

 86 Int. J. Bioinformatics Research and Applications, Vol. 3, No. 1, 2007

 Copyright © 2007 Inderscience Enterprises Ltd.

Efficient composite pattern finding from monad
patterns

Jianjun Zhou, Jörg Sander and Guohui Lin*
Bioinformatics Research Group,
Department of Computing Science,
University of Alberta, Edmonton,
Alberta T6G 2E8, Canada
E-mail: jianjun@cs.ualberta.ca
E-mail: joerg@cs.ualberta.ca
E-mail: ghlin@cs.ualberta.ca
*Corresponding author

Abstract: Automatically identifying frequent composite patterns in DNA
sequences is an important task in bioinformatics, especially when all the
basic elements (or monad patterns) of a composite pattern are weak. In this
paper, we compare one straightforward approach to assemble the monad
patterns into composite patterns to two other rather complex approaches.
Both our theoretical analysis and empirical results show that this overlooked
straightforward method can be several orders of magnitude faster. Furthermore,
different from the previous understandings, the empirical results show that
the runtime superiority among the three approaches is closely related to the
insignificance of the monad patterns.

Keywords: pattern finding; monad pattern; composite pattern; runtime
complexity; bioinformatics.

Reference to this paper should be made as follows: Zhou, J., Sander, J. and
Lin, G. (2007) ‘Efficient composite pattern finding from monad patterns’,
Int. J. Bioinformatics Research and Applications, Vol. 3, No. 1, pp.86–99.

Biographical notes: Jianjun Zhou is a PhD student in Computing Science at
the University of Alberta. He received his MSc Degree from the same
university in 2003. His research interests include data mining and its
applications in bioinformatics.

Jörg Sander received his PhD in Computer Science from the University of
Munich in 1998. He joined the University of Alberta as an Assistant Professor
of Computing Science in July 2001. His research interests are in the areas of
knowledge discovery in databases, spatial and spatio-temporal databases, and
bioinformatics. His current focus is in the sub-areas of Clustering, Spatial Data
Mining, Data Mining in Biological Databases, and Spatio-Temporal Indexing
and Querying.

Guohui Lin received his PhD in Theoretical Computer Science from the
Chinese Academy of Sciences in 1998. He joined the University of Alberta
as an Assistant Professor of Computing Science in July 2001. His research
interests include bioinformatics, computational biology, and algorithm design
and analysis, and the recent work focuses on algorithmic developments for
protein structure determination and comparison, whole genome phylogenetic
analysis, RNA structure prediction and comparison, and putative gene finding.
He is a member of ACM and a member of IEEE Computer Society.

 Efficient composite pattern finding from monad patterns 87

1 Introduction

Finding composite DNA patterns is an interesting topic in bioinformatics research and
has received much attention recently (Marsan and Sagot, 2000; Eskin and Pevzner, 2002;
Carvalho et al., 2005). Given a set of DNA sequences, a composite DNA pattern is a
combination of two or more frequent patterns that co-occurs more than a given number of
times in the set of sequences. Each of the individual frequent patterns is called a monad
pattern (Eskin and Pevzner, 2002), which is required to appear frequent enough in the
set of sequences. Finding composite patterns is computationally challenging (Eskin and
Pevzner, 2002), typically when one or all of the involved monad patterns are weak
(or insignificant), i.e., there are too many candidate monad patterns resulting in too many
possible combinations.

One solution to the composite pattern finding problem is to find out all candidate
monad patterns and then to assemble them into composite patterns by scanning a set of
positions behind or in front of a monad pattern for co-occurring monad patterns. Such an
approach was first mentioned in Marsan and Sagot (2000), which is also the pioneering
work on the composite pattern finding problem. However, Marsan and Sagot (2000)
rejected this straightforward method based on over-estimated theoretical upper bounds of
its runtime and space complexity. Instead, they proceeded to study a suffix tree based
algorithm for the composite pattern finding problem, for which they found better upper
bounds of runtime and space complexity. The suffix tree based algorithm was further
extended by Eskin and Pevzner (2002) and Carvalho et al. (2005), to a prefix tree based
algorithm MITRA-Count and an improved algorithm RISO based on a special suffix tree,
respectively.

In this paper, we study the above straightforward approach for composite pattern
finding. We do this carefully to provide much tighter theoretical upper bounds on the
runtime and space complexity. We will show later that, our analysed upper bound on the
runtime turns out to be better than the suffix/prefix tree based algorithms, while the space
complexity remains to be worse. We call our approach ECOMP, which stands for
Efficient COMPosite pattern finding. We choose to compare the performance of ECOMP
with MITRA-Dyad and RISO, which are the best implementations of the prefix and
suffix tree based composite pattern finding algorithms, respectively. The experiments
were done on both synthetic and real datasets with various parameter settings. The results
confirmed one previous observation that ECOMP would be superior to MITRA-Dyad
when the gaps between the monad patterns in the composite patterns are large, and also
showed that ECOMP is superior even when the gaps are small but the involved monad
patterns are weak. One general conclusion from our experimental results is that among
these three algorithms, which one is superior to the others is closely related to the
insignificancy of the involved monad patterns. Typically, when all involved monad
patterns are insignificant, ECOMP can be up to several orders of magnitude faster than
MITRA-Dyad and RISO.

