].

External eyes of blocks If a boundary block of a regionr has one sure liberty else-

where, this information is stored and used in the search forr by lowering the

liberty target for that block. In Figure 4.17, after Black plays the first move,

the previous solver recognizes that both two white boundary blocks (marked

by squares and triangles) could be in atari, and returns the result that the

region is not safe. However, since the white boundary block marked by trian-

gles has one external eye, the liberty target for this block can be reduced to 1.

By using this additional information it becomes possible to prove the region

safe.

41

���������
������������
��������È��

��� �� �������
�� ��������
�������� �

Figure 4.17: Block with an external eye

42

Chapter 5

Search Enhancements

5.1 Move Generation and Move Ordering

In this work, we focus on proving that a region and its boundary blocks are safe.

Therefore we have concentrated our efforts on generating and ordering the de-

fender’s moves. For the attacker, all legal moves in the region plus a pass move

are generated. When processing weakly dependent regions as described in Sec-

tion 4.4, extra moves outside of the region might be generated for either attacker

or defender. The attacker is allowed to immediately recapture a ko. Therefore, the

attacker will always win a ko fight inside a region.

Currently there is no move ordering for the attacker. For the defender, the fol-

lowing safe forward pruning technique is used: When a boundary block of a region

is in atari, only moves that can possibly avert the capturing threat, such as extending

the block’s liberties or capturing the attacker’s adjacent stones, are generated. If no

such forced moves are found, all legal moves for the defender are generated.

For ordering the defender’s moves, both a high priority move detector and a

normal scoring system are used. The detector analyzes the purpose of the attacker’s

previous move, and classifies the situation as one of three priorities:

1. Attacker’s move close to one of the empty cutting points.

2. Attacker’s move extending one or more cutting blocks.

43

3. Other attacker move.

For priority 1 and 2 positions, a set of high priority moves according to the

attacker’s motivation is generated first. For priority 1, most likely the attacker is

trying to cut, so the cutting points close to this move, as well as the cutting points’ 8

neighbor points, have high priority. For priority 2, most likely the attacker is trying

to expand its own cutting block. Capturing this block is an urgent goal for the

defender. Therefore, all liberties of this block are given high priority. The number

of adjacent empty points is used to order liberties.

All moves in priority 3 positions and all remaining moves in priority 1 and 2

positions are sorted according to a score that is computed as a weighted sum:

Move score= f1 ∗ LIB + f2 ∗ NDB+ f3 ∗ NAB+ f4 ∗ CB+ f5 ∗ AP.

The formula uses the following features:

1. Liberties of this defender’s block (LIB)

2. Number of neighboring defender’s blocks (NDB)

3. Number of neighboring attacker’s blocks (NAB)

4. Capture bonus (CB): 1 if an opponent block is captured, 0 otherwise

5. Self-atari penalty (AP): -1 if move is self-atari, 0 otherwise

The following set of weights worked well in our experiments:f1 = 10, f2 =

30, f3 = 20, f4 = 50, f5 = 100.

5.2 Evaluation Functions

5.2.1 Heuristic Evaluation Function

The evaluation function in [14] used only three values:proven-safe, proven-unsafe

andunknown. Since most of the nodes during the search evaluate tounknown, we

44

can improve the search by using a heuristic evaluation to differentiate nodes in this

category. The heuristics are based on two observations:

1. An area that is divided into more subregions is usually easier to evaluate as

proven-safefor our static evaluation function.

2. If the attacker hasactive blockswith more than 1 liberty, it usually means that

the attack still has more chances to succeed.

Let NSR be the number of subregions and NAB be the number of the attacker’s

active blocks. Then the heuristic evaluation of a position is calculated by the fol-

lowing formula:

eval = f1 ∗ NSR+ f2 ∗ NAB, f1 = 100, f2 = −50

5.2.2 Exact Evaluation Function

The exact evaluation function recognizes positions that areproven-safeor proven-

unsafe. A powerful function is crucial to achieve good performance. However,

there is a tradeoff between evaluation speed and power. In our evaluation function

there are two types of exact static evaluations,HasSureLiberties()andStaticSafe().

HasSureLiberties()is a quick static test to check whether all boundary blocks

of a region have two sure liberties and the opponent cannot live inside the region. It

uses the following two conditions for checking:

1. All empty points inside the regions are liberties of some boundary blocks.

2. The region has two or more intersection points as described in Section 3.1, or

it has two separate eyes.

