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High-throughput single nucleotide polymorphism genotyping assays conveniently pro-

duce genotype data for genome-wide genetic linkage and association studies. For pedi-

gree datasets, the unphased genotype data is used to infer the haplotypes for individuals,

according to Mendelian inheritance rules. Linkage studies can then locate putative chro-

mosomal regions based on the haplotype allele sharing among the pedigree members and

their disease status. Most existing haplotyping programs require rather strict pedigree

structures and return a single inferred solution for downstream analysis. In this research,

we relax the pedigree structure to contain ungenotyped founders, and present an cubic

time whole genome haplotyping algorithm to minimize the number of zero-recombination

haplotype blocks. With or without explicitly enumerating all the haplotyping solutions,

the algorithm determines all distinct haplotype allele identity-by-descent (IBD) sharings

among the pedigree members, in linear time in the total number of haplotyping solu-

tions. Our algorithm is implemented as a computer program iBDD. Extensive simulation

experiments using two sets of sixteen pedigree structures from previous studies showed

that, in general, there are trillions of haplotyping solutions, but only up to a few thou-

sand distinct haplotype allele IBD sharings. iBDD is able to return all these sharings for

downstream genome-wide linkage and association studies.
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1. Background

A single nucleotide polymorphism (SNP) is a DNA sequence variation occurring
when a single nucleotide in the genome differs between individuals, or between
paired homologous chromosomes in an individual of a diploid species (e.g., hu-
mans). SNPs have been used as genetic markers in linkage analysis and association
studies, where the sharing status of the alleles among members is used to draw
inferences about the inheritable properties. In this research, we have developed a
program called iBDD which determines all distinct haplotype allele identity-by-
descent (IBD) sharings in one whole genome scan, for the most complex pedigree
genotype datasets.

SNPs are believed to contribute to the most genetic variations in human popula-
tions [1]. The rapid development of genotyping technology has led to the identifica-
tion of thousands to millions of SNPs for various species; for humans, these common
variants provide the foundation for genome-wide association studies (GWAS) under
the common disease – common variant (CDCV) hypothesis. Recently, GWAS have
achieved a great deal of success [2], but genetic fine-mapping for complex diseases
such as cancer and mental illness is still a great challenge.

Nevertheless, the unphased genotype data is recognized as a fundamental bottle-
neck in general genetic linkage and association studies, particularly for rare diseases.
For diploid species including humans, at each biallelic SNP locus, the unphased
genotype data contains two alleles (nucleotides), without specifying their parental
origins. A haplotypes is phased genotype which, at each SNP locus, contains the
allele of the same parental origin.

In the mapping of disease-susceptible genes in genetic linkage and association
studies, one important assumption is that such disease-susceptible genes are in link-
age disequilibrium to certain SNPs, so that these SNP markers can be the anchors
of disease-susceptible genes. Given its biallelic nature, genetic linkage and associa-
tion studies based on SNP genotype in general requires a large number of samples,
positive samples in particular, so that the association study results are statistically
significant [2]. On the other hand, if haplotypes for a large non-recombinant chro-
mosomal region can be determined for all the samples, then the disease-susceptible
haplotype alleles may be easily identified, since the haplotype allele sharing can
be better determined. This approach has been particularly successful for simple
Mendelian disease genetic linkage on pedigree data. For general population-based
GWAS, haplotypes clearly contain more inheritance information than unphased
genotype, and the ideal case is to build the dense SNP haplotype map: this pro-
vides more detailed and deterministic haplotype allelic information for the mapping
of disease-susceptible genes. It should be emphasized that, as SNPs act as anchors,
it is the allele sharing that is used for linkage inference, and thousands to millions of
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haplotype allele configurations give the identical sharing. Our iBDD program from
this research is designed to determine all distinct haplotype allele sharings.