For simplicity, in the remaining part of the paper we will only consider the composite
patterns consisting of two monad patterns, i.e., dyad patterns. In the next section, we will
give more detailed definitions related to composite patterns. In Section 3, we will
describe the algorithm ECOMP in details. We will show in Section 4 that ECOMP has a
better theoretical runtime than the one given in Marsan and Sagot (2000). We compare
ECOMP with MITRA-Dyad and RISO on both synthetic and real datasets and report the
results in Section 5. Section 6 concludes the paper with some further discussions.

 88 J. Zhou, J. Sander and G. Lin

2 Preliminaries

Genes having similar functions usually are controlled by common regulatory elements.
Identifying such common regulatory elements can be formulated as finding frequent
patterns for a given set of sequences. The study on such a pattern finding problem was
started more than a decade ago and is still a hot topic in bioinformatics research. For the
common regulatory element identification application, one starts with a set of genes that
have similar functions to collect the upstream regions of all these genes, and then to
search for frequent patterns that occur more than a given number of times in the collected
sequences.

Such a pattern finding problem is both biologically and computationally interesting
and challenging. On one hand, unlike frequent patterns in some other fields of studies
such as frequent itemsets in association rule mining (Agrawal and Srikant, 1994),
frequent DNA patterns usually contain mutations in their occurrences. In this sense,
the target patterns are more like profiles and therefore identifying them could be
computationally very expensive (Pevzner and Sze, 2000). On the other hand, fast DNA
pattern finding algorithms are desired for high-throughput purpose such as a phase in
microarray data analysis.

Most of the previous research in the literature has focused on finding so-called monad
patterns (Eskin and Pevzner, 2002). Essentially, a monad pattern is a relatively short
DNA string that appears (allowing a certain degree of mutations) in a given set of
sequences more than a given number of times. With no intention to give a full survey
here, we only name a few well known monad pattern finding algorithms: Gibbs sampling
(Lawrence et al., 1993), MEME (Bailey and Elkan, 1995), CONSENSUS (Hertz and
Stormo, 1999), WINNOWER (Pevzner and Sze, 2000), PROJECTION (Buhler and
Tompa, 2002), and MULTIPROFILER (Keich and Pevzner, 2002). These monad pattern
finding algorithms can be roughly divided into two categories based on the models
assumed on the patterns, machine learning (or statistical) models and mismatch models.
WINNOWER (Pevzner and Sze, 2000) and PROJECTION (Buhler and Tompa, 2002)
are two monad pattern finding algorithms based on mismatch models. In this paper, we
assume mismatch models too, which model each monad pattern as a contiguous string S
and an expression of the form (l, d) – k, where l is the length of S, and S has at least k
occurrences in the given sequences. An occurrence of pattern S is a length-l substring
T (called an l-mer) in the given sequences that has at most d mismatches (mutations)
with S. The requirement of “having at least k occurrences” has two different meanings,
which may result in a slightly different way of counting the occurrences. In one meaning,
pattern S must appear in at least k input sequences, regardless how many times it occurs
in individual sequences; in the other meaning, pattern S must appear at least k times
anywhere in the input sequences, that is, multiple occurrences in individual sequences are
counted.

The monad pattern finding algorithms do not consider the co-occurrences of two or
more patterns, which form a composite pattern. Composite patterns are biologically
interesting, for example, they could form a group of transcription factors that collectively
regulate the genes. However, detecting composite patterns is more challenging than
finding monad patterns, as one or more of the involved monad patterns may be weak
(or insignificant), i.e., hard to be distinguished from a vast number of candidate patterns
existing in the input sequences.

 Efficient composite pattern finding from monad patterns 89

Marsan and Sagot are probably the first to study the composite pattern finding
problem with mismatch models (Marsan and Sagot, 2000). Their algorithm, SMILE, uses
a suffix tree to extract patterns. Approaches that are based on machine learning models
include CO-BIND (Thakurta and Stormo, 2001) using Gibbs sampling and an algorithm
by van Helden et al. (2000) measuring the statistical significance of candidate monad
pattern pairs. MITRA-Dyad (Eskin and Pevzner, 2002) and RISO (Carvalho et al., 2005)
are based on mismatch models and they both further develop the idea in SMILE. SMILE
and MITRA-Count use a suffix tree and a prefix tree to search the monad pattern space,
respectively. To find composite patterns, MITRA-Dyad connects all possible DNA
strings separated by gaps of a range of lengths, so that the problem becomes a monad
pattern finding problem. RISO uses a special suffix tree called factor tree to explore the
pattern space. It extends the connecting idea of MITRA-Dyad by introducing a new data
structure called box-links, which is to connect the DNA strings in the factor tree. It should
be noted that the general ideas underlying MITRA-Dyad and RISO on assembling monad
patterns into composite patterns are the same. That is, they both extract one monad
pattern first, and then focus on a window region of this monad pattern to scan for its sister
monad patterns that co-occur more than a given number of times. Such a general
approach avoids extracting monad patterns from the whole set of sequences, but it may
need to repeat the monad pattern finding many times when all basic monad patterns are
insignificant. We will compare ECOMP with MITRA-Dyad and RISO on both synthetic
and real datasets.