Condition 1 implies that there is no eye space for the attacker. Condition 2

utilizes themiai strategy. If there are two equal-value points, a miai strategy means

45

È È
��������
��������
�� A B ��

Figure 5.1: An example of miai

that no matter which point one player chooses, the other player can always get the

other point. Figure 5.1 shows an example of a miai strategy. In the black region,

White cannot occupy both points A and B in one move. Therefore, the black region

is alive under alternating play. If both conditions ofHasSureLiberties()are satisfied,

then the region is safe.

StaticSafe()is a simplified static safety solver which takes the subregions cre-

ated by the search into account. It takes the set of all points of the region as input

and processes the following steps:

1. Generate all the subregions and blocks inside the input region.

2. As in Benson’s algorithm [1], find all the healthy subregions for blocks. A

region ishealthyfor a block if the block is adjacent to all empty points of the

region.

3. Implement Benson’s algorithm [1] to find all the blocks that have two or more

healthy subregions. Mark them as safe.

4. Call HasSureLiberties()for each subregion. If the subregion is proven as

static 2-vital, then mark this subregion as safe. Otherwise, if all the boundary

blocks of this subregion are already marked as safe, and there is no space

inside this subregion for the attacker to make two eyes, then also mark this

subregion as safe.

5. If all the points in the input point set are marked as safe, thenStaticSafe()

46

returns safe. Otherwise, returns non-safe.

Each timeStaticSafe()is called, it has to compute subregions and boundary

blocks that are generated during the search. Furthermore,HasSureLiberties()is

used for testing each subregion. Therefore,StaticSafe()is much slower thanHas-

SureLiberties(). The relative speed of the two methods varies widely, but 5–10

times slower is typical. For efficiency, we use the following compromise rule: If

the previous move changes the size of a region by more than 2 points, thenStatic-

Safe()is used. Otherwise, the quickerHasSureLiberties()is used. In contrast, [14]

used only a weaker form ofHasSureLiberties().

47

Chapter 6

Experiments

The safety solver described here has been developed as part of the Go program

Explorer [13]. To compare the performance of our current solver with the previous

solver [14], our test set 1 is the same, the problem setIGS 31 countedfrom the

Computer Go Test Collection [13]. The set contains 31 problems. Each of them is

the final position of a 19× 19 game played by human amateur players.

Since test set 1 was used to develop and debug the solver, we created an inde-

pendent test set 2 and test set 3. Test set 2 contains 27 final positions of games

by the Chinese professional 9 dan player ZuDe Chen. Test set 3 contains 35 final

positions of games by Korean professional Go players. All three sets are available

athttp://www.cs.ualberta.ca/˜mmueller/cgo/general.html .

All experiments were performed on a Pentium 4 with 1.6 Ghz and a 64MB

transposition table. The following abbreviations for the solvers and enhancements

are used in the tables:

Benson Benson’s algorithm, as in [14].

Static-1997 Static solver from [14].

Search-1997Search-based solver, 6 ply depth limit, from [14].

Static-2004 Current version of static solver.

48

Version Safe points Safe blocks Safe regions
Benson 1,886 (16.9%) 103 (9.2%) 204 (25.4%)
Static-1997 2,481 (22.2%) 168 (15.0%) N/A
Search-1997 2,954 (26.4%) 198 (17.6%) N/A
Static-2004 2,898 (25.9%) 212 (18.9%) 321 (40.0%)
M1 4,017 (35.9%) 326 (29.0%) 404 (50.4%)
M2 4,073 (36.4%) 330 (29.4%) 406 (50.6%)
M3 5,029 (44.9%) 444 (39.5%) 495 (61.7%)
M4 5,070 (45.3%) 451 (40.2%) 498 (62.1%)
M5 5,396 (48.2%) 484 (43.1%) 519 (64.7%)
M6 (Full) 5,740 (51.3%) 523 (46.6%) 548 (68.3%)
Perfect 11,191 (100%) 1,123 (100%) 802 (100%)

Table 6.1: Search improvements in test set 1

M1 A basic 2-liberties search, similar to the one in [14].

M2 M1 + consider external eyes of blocks as in Section 4.5.

M3 M2 + region merging method as in Section 4.3.

M4 M3 + move ordering and pruning as in Section 5.1.

M5 M4 + improved heuristic and exact evaluation functions as in Section 5.2.

M6 Full solver, M5 + weakly dependent regions as in Section 4.4.

6.1 Experiment 1: Overall Comparison of Solvers

Table 6.1 shows the results for all methods listed above for test set 1. The set

contains 31 full-board positions with a total of 31× (19× 19) = 11,191 points,

1,123 blocks and 802 regions. For methods M1–M6, a time limit of 200 seconds

per region was used. For results with shorter time limits, see Experiment 2.