Haplotypes can be experimentally determined, but it is very expensive to do
so [3]. In practice, a less costly alternative is to collect genotype data. Therefore,
efficient and accurate computational methods for the inference of haplotypes from
genotype data are of considerable value. There is a rich and growing literature on
haplotype inference from genotype data, also commonly referred to as phasing or
haplotyping. Research that focuses on unrelated individuals — population data —
is reviewed in [4] and [5], with its recent representative fastPHASE by Scheet and
Stephens [6]; Research on related individuals — pedigree data — is reviewed in [7],
including (exact and approximate) likelihood-based methods [8–16] and genetic rule-
based strategies [17–22], with its representative PedPhase by Li and Jiang [17]. The
likelihood-based methods usually work for low-density SNP data but not high-
density data; neither can they handle large (in many cases, even moderately large)
datasets because of the extensive computations required. Additional information
and assumptions, such as Hardy-Weinberg equilibrium and marker recombination
rates, are generally required to calculate the likelihoods.

Rule-based methods for haplotyping exploit the Mendelian laws of inheritance
to minimize the total number of crossover events (also called recombination events
or breakpoints) in all pedigree members [7] needed for explaining the observed geno-
type data. They generally run faster than likelihood-based methods. Nevertheless,
this computational minimization problem is NP-hard [17] in general, indicating that
there is unlikely a fast algorithm that reconstructs such optimal haplotyping solu-
tions (also called configurations). When no recombination events are allowed and
the pedigree structure is full (i.e. every non-founder pedigree member has both par-
ents genotyped), the problem is then to infer zero-recombination haplotypes from
given pedigree genotypes, which is called the zero-recombination haplotype config-
uration (ZRHC) problem. ZRHC turns out to be polynomial time solvable. Li and
Jiang [17] presented an O(m3n3) time algorithm and a computer program PedPhase
which solves ZRHC, by reducing the problem to solving a system of linear equa-
tions over the cyclic group Z2, where m is the number of loci and n is the number
of members in the pedigree. Doan and Evans [23] presented another O(2m2

m3n2)
time algorithm for ZRHC, a consequence of a fixed-parameter tractable algorithm
for the general minimization problem.

It should be noted that the PedPhase and related rule-based methods, as well
as those based on likelihood (e.g., PhyloPed [16]), require (either specifically or
conventionally) the full pedigree structure — any non-founder pedigree member
must have both parents genotyped. As an exception, iLinker is rule-based, does
not require a full pedigree, but the pedigree can have only a couple or a single
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founder [20]. In summary, most existing rule-based haplotyping methods have rather
strict pedigree structure requirements, while a practical pedigree often contains
multiple founders yet some of them may have passed away and their genotype data
can no longer be collected. For instance, none of the pedigrees used in seven previous
case studies [20, 24–29] is full.

In our research, we relax the past pedigree structure requirement in our haplo-
typing algorithm to allow for ungenotyped founders, as long as the pedigree stays
connected and every ungenotyped member appears in exactly one nuclear family.
We note that, while we deal with ungenotyped pedigree members, every genotyped
member must have complete genotype data. There is existing work that deals with
missing genotype data in genotyped members [30]. (When there is a large portion
of missing data in a population dataset, there is another line of work that does hap-
lotyping and imputation using the inferred haplotypes [6, 31–33].) Under the zero-
recombination assumption, our novel rule-based haplotyping algorithm has thus the
largest pedigree coverage; it can produce all haplotyping solutions in O(m3n3) time,
where m is the number of loci, n is the number of (genotyped) members in the pedi-
gree; and it is extended into a whole genome haplotyping algorithm to minimize the
number of zero-recombination chromosomal regions (i.e. haplotype blocks). More-
over, note that genetic linkage and association studies use allele sharing information
amongst the individuals to make inferences, but not the detailed haplotype alleles
of each individual [20, 34–38]. We therefore take advantage of all the haplotyping
solutions (produced implicitly or explicitly) to determine all distinct genome-wide
haplotype allele identity-by-descent (IBD) and identity-by-state (IBS) [34] sharings
among all pedigree members, together with their associated numbers of haplotyp-
ing solutions. It is important to point out that the use of sharing properties of
haplotypes adequately addresses the issue of haplotype ambiguity (particularly, the
founder haplotype ambiguity) in linkage analysis and haplotype-based association
studies. All these functions are coded in a Perl program iBDD, which is available
upon request.