3 The ECOMP algorithm

In this section, we formally describe the ECOMP algorithm for finding composite
patterns of the form (l1, d1) – [distmin, distmax] – (l2, d2) – k in a given set of N sequences
each of length n. Such a form of composite patterns consists of two parts, the first part is
a monad pattern of the form (l1, d1) – k and the second part is a monad pattern of the form
(l2, d2) – k, and these two parts are separated apart by at least distmin nucleotides and at
most distmax nucleotides. The composite patterns must have at least k occurrences in the
input sequences. During the presentation, we will point out the similarities and the
differences between ECOMP and MITRA-Dyad.

3.1 ECOMP

The ECOMP algorithm consists of three steps of operations. In the first step,
ECOMP extracts all candidate monad patterns in the target composite patterns,
i.e., monad patterns of forms (l1, d1) – k and (l2, d2) – k. To do this, ECOMP calls
MITRA-Count (Eskin and Pevzner, 2002) for its efficiency. Essentially, to find (l, d) – k
monad patterns, MITRA-Count applies an exhaustive search in the whole pattern space
using a prefix tree and prunes away those branches that do not have a minimal support of
k. In more details, MITRA-Count starts from an empty root node and grows the prefix
tree in a depth-first manner by appending a nucleotide to the current branch. Each branch
forms a prefix. As long as there are at least k l-mers in the input sequences each has at
most d mismatches to the prefix, MITRA-Count continues to extend it, or otherwise
switches to the next branch in a depth-first manner. At the end, a prefix of length l
in the tree is a pattern found. Experiments by Eskin and Pevzner (2002) show that this

 90 J. Zhou, J. Sander and G. Lin

prefix tree based monad pattern finding algorithm has better runtime than several
existing monad pattern finding methods in the literature. In the second step, for each
monad pattern of the form (l1, d1) – k, ECOMP scans the downstream window region
[distmin, distmax] of its every occurrence to count the occurrences of every other monad
pattern of the form (l2, d2) – k. In the last step, ECOMP reports the found composite
patterns, which are pairs of monad patterns having a count of occurrences greater than or
equal to k.

In more details, ECOMP calls MITRA-Count in its first step to find all monad
patterns of forms (l1, d1) – k and (l2, d2) – k, each of which is accompanied with the
starting positions of all its occurrences, ordered by increasing input sequence indices.
In the second step, ECOMP uses the (l1, d1) – k monad patterns as query sources to
determine the (l2, d2) – k monad patterns that are regarded as query targets. To do this,
ECOMP builds an array of size Nn, of which the ith cell stores the list of target monad
patterns having an occurrence starting at position i. Another array stat, whose size is
equal to the number of target monad patterns, is also created. The jth cell in array stat is
for the jth target monad pattern, and it has a field count that records the number of
occurrences of the jth target monad pattern. ECOMP allocates a set RelevantTargets
for collecting target monad patterns that co-occur with the source monad pattern
under consideration. At each iteration, ECOMP examines one source monad pattern
P by scanning the downstream window region [distmin, distmax] associated with every
occurrence P of P. Assuming P ends at position e, for every target monad pattern Q
that has an occurrence starting at position i, where e + distmin ≤ i ≤ e + distmax, ECOMP
performs the following operations depending on the meaning of ‘k occurrences’
(assuming Q is the jth target monad pattern):

• if the desired composite patterns are required to appear in at least k input sequences,
then stat[j].count increases by only one per input sequence and Q is added to
RelevantTargets at its first occurrence

• if the desired composite patterns are required to appear in at least k times anywhere
in the input sequences, then stat[j].count increases by one at every occurrence and Q
is added to RelevantTargets at its first occurrence.

After scanning for occurrences of P, if the jth target monad pattern Q is in
RelevantTargets and stat[j].count ≥ k, then a composite pattern composed of P and Q is
found. ECOMP proceeds to re-initialise array stat and set RelevantTargets, and moves on
to the next iteration to examine the next source monad pattern.

In the above description of ECOMP we assume that composite patterns are in the
form (l1, d1) – [distmin, distmax] – (l2, d2) – k, that is, the (l2, d2) – k monad pattern follows
the (l1, d1) – k monad pattern in the input sequences. When the physical order of these
two parts is biologically irrelevant, e.g., composite regulatory elements are order
independent and they function well as long as the elements are within a certain range of
each other, either upstream or downstream, ECOMP can be easily adjusted to find them
by simply adding another upstream query window. We remark that adding another query
window increases the runtime of ECOMP only by a fraction, as all the target monad
patterns have been identified. MITRA-Dyad and RISO have a different story. In order
for MITRA-Dyad and RISO to find order-independent composite patterns, theoretically
we may also add another upstream query window. However, since the runtime of
MITRA-Dyad or RISO is very sensitive to (exponential in) the window size, adding a

 Efficient composite pattern finding from monad patterns 91

new window is not really feasible for them – adding a new window is done by increasing
the window size. The computational results presented in Section 5 confirm the above
theoretical observations.