Table 6.2 shows the results for all methods listed above for test set 2. This test

set contains a total of 27× (19× 19) = 9,747 points, 1,052 blocks and 742 regions.

Table 6.3 shows the results for all methods listed above for test set 3. This test

set contains a total of 35× (19× 19) = 12,635 points, 1,362 blocks and 869 regions.

49

Version Safe points Safe blocks Safe regions
Benson 1,329 (13.6%) 106 (10.1%) 160 (21.6%)
Static-2004 2,287 (23.5%) 188 (17.9%) 251 (33.8%)
M1 3,244 (33.3%) 273 (25.9%) 320 (43.1%)
M2 3,305 (33.9%) 278 (26.0%) 325 (43.8%)
M3 4,079 (41.9%) 380 (36.1%) 409 (55.1%)
M4 4,220 (43.3%) 394 (37.5%) 420 (56.7%)
M5 4,594 (47.1%) 440 (42.0%) 455 (61.4%)
M6 (Full) 4,822 (49.5%) 483 (45.9%) 481 (64.9%)
Perfect 9,747 (100%) 1,052 (100%) 742 (100%)

Table 6.2: Search improvements in test set 2

Version Safe points Safe blocks Safe regions
Benson 1,319 (10.4%) 86 (6.3%) 140 (16.1%)
Static-2004 2,643 (20.9%) 214 (15.7%) 282 (32.5%)
M1 3,906 (30.9%) 322 (23.6%) 364 (41.9%)
M2 4,109 (32.5%) 353 (25.9%) 381 (43.8%)
M3 4,792 (37.9%) 435 (31.9%) 449 (51.7%)
M4 4,887 (38.7%) 448 (32.9%) 455 (52.4%)
M5 5,130 (40.6%) 472 (34.7%) 474 (54.5%)
M6 (Full) 5,291 (41.9%) 499 (36.6%) 493 (56.7%)
Perfect 12,635 (100%) 1,362 (100%) 869 (100%)

Table 6.3: Search improvements in test set 3

50

In the results of test set 1, the current static solver performs similarly to the

best 1997 solver. Adding search and adding region merging yield the biggest single

improvements in performance, about 10% each. The heuristic evaluation function

and weakly dependent regions add about 3% each. Other methods provide smaller

gains with these long time limits, but they are essential for more realistic shorter

times, as in the next experiment.

Results for test set 2 and set 3 are a little bit worse than for test set 1, but that

is true even for the baseline Benson algorithm. There does not seem to be a bias of

tuning our solver especially for the problems in test set 1.

6.2 Experiment 2: Detailed Comparison of Solvers

This experiment compares the six search-based methods M1–M6 in more detail on

test set 1. The static solver can prove 321 out of 802 regions safe. The best solver

M6 can prove 548 regions with a time limit of 200s per region. The remaining 254

regions have not been solved by any method.

A total of (548–321) = 227 regions can be proven safe by search. To further

analyze the search improvements, we divide these regions into four groups of in-

creasing difficulty, as estimated by the CPU time used.

Group 1, very easy (regions 322–346): This group contains 25 regions. Most

regions in this group have small size, less than 10. All methods M1–M6 solve all

25 regions quickly within 0.1s (0.2s for M1).

Group 2, easy (regions 347–408): This group contains 62 regions. Figure 6.1

shows two examples. Table 6.4 shows the number of regions solved by each method

with different time limits. The number in braces is the difference between two

methods. The performance of M1 and M2 is not convincing. By using region

merging, M3 solves all 62 regions within 0.5s. The more optimized methods M4–

M6 solve all within 0.1s. Region merging dramatically improves the performance

51

����� ��
������ �� �������
�� È�����È��������
��� ��������� ��
���� ����� � ��
��� ��� ���

Left: A merged white region (Size: 10). Right: A basic white region (Size: 11)

Figure 6.1: Two examples of easy problems in group 2

Version M1 M2 M3 M4 M5 M6
T=0.1s 0 23 38 62 62 62
T=0.5s 29 (+29) 31 (+8) 62 (+24)
T=1.0s 39 (+10) 40 (+9)
T=5.0s 43 (+4) 42 (+2)
T=10s 43 (+0) 44 (+2)
T=50s 43 (+0) 49 (+5)
T=200s 43 (+0) 49 (+0)
Solved 43 49 62 62 62 62

Table 6.4: Search results for Group 2, easy (62 regions)

of solving these easy regions.