2. Materials and Methods

A pedigree describes the parent-offspring relationship among individuals. In our
discussion of a pedigree, members are present only if they are genotyped. Those
members that have no parents are the founders of the pedigree. A nuclear family
in a pedigree consists of the parent(s) and all the children. In this paper, connected
complex pedigrees are considered, in which a non-present parent of a nuclear family
is an ungenotyped founder. Our pedigrees are connected, such that each nuclear
family has at least one parent and an ungenotyped founder appears in exactly one
nuclear family. The genotype at a (biallelic) SNP locus is homozygous if the two
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alleles are the same (i.e., AA or BB), or is heterozygous if the two alleles are different
(i.e., AB).

Our haplotyping algorithm is based on the Mendelian laws of inheritance, which
states that, at each locus of a pair of homologous autosomes of a child, one allele
is inherited from her father (the paternal allele) and the other from mother (the
maternal allele). A child does not inherit a complete autosome from each parent,
since crossover (also called recombination) events occur. That is, during the meio-
sis process, the two homologous autosomes of a parent may be shuffled and four
chromatids are generated, each of which is a shuffled copy of the two homologous
autosomes of the parent. One of these chromatids is passed on to the child. Between
any two consecutive SNP loci along an autosome of the parent, if recombination oc-
curs then there is a breakpoint site between these two loci; this creates a breakpoint
between the two loci on the corresponding chromatid passed on to the child.

2.1. Zero-recombination haplotyping

Given a pedigree and the unphased genotype data of its members, Li and
Jiang [17] presented a constraint-based haplotyping algorithm, PedPhase, under
the recombination-free assumption. PedPhase defines a binary parental source (PS)
variable zi for each child z at every SNP locus i, to record the parental origin of
the two alleles: zi = 1 if and only if SNP i is heterozygous and child z inherits
allele A from her mother. Adopting the cyclic group rule “1 + 1 = 0”, PedPhase
produces a system of linear equations as haplotyping constraints, where subsets of
equations are collected trio by trio. For example, let x denote the mother, y denote
the father, and z be their child; let i and j denote two consecutive SNP loci at
which x is heterozygous (i.e., x is homozygous at loci i+1, i+2, . . . , j − 1); assume
z is heterozygous as well at these two loci (but z is not necessarily heterozygous at
any loci of i + 1, i+ 2, . . . , j − 1). Depending on the genotype of y at these two loci,
PedPhase writes down the following set of constraints:

⎧⎪⎨
⎪⎩

either xi = xj or xi + xj = 1,

either yi = yj or yi + yj = 1,

xi + xj = zi + zj and/or yi + yj = zi + zj.

It has been proven that all the linear equations are satisfied if and only if the
extracted haplotyping solution conforms with the input genotype data. Because the
equations are written down for trios, PedPhase requires a full pedigree structure,
i.e., every non-founder member must have both parents genotyped.

We re-write these haplotyping constraints on a trio (x, y, z) to separate them
into two independent subsets of constraints, for the two parent-child pairs (x, z)
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and (y, z) respectively. For example, for the pair (x, z), only one linear constraint
is written down, disregarding what the genotype y has at loci i and j:

xi + xj + zi + zj = 0.

In this way, we relax the pedigree structure to allow for one ungenotyped parent per
nuclear family — this factoring provides the advantage of the constraint re-writing
scheme. That is, in the above case, parent y can be ungenotyped. Furthermore, if
indeed y is ungenotyped, then besides the equations for all (x, child) pairs, addi-
tional equations can be expressed to constrain the number of haplotypes for y to
be at most two. It should be noted that in the case where the pedigree structure
is full, our re-writing scheme becomes exactly the same as the PedPhase original
scheme. Similarly, it can be shown that these constraints in the re-writing scheme
are all satisfied if and only if the corresponding haplotyping solution is feasible.
For the detailed re-writing scheme that handles dozens of distinct scenarios and its
mathematical proof of correctness, interested readers may refer to Li and Jiang [17]
and Cheng et al. [21]. Moreover, the total number of linear equations in our new
system is proven to be no more than 7mn, resulting in an O(m3n3)-time haplotyp-
ing algorithm, where m is the total number of SNPs along the chromosome and n

is the size of the pedigree.