3.2 Stage-MITRA

MITRA-Count is designed for monad pattern finding and it is extended to MITRA-Dyad
for dyad pattern finding. Essentially, MITRA-Dyad reduces the dyad pattern finding
problem to a monad pattern finding, as detailed in the following. The target dyad
patterns in MITRA-Dyad are in the form (l1 – [distmin, distmax] – l2, d1 + d2) – k, which are
composite patterns consisting of two monad patterns of lengths l1 and l2, respectively,
separated apart by at least distmin nucleotides and at most distmax nucleotides,
allowing in total at most d1 + d2 mismatches, and occurring at least k times in the input
sequences. Note that this form of composite patterns differs from those of the form
(l1, d1) – [distmin, distmax] – (l2, d2) – k. In fact, the latter is a special case of the former.
In this regard, MITRA-Dyad alters a bit the original composite pattern finding problem
first studied in Marsan and Sagot (2000). To find (l1 – [distmin, distmax] – l2, d1 + d2) – k,
patterns, MITRA-Dyad concatenates each l1-mer with the l2-mer that is downstream s
nucleotides away, for every s ∈ [distmin, distmax], to form an (l1 + l2)-mer. Then
MITRA-Dyad proceeds to find monad patterns of the form (l1 + l2, d1 + d2) – k. The worst
case runtime complexity of MITRA-Dyad grows exponentially in the number of allowed
mismatches (Sagot, 1998; Eskin and Pevzner, 2002). Therefore, MITRA-Dyad spends
an exponential amount of more time than ECOMP (i.e., 1 2(3)d dO + (Eskin and Pevzner,
2002) vs. 1 2(3 3))d dO + for finding the desired dyad patterns. Nonetheless, when the
source monad patterns are significant, MITRA-Dyad works well even if the target monad
patterns are weak.

The main difference of ECOMP compared to MITRA-Dyad is to find both parts in
the composite patterns at the first step using independent parameters. Subsequently,
ECOMP may choose the significant part as the source to determine its targets,
downstream or upstream. We integrated this idea into MITRA to firstly find the
source monad patterns using the model (l1, d1) – k, and then to proceed to find the target
(l2, d2) – k monad patterns in the downstream window regions of the occurrences of
each source monad pattern. This hybrid method is called Stage-MITRA. Note that
in the composite patterns found by Stage-MITRA, there are at most d1 mismatches
in the first part, and there are at most d2 mismatches in the second part, i.e., they
are (l1, d1) – [distmin, distmax] – (l2, d2) – k patterns. Correspondingly, Stage-MITRA is
expected to run faster than MITRA-Dyad. The experimental results presented in
Section 5 confirmed our expectation by showing that Stage-MITRA is up to an order of
magnitude faster than the original MITRA-Dyad.

The output composite patterns by ECOMP and Stage-MITRA satisfy stricter
constraints than the output composite patterns found by MITRA-Dyad, in that the
numbers of mismatches in the first and the second parts are at most d1 and d2,
respectively. We remark that SMILE and RISO are also designed for finding composite
patterns of the form (l1, d1) – [distmin, distmax] – (l2, d2) – k, which is more reasonable than
the form used in MITRA-Dyad. In general, the model on the composite patterns in
MITRA-Dyad is too loosely defined, and MITRA-Dyad might return too many false
positives when the source monad patterns are extremely strong and the target monad

 92 J. Zhou, J. Sander and G. Lin

patterns are extremely weak. Between ECOMP and Stage-MITRA, ECOMP outperforms
Stage-MITRA in general, since ECOMP only solves two independent monad pattern
finding problems while Stage-MITRA might need to solve a huge number of them.
Nevertheless, in some extreme situations where the target part of the composite pattern is
extremely insignificant and the source part is extremely strong, Stage-MITRA could
outperform ECOMP. The explanation is that because the source pattern is so strong,
the space of target patterns reduces dramatically due to the window constraint, and
Stage-MITRA may benefit from this fact more than ECOMP by performing only a few
monad pattern findings in small search spaces.

4 Theoretical runtime analysis

In this section, we provide the theoretical worst case runtime complexity analysis for the
different ways of assembling monad patterns in Stage-MITRA and ECOMP. We first list
the notations used in the analysis:

n: Length of input sequences
N: Number of input sequences
V(l, d): Maximum number of l-mers at a Hamming distance of at most d from
 another l-mer
q: Window size, q = distmax – distmin + 1
nx: Number of (l1, d1) – k patterns in the input sequences

:
ixI Number of occurrences of the ith (l1, d1) – k pattern in the input sequences

Ax: Average number of occurrences for an (l1, d1) – k pattern in the input
 sequences
ny: Number of (l2, d2) – k patterns in the input sequences
Ay: Average number of occurrences for an (l2, d2) – k pattern in the input
 sequences
CECOMP: Worst case runtime complexity of ECOMP in assembling monad patterns
CStage-MITRA: Worst case runtime complexity of Stage-MITRA in assembling monad
 patterns.