Group 3, moderate (regions 409–495): This group contains 87 regions. Figure

6.2 shows two examples. The left example in this figure contains two white regions.

The smaller white region (size 3) can be treated as an external eye of a white bound-

ary block (as described in Section 4.5). However, since it is not a simple eye, the

current solver will merge two white regions together.

Table 6.5 contains the test results. In this group, the search enhancements dra-

matically improve the solver. M1 and M2 solve few problems. M3 can solve 79

regions, but more than half of them need more than 10 seconds. The evaluation

function dramatically speeds up the solver. M5 solves all regions within 10 seconds.

M6, using weakly dependent regions, solves 23 regions within 0.1s, as opposed to

0 for M5. All 87 regions are solved within 5s. In this category M6 outperforms all

52

���� È È
������ ����
��� �� �����
� �� ����
�� ��������������
�� ��� � ���� �
���� �������������
���� ������ � � �
� �� � ����� �
������������������

Left: A merged white region (Size: 16). Right: A basic white region (Size: 19)

Figure 6.2: Two examples of moderate problems in group 3.

Version M1 M2 M3 M4 M5 M6
T=0.1s 0 0 0 0 0 23
T=0.5s 0 0 14 (+14) 14 (+14) 10 (+10) 37 (+14)
T=1.0s 0 6 (+6) 33 (+19) 33 (+19) 38 (+28) 59 (+22)
T=5.0s 0 6 (+0) 38 (+5) 38 (+5) 68 (+30) 87 (+28)
T=10s 0 8 (+2) 38 (+0) 40 (+2) 87 (+19)
T=50s 0 10 (+2) 73 (+35) 79 (+39)
T=200s 13 (+13) 17 (+7) 79 (+6) 82 (+3)
Solved 13 17 79 82 87 87

Table 6.5: Search results for Group 3, moderate (87 regions)

other methods.

Group 4, hard (regions 496–548): This group contains the 53 regions that are

solved in 5s–200s by M6. Figure 6.3 shows three examples. In Figure 6.3 (c)

there are three white regions (size: 13, 14 and 2). However, the white region in

the right corner (size 2) can also be treated as an external eye of a white boundary

block (as described in Section 4.5). Therefore, it is possible to further improve the

current solver to handle external eyes. Table 6.6 contains the test results. This group

includes 20 weakly dependent regions that cannot be solved by M1–M5. Many of

these problems take more than a minute even with M6. They represent the limits of

53

Version M1 M2 M3 M4 M5 M6
T=0.1s 0 0 0 0 0 0
T=0.5s 0 0 0 0 0 0
T=1.0s 0 0 0 0 0 0
T=5.0s 0 0 0 0 0 0
T=10s 0 0 0 0 11 (+11) 11 (+11)
T=100s 0 0 15 (+15) 17 (+17) 21 (+10) 28 (+17)
T=200s 5 (+5) 5 (+5) 17 (+2) 20 (+3) 33 (+12) 53 (+25)
Solved 5 5 17 20 33 53

Table 6.6: Search results for Group 4, hard (53 regions)

the current solver.

6.3 Experiment 3: Comparison with GNU Go

GNU Go program is one of the strongest Go programs nowadays. The version

we choose is the latest 3.5.6 (available athttp://www.gnu.org/software/

gnugo/devel.html . In GNU Go, there is a safety solver that checks the un-

conditional status of stones on the Go board and returns one of the following five

results:Black territory, White territory, Live, DeadandUnknown. The first four

results are exact.

We compare our Benson solver and static solver with theGNU Gosafety solver.

Table 6.7 shows the results for all three test sets. The table shows the number of

stones that are proved to be safe. Even thoughGNU Gois a strong Go program, its

safety solver is relatively weak. It is a little bit better than our Benson solver, but

much worse than our Static solver. Therefore, it is unnecessary to compareGNU

Go’s safety solver with our other improved solvers.