Theorem 4.1: Given all (l1, d1) – k and (l2, d2) – k monad patterns and their occurrences
in the input sequences. The runtime complexity of Stage-MITRA and ECOMP
for assembling monad patterns into composite patterns satisfying the model
(l1, d1) – [distmin, distmax] – (l2, d2) – k are

2
Stage-MITRA 2 2(())

ix
i

C O q I l d∈ ,∑ V

and

ECOMP 2 2(())
ix

i

C O q I l d∈ ,∑ V

respectively.

Proof: Sagot showed that the worst case runtime complexity of MITRA-Count
for finding (l, d) – k monad patterns is O(nN2V (l, d)) (Sagot, 1998; Eskin and

 Efficient composite pattern finding from monad patterns 93

Pevzner, 2002). Stage-MITRA first extracts all (l1, d1) – k monad patterns. When finding
the second part (l2, d2) – k monad patterns, it reduces to a monad pattern finding problem
in the window region of every occurrence of an (l1, d1) – k monad pattern. For finding the
ith (l1, d1) – k monad pattern, its runtime is 2

2 2(()).
ixO qI l d,V Consequently, the overall

complexity is
2

Stage-MITRA 2 2(())
ix

i

C O q I l d∈ , .∑ V

In ECOMP, for every occurrence of an (l1, d1) – k monad pattern xi, its downstream
window region is scanned. From the definition of V(l2, d2), we have

ECOMP 2 2(())
ix

i

C O q I l d∈ , .∑ V

From

()22 ,
i i ix x x x xi i i

I I n A I≥ =∑ ∑ ∑

we conclude that in the worst case CECOMP is about an order of Ax less than CStage-MITRA.

Note that in Marsan and Sagot (2000) there is an estimated upper bound of n2N2qV (l1, d1)
V (l2, d2) on the runtime of a naive approach, which is similar to ECOMP in spirit. A
careful look at it reveals that such an upper bound is over-estimated. If including the
runtime for extracting monad patterns, the runtime complexity of Stage-MITRA and
ECOMP are

2 2
2 2 1 1(() ())

ixi
O q I l d nN l d, + ,∑ V V

and
2 2

2 2 1 1 2 2(() () ())
ixi

O q I l d nN l d nN l d, + , + ,∑ V V V

respectively. When both parts in the composite patterns are not strong, then the runtimes
of Stage-MITRA and ECOMP are both dominated by the time complexity for assembling
the monads. In this case, Theorem 1 says that the runtime of ECOMP is linear in the
window size q, the number of source monad patterns nx, and the average number of
occurrences of source monad patterns Ax. We remark that ECOMP trades memory for
speed, as it can be seen that the space complexity of ECOMP is Θ(nxAx + nyAy + nN),
while that of MITRA-Count is only Θ(nN). However, since ECOMP retrieves query
patterns one by one in a sequential way and only does random access on the storage of
the target patterns, we can always use the stronger monad patterns as target patterns, so
that even if the weaker patterns can only be stored in secondary memory, the access of
secondary memory is a sequential one which is well known in computer science to
be much faster than random access of secondary memory. If both parts are too weak
to be stored in memory (i.e., both nxAx and nyAy are extremely large), then MITRA-Dyad
may not work as well since in its time complexity contains the factor of 2

x xn A
2 2

2 2 2 2 2 2(() () ()).
i ix x x x xi i

q I l d qA I l d qn A l d, ≥ , = ,∑ ∑V V V

 94 J. Zhou, J. Sander and G. Lin

5 Computational experiments and discussions

We have conducted a series of computational experiments on both simulated DNA data
and real biological data to compare the performance of ECOMP with MITRA-Dyad
(Eskin and Pevzner, 2002), RISO (Carvalho et al., 2005), and Stage-MITRA. As the
experimental results in Carvalho et al. (2005) have shown that RISO improves over
SMILE (Marsan and Sagot, 2000) by several orders of magnitude in runtime, we do not
include SMILE in our comparison. Also, since MITRA-Dyad finds composite patterns in
the form other than that in ECOMP, RISO, and Stage-MITRA, we will mainly compare
ECOMP with Stage-MITRA and RISO to show the performance difference between
the ways of assembling monad patterns into composite patterns. The computational
results in the following show that ECOMP is up to two orders of magnitude faster
than Stage-MITRA and RISO, and is up to three orders of magnitude faster than
MITRA-Dyad.