54

���
��������
����� ��
������ �
�� � ���
�� ���

��
(a) A merged white region (Size: 17)

���
������� È�����È
�����������������

������� � �� ��
� ��� �

(b) Two weakly dependent white regions (Size: 11 and 9)

����
���������

������� ����� �� �
������� ��� � �����
�� ������ � �����

� ������ � ����
���� �

(c) Three weakly dependent white regions (Size: 13, 14 and 2)

Figure 6.3: Three examples of hard problems in group 4

Version Set 1 Set 2 Set 3
Benson 1,886 (16.9%) 1,329 (13.6%) 1,319 (10.4%)
Static-2004 2,898 (25.9%) 2,287 (23.5%) 2,643 (20.9%)
GNU Go safety solver 1,926 (17.2%) 1,335 (13.7%) 1,330 (10.5%)
Perfect 11,191 (100%) 9,747 (100%) 12,635 (100%)

Table 6.7: Comparison with GNU Go

55

Chapter 7

Conclusions and Future Work

The results of our work on proving territories safe are very encouraging. Using

a combination of both new region-processing methods and search enhancements,

the current safety solver is significantly faster and more powerful than the previous

solver described in [14] and the GNU Go solver. However, most large areas with

more than 18 empty points still remain unsolvable due to the size of the search

space. Figure 7.1 shows an example. Although this region has only 18 empty

points, our current solver could not solve it within 200 seconds and a 14 ply search.

In order to handle larger areas, the current solver can be improved in the following

areas:

Move generation More Go knowledge could be used for safe forward pruning. In-

stead of generating all legal moves, in many cases the program could analyze

the attacker’s motivations and generate refutation moves. Move ordering and

����
��������
� �������
� �� �

�����
�� �

Figure 7.1: Example of an unsolved region (Size: 18)

56

pruning for the attacker should also be investigated.

Evaluation function The current exact evaluation function is all-or-nothing, and

tries to decide the safety of the whole input area. If the area becomes partially

safe during the search, this information is ignored. However, it would be very

useful in order to simplify the further search. Also, more research on fine-

tuning the evaluation function is needed.

More future work ideas include:

• Handle special cases such as seki, snapback, double ko.

• Use the solver in Explorer to prove regions unsafe and find successful inva-

sions, or defend against them.

• Develop a heuristic version that can find possible weaknesses in large areas.

• Develop a safety solver using a depth first proof number (df-pn) search en-

gine.

57

Bibliography

[1] D.B. Benson. Life in the Game of Go.Information Sciences, 10:17–29, 1976.
Reprinted in Computer Games, Levy, D.N.L. (Editor), Vol. II, pp. 203-213,
Springer Verlag, New York 1988.

[2] H.J. Berliner. A Chronology of Computer Chess and its Literature.Artificial
Intelligence, 10:201–214, 1978.

[3] H.J. Berliner. Backgammon Computer Program Beats World Champion.Ar-
tificial Intelligence, 14:205–220, 1980.

[4] A.L. Brudno. Bounds and Valuations for Shortening the Search of Estimates.
Problems of Cybernetics, 10:225–241, 1963. Appeared originally in Russian
in Problemy Kibernetiki, vol.10, pp.141-150, 1963.

[5] M. Buro. Methods for the Evaluation of Game Positions Using Examples.
PhD thesis, University of Paderborn, Germany, 1994.

[6] M. Buro. ProbCut: An Effective Selective Extension of the Alpha-Beta Algo-
rithm. ICCA Journal, 18(2):71–76, 1995.

[7] M.S. Campbell and T.A. Marsland. A Comparison of Minimax Tree Search
Algorithms. Artificial Intelligence, 20:347–367, 1983.

[8] Aviezri S. Fraenkel. Selected Bibliography on Combinatorial Games and
Some Related Material.Proceedings of Symposia in Applied Mathematics,
43:191–226, 1991.

[9] R.D. Greenblatt, D.E. Eastlake, and S.D. Crocker. The Greenblatt Chess Pro-
gram.Fall Joint Computing Conf. Procs., 31:801–810, 1967.

[10] D.E Knuth and R.W. Moore. An Analysis of Alpha-Beta Pruning.Artificial
Intelligence, 6:293–326, 1975.

[11] T.A. Marsland. Relative Performance of Alpha-Beta Implementations. InIn-
tenational Joint Conferences on Artificial Intelligence (IJCAI’83), pages 763–
766, 1983.

[12] T.A. Marsland and M.S. Campbell. Parallel Search of Strongly Ordered Game
Trees.Computing Surveys, 14(4):533–551, 1982.

[13] M. Müller. Computer Go as a Sum of Local Games: An Application of Combi-
natorial Game Theory. PhD thesis, ETH Zürich, 1995. Diss. ETH Nr. 11.006.

58

[14] M. Müller. Playing it Safe: Recognizing Secure Territories in Computer Go by
Using Static Rules and Search. In H. Matsubara, editor,Game Programming
Workshop in Japan ’97, pages 80–86, Computer Shogi Association, Tokyo,
Japan, 1997.