The program RISO was downloaded from the homepage of its authors
(Carvalho et al., 2005). Due to the unavailability of MITRA-Count source code, we
implemented the algorithm ourselves, according to the exact specification provided in
Eskin and Pevzner (2002). In more details, the implementation of MITRA-Count uses the
prefix tree data structure only (Eskin and Pevzner, 2002). Note that Eskin and Pevzner
also proposed a hybrid method combining MITRA and a graph based approach
WINNOWER (Eskin and Pevzner, 2002; Pevzner and Sze, 2000), called MITRA-Graph.
Roughly speaking, WINNOWER is used in MITRA-Graph as a heuristic to speedup
the monad pattern finding and eventually speedup the composite pattern finding
because MITRA needs to find long monad patterns representing the composite patterns.
Since the current interest is to compare two different ways of assembling monad
patterns into composite ones, and also because MITRA-Graph has a much more complex
implementation than MITRA-Count and according to its authors MITRA-Graph is not
consistently faster than MITRA-count, we compared to MITRA-Count only in our
experiments. For fair comparisons, MITRA-Dyad, Stage-MITRA and ECOMP were all
implemented in C++ using the LEDA (Mehlhorn and Näher, 1995) library. RISO
was implemented in C by its authors (Carvalho et al., 2005). The reported runtimes
include the time for extracting the monad patterns. All experiments were performed on a
Pentium IV 2.6 GHz Linux workstation with 1 GB of RAM.

5.1 Results on simulated data

Eskin and Pevzner defined the dyad challenge problem based on simulated data
(Eskin and Pevzner, 2002). In this problem, sequences on an alphabet of four letters,
mimicking DNA sequences, are randomly generated. In our experiment, we set the
number of sequences to N = 20 and the length of each sequence to n = 600. Thirteen out
of these 20 sequences were implanted with two (14, 4) motifs at random positions with a
fixed distance of 20 nucleotides between them. To apply the pattern finding algorithms,
the window was set to [20, 20], that is, the window size was only 1. Table 1 collects
the runtimes of MITRA-Dyad for finding (14 – [20, 20] – 14, 8) – 13 patterns, and
Stage-MITRA and ECOMP for finding (14, 4) – [20, 20] – (14, 4) – 13 patterns. It can be
seen that the runtimes of Stage-MITRA and ECOMP are close on the challenge problem,
and they are much less than that of MITRA-Dyad, which searches a much larger space.

 Efficient composite pattern finding from monad patterns 95

Table 1 Running times on the Dyad Challenge problem

 MITRA-Dyad RISO Stage-MITRA ECOMP
Running time >5 hours 853.68 secs 492.19 secs 482.55 secs

5.2 Results on real biological data

We obtained one real biological dataset from Thakurta and Stormo (2001). This dataset
consists of 11 gene sequences regulated by two binding sites URS1 and UASH. These
11 genes were divided into three groups. Group 1 contains five genes in which the
distance between URS1 and UASH ranges from 19 to 37. Group 2 also contains five
genes in which the distance between URS1 and UASH ranges from 83 to 111. Group 3
contains only one gene, for which the distance between URS1 and UASH is 336, and the
UASH site is downstream of URS1 instead of upstream for the other genes. In these
11 genes, UASH is observed to be much weaker than URS1. For example, in Group 1,
UASH is a (7, 1) – 4 pattern while URS1 is a (10, 2) – 5 pattern, and Group 1 contains
1452 and 453 monad patterns in these two models, respectively.

5.2.1 Results on Group 1

We followed the same experimental setup as in Eskin and Pevzner (2002), except that the
support threshold for (10, 2) monad patterns (including URS1) was set to 4 instead of 5.
This made the problem more challenging, as the number of (10, 2) – 4 monad patterns is
5472 compared to only 453 (10, 2) – 5 monad patterns. The runtimes (in seconds)
of the four algorithms MITRA-Dyad, RISO, Stage-MITRA, and ECOMP for finding all
(7, 1) – [17, 42] – (10, 2) – 4 and (10, 2) – [17, 42] – (7, 1) – 4 dyad patterns are collected
in Table 2, where the dyad patterns must occur in at least four genes. It can be seen
that the speedup of ECOMP over MITRA-Dyad is three orders of magnitude, and that
Stage-MITRA already outperforms MITRA-Dyad two orders of magnitude.

When the dyad patterns are required to appear at least four times anywhere in the
sequences, the runtimes increased a bit and they are summarised in Table 3. Note that in
this case, the models became weaker. Table 3 shows again that ECOMP is orders of
magnitude faster than MITRA-Dyad and Stage-MITRA.

Table 2 Running times in seconds of MITRA-Dyad, RISO, Stage-MITRA and ECOMP,
on Group 1 genes, where the dyad patterns must occur in at least four genes.
RISO does not search backward and so only one value is reported

Model MITRA-Dyad RISO Stage-MITRA ECOMP
(7, 1) – [17, 42] – (10, 2) – 4 258.21 45.39 16.46 0.44
(10, 2) – [17, 42] – (7, 1) – 4 197.04 N/A 14.09 0.44

Table 3 Running times in seconds of MITRA-Dyad, RISO, Stage-MITRA, and ECOMP,
on Group 1 genes, where the dyad patterns must occur at least four times anywhere in
the sequences. The runtime of RISO is not reported since it does not accept such kind
of parameters

Model MITRA-Dyad Stage-MITRA ECOMP
(7, 1) – [17, 42] – (10, 2) – 4 383.22 82.08 1.74
(10, 2) – [17, 42] – (7, 1) – 4 392.71 120.21 1.7

 96 J. Zhou, J. Sander and G. Lin

Tables 2 and 3 also show the phenomenon that the physical order of the monad patterns
in the composite patterns may affect the runtimes of the algorithms. For MITRA-Dyad
and Stage-MITRA, the difference can be observed by the non-symmetric runtime
complexities of the two directions (see also Section 2). For ECOMP, the difference is
insignificant in these cases. However, in extreme cases, the performance of ECOMP
might be affected by the physical orders, due to the different amounts of memory
required during the computation. In the extreme case where one monad pattern is very
weak while the other is very strong, ECOMP could terminate in a short amount of time if
the proper order is picked, while it might run out of memory using the other order. In one
experiment, we have tested ECOMP by running it to find (10, 2) – [17, 42] – (11, 4) – 5
and (11, 4) – [17, 42] – (10, 2) – 5 models in Group 1 genes. It is known that the
(11, 4) – 5 model is extremely weak (the number of (11, 4) – 5 monad patterns in
Group 1 genes is 2,004,913, while that of (10, 2) – 5 is only 453). To find (11, 4)
– [17, 42] – (10, 2) – 5 composite patterns ECOMP only needs 18 seconds. But when
trying to find (10, 2) – [17, 42] – (11, 4) – 5 composite patterns, ECOMP did not
terminate in one hour. The reason is that in this extreme case the weaker monad patterns
can not be stored in main memory so that if we use the stronger monad patterns to search
the weaker patterns, we end up with performing random access of secondary memory, as
discussed in the previous section. We conclude that using the weaker monad patterns as
the source patterns in ECOMP, a dramatically better runtime can be obtained.

In the other experiments to be reported next, MITRA-Dyad and Stage-MITRA were
run in both directions and the better runtimes were reported. This is done under the
consideration that in practice we would not know which of the two monad patterns of
composite patterns is the stronger one before actually generating them, and therefore it is
in favour of MITRA-Dyad and Stage-MITRA. For ECOMP, since we generate the
monad patterns independently, we can decide which one is stronger and which one is
weaker and we always use the weaker monad patterns as the query sources. For RISO,
we are only able to run it in one direction.

5.2.2 Theoretical running time validation

We have designed experiments to validate the theoretical runtime analysis in Theorem 1.
We have tested the window size ranging from small values 1–6 and then three
larger values 11, 16, 21. The runtimes of the three algorithms RISO, Stage-MITRA,
and ECOMP are plotted in Figure 1, where we can see that ECOMP outperforms
Stage-MITRA and RISO in all cases. The plot also shows that the runtimes of
Stage-MITRA and ECOMP grow linearly in the window size, consistent with the
theoretical analysis.

Experiments have also been set up to validate the runtime of Stage-MITRA and
ECOMP with respect to the change of nx, the number of source monad patterns. In these
experiments, the window size was fixed at 26 and (10, 2) – 4 was the source monad
pattern model. There were in total 5472 source monad patterns found, and the first nx of
them were used to grow or to query the target monad patterns of the composite patterns.
The runtimes of Stage-MITRA and ECOMP vs. nx are plotted in Figure 2. The runtimes
agree again with the theoretical analysis, showing that both runtimes grow linearly in nx.

 Efficient composite pattern finding from monad patterns 97

Figure 1 Runtimes of RISO, Stage-MITRA, and ECOMP vs. the window size

Figure 2 Runtimes of Stage-MITRA and ECOMP vs. the number of source monad patterns nx

In the third set of experiments, we tested how RISO, Stage-MITRA, and ECOMP
respond when the average number of occurrences of the source monad patterns, Ax,
changes. We used (l1, 1) – [17, 42] – (10, 2) – 4 as the composite pattern model, and
tested l1 from 8 to 4. Correspondingly, Ax increased. The growth of Ax with respect
to l1 and the speedup of ECOMP over Stage-MITRA and RISO with respect to l1 are
plotted in Figure 3, where we can see that the speedup of ECOMP over Stage-MITRA is
larger than the growth of Ax. The trend of the speedup of ECOMP over RISO is similar to
the trend of ,

ix x xi
I n A= ×∑ which indicates that the runtime of RISO is also closely

related to nx, the number of possible first monads. This confirms the theoretical
observation that when all basic monad patterns are weak, ECOMP can be orders of
magnitude faster than MITRA-Dyad, RISO, and Stage-MITRA.

 98 J. Zhou, J. Sander and G. Lin

Figure 3 Speedup of ECOMP over Stage-MITRA and RISO, Ax, the total number of occurrences
of the source monad patterns ,

ixi
I∑ vs. the length of source monad patterns l1

5.2.3 Results on Groups 1 and 3

The sequence in Group 3 is different from those in Group 1 in that the distance between
URS1 and UASH is much larger and the physical order of the two sites is reversed. It is
known that the URS1 and UASH patterns in the gene in Group 3 are more similar to
those occurring in genes in Group 1, than to those occurring in genes in Group 2. In fact,
if Groups 1 and 3 are merged together, then the composite pattern in all six genes can be
modelled as (10, 2) – [17, 352] – (8, 2) – 6, disregarding the physical order of the two
monad patterns. In this experiment, we have to use window size 336. We applied the
order-independent version of ECOMP and Stage-MITRA to find the composite pattern.
The runtime of ECOMP is 726.95 seconds, while Stage-MITRA ran out of CPU resource
(>24 hours) on the same problem.