[15] J Pearl. Asymptotic Properties of Minimax Trees and Game-Searching Pro-
cedures.Artificial Intelligence, 14(2):113–138, 1980.

[16] J Pearl.Heuristics – Intelligent Search Strategies for Computer Problem Solv-
ing. Addison–Wesley, 1984.

[17] A. Plaat.Research Re: Search and Re-search. PhD thesis, Tinbergen Institute
and Department of Computer Science, Erasmus University, 1996.

[18] A. Plaat, J. Schaeffer, W. Pijls, and A. de Bruin. Best-first Fixed-Depth Mini-
max Algorithms.Artificial Intelligence, 87:55–293, 1996.

[19] A. Reinefeld. An Improvement of the Scout Tree Search Algorithm.Interna-
tional Computer Chess Association Journal, 6(4):4–14, 1983.

[20] A.L. Samuel. Some Studies in Marchine Learning.IBM Journal of Research
and Development, 3(3):210–229, 1959.

[21] J Schaeffer.Experiments in Search and Knowledge. PhD thesis, University of
Waterloo, Canada, 1986. Available as University of Alberta technical report
TR86-12.

[22] J Schaeffer. The History Heuristic and Alpha-beta Search Enhancements in
Practice. IEEE Transactions on Pattern Analysis and Machine Intelligence,
11(1):1203–1212, 1989.

[23] J. Schaeffer.One Jump Ahead: Challenging Human Supremacy in Checkers.
Springer-Verlag, 1997.

[24] J.H. Slagle and J.K. Dixon. Experiments with Some Programs that Search
Game Trees.Journal of the ACM, 16(2):189–207, 1969.

[25] D.J. Slate and L.R Atkin.Chess 4.5 – The Northwestern University Chess
Program. Springer-Verlag, 1977.

[26] E. van der Werf, J. van den Herik, and J. Uiterwijk. Learning to Score Final
Positions in the Game of Go. In J. van den Herik, H. Iida, and E. Heinz,
editors,Advances in Computer Games 10, pages 143 – 158. Kluwer, 2004.

[27] R. Vilà and T. Cazenave. When One Eye is Sufficient: a Static Classification.
In J. van den Herik, H. Iida, and E. Heinz, editors,Advances in Computer
Games 10, pages 109 – 124. Kluwer, 2004.

[28] A.L. Zobrist. A New Hashing Method with Applications for Game-playing.
Technical report, Department of Computer Science, University of Wiscon-
sin, 1970. Reprinted in International Computer Chess Association Journal,
13(2):169–173, 1990.

59

Appendix A

Test Data

This appendix gives the test positions of test set 1. Only safe and dead stones are
marked by triangles. The other two test sets are available athttp://www.cs.
ualberta.ca/˜games/go/safety/ .

A.1 Test Positions

Test Set 1 (31 board positions).

�� �������
� ��� ������� ��

������������ ��
���È������������ ��
������ �� ���������
� �������� ��������
�������������������
��������� �� ������
�������� ������ �
������������������
�����������������

� ���� �����������
������ ������� ��

�������� ����� ��
���� ������ ����
� �������������� �
�������������� �

� ����� �������� �
��� ����������

Position 1

�����
������

���� �
��������È ��� ����

�������������������
���� ��� � �������
�� ���� �������

���� �������� �
����� ����������
����� ������� ��
�� �� ���� ���
� � ����� ����
�� �������� ����
� ���������� ����
� ���������� ���

��� ��������� �
�������� ��������
����������������
����� ���������

Position 2

��� ����������
���������� �� ��

������������ ������
������������� �����
��� �� �����
��� ����� ���

� �� �� �����
��� �� �� ��
��� ��� ����

��� ����������
� ��� ����� ���
������������ ��
��� ���� � � ��

���������� ������
�� ��������������
�����������������
���� ���� �����
��� � ��� ��
��� ������� �

Position 3

�� ���� ������
� � ��� � ���� ���

��������� ��������
�����������������
��������������� �

������������������
������� � � �������
����������� � ����
����� � � �� �����

� ������� �����
������� ��� ��� �

� � ���� ��� �����
�� ������ �������

� ����� ������� �
�� � � ����������
���È�� �����������
�� � ���� � ���
��� � �� ���

� ���� �� ���

Position 4

60

���
������

��� � ��� ���
�È��� �È�� ����

������ ����� � ���
������ �� ���� ��
�� ��� ��������� �
�� � ����� ����� ��

���� �����������
������������ �����

��� ������� ���
������� � ��������
� ������� ������
����������� ������
���� ������ �����
�������� ��� ����

������ ��� ����
������ � ���

��� ���

Position 5

���� ����
�� � ������� ������
���È � È���������
���� � ���� ���
���� �������� ��
����������� �
�������� � ������
�� ���� ��������

���� ������ �����
�����������������

���������������
��� �������������
� �� �� � ���

� � ����������� �
�È ���������È�

�� �������� �����
�� ����� �����
� ����� ���

Position 6

����� � � ����
����� ��� �� ���
���� ��� ��� �

� ����������������
����������������

���������� ������
����� � � � ����
�� �������� �� ��
���������������
����������������
����� �����������

�� ��������� �
���� ���� �������

� �� �����������
����������������

������� ������È�
������� ��� �
���� � ���� �
��� �����

Position 7

���������
���� �����
��� ��������

� ����È�������
���� ���� ���

���������� �����
�������������������
� ��������� �������
���������� ���� �
������������ �����
�������� �� ������
� ���������������
�������� ���� �
������ � ������
���� ��� ����
�� ����������
�� � ���������
��� ��� �����
��� ���

Position 8

�� � ��
��������� ���
�������� ����

������È �����
� �� ����

� ���� ��� �
���� �� �

� ����� ���
� �� �����

����� È ����
�� �����
��� ���
��� ��

��� ���
��� ���
����� � ����

������� ����
��� ���� ����

��� ����

Position 9

����� ���
������ ����

� ����� ���
� ��������� ���
����������������
������������� �

��������� ��
����� ��������

������� ��������
� �� ��������� ��
���������� ��� ��
�������������������
�������������������
� ���� ������������
������������������
� ����������������

�������������
� ��� �

���

Position 10

61

���� � �����
� ����� � ����

� ������� � ������
������� ���� ��È���
������� �����������

� �����������
�������� ��������

�������� ����� �
������� ����������
� �������È � � ���
������������� �

�������������������
��� ��������������

��� � � � �������
���� ������ ���
���� � �����������
������ ������������
��� � �� ��� �����

���� � �����

Position 11

�
������� ������

��������� �������
��������������� ��
������� ����� ��
�� � �� �� �

� ������
���������

����� ��� � �
��������� ���
��� � ��� ����
���������� ����
������� �� ���

��� ������� ����
��� �����������
��� ���� ��������
��� ������ ��
��� ��� ��� �

Position 12

��� ��� ��
���� ��� � ���

�������� �� ��
���������� ��
������������� ���
�������������� ���
�������� � ��� ��

����������� ������
�������������������
���� ����������� ��
� ��� �������������

� ���������� ����
���� �� ��������

����� ������������
������������� ���
����������� ������
� �������������� �
� ����� ������

� ���� � ��

Position 13

����� � �������
���� � ������������
������� �� ��������
������������������
� � ���������������
�������� ���������

�������������������
� � ������ ���� ��
������������ ����
�������� �������
����������� �� �
� ����������� �

������������ �� �
�� �������������
� � � ����������
È������ ��������

�������� ���� ��
��� � � ��� ��

����� �� �� �

Position 14

��� ��� ��� ����
��� ����� ��� � ���
� ��� �� ���� �����
������������� ����
�� �� ������ ��
�������� � � ��� �
������� � ���������
�������������� �
���������������

�� ������� �È
��������� �� ��
����������� � �
����� ���� �

� ���� �������� �
���� �� � ���
������ ������ ���
������������������

������� � �����
� �����

Position 15

����
�� ������
���� � ������
������� ��� ���

����������� �����
��� � ����� �� � �
� � � �� ����� �
�� ������ ��� �� �

�� ������� ��� ����
��È���������������

� � ������ ��������
�������������������
����� ������ ���� �
������ �����������

���� � ���� ����
������ � � �� �����
������ � � ����� �

�� ��� ������� �
� ���� ����� �

Position 16

62

��� �
��� � ���� �
��� ������

� ��È ��� ����
� ��� �������

��� �������� �����
������������ ������
����� �� ���� ��
��� � ���� � ����
� �� ���� ��� �
��� ��� ��� �
�� ��������� �

��� � ����������
���� ���� ��������
�� ������� �������
�� ��������������

����� ��������
��� �� �����
���� �����

Position 17

�������
�������� �

������������
����������������
�����������������
�������� ������
����� � ���
��� ��
��� ��
��� È ��
���� ��
����� ��
����� ��
� ��� ���

� ��� ���
� � ��� ��

��� ����
��� ����
��� ���

Position 18

� � � � �
� ����� � � ���
��������� ��������
���� ������������
� � ��� ��
�� �� �� ��
���� ��
�� �
�����
����� �� �

� �����
� ������� ��

� ��� � ��
� � ���� �� �

� ������ ����� �
��������� ����È���
������������ ����
���������� �����
���� � �� �

Position 19

�� ���� ���
������� ����

���������������
� ��� ������ ���
����������������
�� ���� � ���

� � ��� �
���������
���������

È È �� È ��
�� ��

� ���� ��
��� � �� �� ���
������ ���������
��� �� ������

����������� �È��
��������� � ����

�� � �� � ������
� ����� �� �

Position 20

���� �
� ����� ��� ���
����������� � ���
���������� È���

������� ����� ���
������ � ����� ��
��� ��� � ����� ��
���� � � ���� ���
������� ���������
������ � � ������
���� ��� � ��� �
��� ����������
�������������� ��
����������� �����

������� ���������
�����������������
���������������
��� �� ��� �
��� ����

Position 21

� ���� ���
������� �� �

������������ �����
� �������� ������ �
��� ���������������
�������������������
������ �����������

� ������� ��������
����������������
� �� ���� ������

� ��� �����������
������ ��� ������
������ ����������
������������ ����
�����������������

����� ����������
� ��� ��� ����� �
���� �� ����� ��
���� ��� ����� �

Position 22

63

��� ���
�� ���� ���
���� ��� �����
���È�� ��È ���
������� ����

������� � ����
�������� ����� �

� ���������� ���
���������� �
����������� È�

� ���������� ��
��������� �� � �
�������� ����������
� �� ��� ���������

� �����������������
� ����������� ����
���� ��������� �

� ���� ���� ���� �
���� � ��� ��� �

Position 23

���� � ���
� �� ��������� ��
������������ � ��

������������������
������������������
������ ������������

����������� ��
�� ���������� � ��

���������������
��������� �����

������������ �����
��� ��������������
��� ��� ��� ������
������� �������
������� �������
������� � ��

���������� ����
��������� � ����
���� ����� �����

Position 24

����� ���
� ������ ���

� ������ � ���
������� ���

� �� �� �������
�� �������� � ���
�������� ���� ��
������� �� �����
�� ������ ��
��������È� ��È
��������� �� ��
��������� ��� �

� �� � ����� �����
�������� �� ����

������������ �����
���� ������������

� ���� ��������� �
������ ������ ��
���� ��� �

Position 25

���������
���������� �
���������� ��

���� ����� �������
����� �������� ����
��������� ���������
�� ������� ��� ����
������������ �� ��
������ ���� ������
���� �� ���������

������ ����������
���� ���� ��������
�������������������

�� �� ���� �� ��
����������� ���
���������� � �
����������� � ��
����� ����

���� ���

Position 26

��� ���
����� �����

�������� � �����
�� �� �� � ����
������ � ����
������ � �����

����� ����
���� � ����
���� � ���
�������� ��� �

�������������
���������� ��
��� ������ ���
� ����� �������
� �������������
����������� ���
������� ���� ��
�������� �� ���
��� ��� ���

Position 27

�� ���
�� ��� ����
�� ������������
� � ����������

� ��� �� ���
���� ���� �

���� �����������
����� �����������

���������� ����� �
�� ��� ��������� �
�� ����������� ��

� ���������� ���
� � ������ ������
���� ������ � ���
����� ���� �� � �

�� �� � ������
������� � � �� �
� �������� ��
������

Position 28

64

������ ��� ������
���� � ����������
��� � �� ������
������ ����� ����
� � � ����� �� ��
������ �����������
� ������ ��������
����� �����������
���������� �������
������������� ���
�������� ������� �
�����������������

� ��������������
� ����� ���������

� ��������� ��� �
������ ����� � ���
���� � ��� �� ���

����� �����

Position 29

� ��������� ���
�������������

��������������� �
���������������� �
����������������� �
����������� �������
���������� ��������
� ��� ����������

��� ��������
�� È ������
��� ������
�� ������
���� ����� �
��� ������ ��

������� ���������
������� ������ �

��� �������
����� ���������
����� ��������

Position 30

��� � ����� �����
�����������������
������������ ���
������ ���� ���

�������� ���
�� ���������
����������� �

��������������
�� ������������
������ È ������ �

� ������ ��������
������� � ��������
�������������������
�������� ����� �� �
������� ����������
������� � ��������

����� ��������
��� ����
���

Position 31

65