6 Conclusions

In this paper, we compared two different ways of assembling monad patterns into
composite patterns. We have provided a better theoretical analysis on the runtime of an
overlooked straightforward approach ECOMP, and we designed experiments to compare
its performance with several complex composite pattern finding algorithms including
MITRA-Dyad and RISO. The experimental results on synthetic and real-life data showed
that ECOMP was up to two orders of magnitude faster than MITRA-Dyad and RISO,
though theoretically MITRA-Dyad and RISO could perform better when one of the
monad patterns in the composite patterns is extremely strong.

Besides, ECOMP also has the advantage that it can be used to extend any other
monad pattern finding algorithm (assuming either the mismatch model or the machine
learning model). We believe that the speed of ECOMP makes it a suitable choice for
integration into high-throughput data analysis that requires fast composite pattern finding,
such as to detect common transcription factors for sets of potentially co-regulated genes
obtained by microarray cluster analysis.

 Efficient composite pattern finding from monad patterns 99

Acknowledgements

The authors would like to thank J. Buhler for providing a software package for generating
the simulated data. This work is supported partially by NSERC, CFI, and the University
of Alberta.

References
Agrawal, R. and Srikant, R. (1994) ‘Fast algorithms for mining association rules in large

databases’, Proceedings of the 20th International Conference on Very Large Data Bases
(VLDB 1994), September 12–15, Santiago de Chile, Chile, pp.487–499.

Bailey, T.L. and Elkan, C. (1995) ‘Unsupervised learning of multiple motifs in biopolymers using
expectation maximization’, Machine Learning, Vol. 21, Nos. 1–2, pp.51–80.

Buhler, J. and Tompa, M. (2002) ‘Finding motifs using random projections’, Journal of
Computational Biology, Vol. 9, No. 2, pp.225–242.

Carvalho, A.M., Freitas, A.T., Oliveira, A.L. and Sagot, M-F. (2005) ‘A highly scalable algorithm
for the extraction of CIS-regulatory regions’, Proceedings of the 3rd Asia-Pacific
Bioinformatics Conference (APBC 2005), January 17–21, Singapore, pp.273–282.

Eskin, E. and Pevzner, P.A. (2002) ‘Finding composite regulatory patterns in DNA sequences’,
Proceedings of the 10th Annual International Conference on Intelligent Systems for Molecular
Biology (ISMB 2002), Bioinformatics, August 3–7, Edmonton, Alberta, Canada, Vol. 18,
pp.S354–S363.

Hertz, G.Z. and Stormo, G.D. (1999) ‘Identifying DNA and protein patterns with statistically
significant alignments of multiple sequences’, Bioinformatics, Vol. 15, No. 7, pp.563–577.

Keich, U. and Pevzner, P.A. (2002) ‘Finding motifs in the twilight zone’, Proceedings of the 6th
International Annual Conference on Research in Computational Molecular Biology
(RECOMB 2002), April 18–21, Washington DC, USA, pp.195–204.

Lawrence, C.E., Altschul, S.F., Bogurski, M.S., Liu, J.S., Neuwald, A.F. and Wootton, J.C. (1993)
‘Detecting subtle sequence signals: a Gibbs sampling strategy for multiple alignment’,
Science, Vol. 262, pp.208–214.

Marsan, L. and Sagot, M-F. (2000) ‘Algorithms for extracting structured motifs using a suffix tree
with an application to promoter and regulatory site consensus identification’, Journal of
Computational Biology, Vol. 7, Nos. 3–4, pp.345–362.

Mehlhorn, K. and Näher, S. (1995) ‘LEDA: a platform for combinatorial and geometric
computing’, Communications of the ACM, Vol. 38, No. 1, pp.96–102.

Pevzner, P.A. and Sze, S-H. (2000) ‘Combinatorial approaches to finding subtle signals in DNA
sequences’, Proceedings of the 8th Annual International Conference on Intelligent Systems for
Molecular Biology (ISMB 2000), August 19–23, San Diago, CA, USA, pp.269–278.

Sagot, M-F. (1998) ‘Spelling approximate repeated or common motifs using a suffix tree’,
Proceedings of the 3rd Latin American Theoretical Informatics Symposium (LATIN’98),
LNCS 1776, April 20–24, Campinas, Brazil, pp.374–390.

Thakurta, D.G. and Stormo, G.D. (2001) ‘Identifying target sites for cooperatively binding factors’,
Bioinformatics, Vol. 17, No. 7, pp.608–621.

van Helden, J., Rios, A.F. and Collado-Vides, J. (2000) ‘Discovering regulatory elements
in noncoding sequences by analysis of spaced dyads’, Nucleic Acids Research, Vol. 28,
pp.1808–1818.