2.2. Parsimonious whole genome haplotyping

For small chromosomal regions, the zero-recombination assumption can be reason-
able and the genetic linkage and association studies based on zero-recombination
haplotyping solutions are meaningful. For genotype datasets on whole chromosomes,
we need to relax the zero-recombination assumption but take advantage of the
zero-recombination haplotyping algorithm to greedily and optimally determine the
maximal zero-recombination haplotype blocks, and their associated haplotyping so-
lutions.

The following outlines at a high level on how this is accomplished in iBDD.
Starting with i = 2, the zero-recombination haplotyping algorithm is run to check
whether solutions exist for chromosomal region [1, i], which contains loci 1, 2, . . . , i.
If affirmative, i is incremented by 1; and the checking process is repeated until at
some point, there is no solution to the linear system written for chromosomal region
[1, i]. This gives a maximal zero-recombination chromosomal region [1, i−1], and all
haplotyping solutions are recovered for the region (either implicitly by storing those
determined PS variables or explicitly by listing all haplotype configurations). Next,
chromosomal region [1, i − 1] is chopped, and the haplotyping process moves on to
repeatedly determine the other maximal zero-recombination chromosomal regions
starting SNP locus i.
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Note that in this incremental haplotyping process, haplotyping solutions for
chromosomal region [1, j] are fully used in the zero-recombination haplotyping al-
gorithm to compute the haplotyping solutions for chromosomal region [1, j + 1].
Our implementation ensures that the total number of linear equations is confined
in O(mn), to guarantee the O(m3n3) running time for the whole genome scan.

2.3. The identity-by-descent determination

Given an explicit haplotyping solution for a zero-recombination haplotype block, or
given an implicit haplotyping solution represented as a solution to the linear system
(i.e., the PS values), we can use genotype data to trace the inheritance of each
haplotype allele of a genotyped founder member within the entire block. Essentially,
we identify for each child’s two haplotype alleles their parental source. After this is
done, all the pedigree descendants who share the same founder haplotype allele form
a cluster. The haplotype allele identical-by-descent (IBD) sharing is characterized
as a collection of such clusters labeled with the founder identity. Note that this
process does not require (and thus allows the user to choose to not create) explicit
haplotyping solutions. The process runs in O(kn) time, where k is the total number
of maximal zero-recombination haplotype blocks.

3. Results

For our experiments, we use a real dataset from Wirtenberger et al. [39] to gener-
ate simulation datasets. This real dataset contains 877 SNPs on chromosome 1 for
independent individuals genotyped by GeneChip Human Mapping 10K Xba array.
To demonstrate the performance of our iBDD, six real pedigree structures are em-
ployed, which have been used in previous genetic linkage and association studies
(Figure 1 in Lin et al. [20], Figure 1 in Martin et al. [25], Figure 2 in Sinsheimer et
al. [29], Figure 2 in Lin et al. [24], Figure 1 in Hauser et al. [27], and Figure 1 in
Howell et al. [28], respectively). These pedigrees vary wildly in size, the number of
nuclear families, the number of founders, and the number of ungenotyped founders.
A summary of their structural characteristics is included in Table 1. We followed
a trio simulation process which generates the two whole chromosomal haplotypes
for a child from her parents’ haplotypes according to the χ2(m)-model for crossover
events with m = 4 [40–42]. Using this trio generation process, the pedigree genotype
datasets are simulated, 100 datasets for each pedigree.

3.1. Breakpoint recovery

One important performance measure of a haplotyping algorithm is whether a
true/simulated breakpoint can be correctly recovered. In the pedigree genotype
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Table 1. Properties of the six pedigrees we used in the simulation study.

Pedigree No. 1 2 3 4 5 6

#Members 16 19 17 24 10 20
#Generations 3 3 3 5 3 3

#Nuclear families 4 3 4 12 2 4
#Founders 5 4 5 9 3 5

#Ungenotyped 3 2 2 3 1 4

dataset simulation process, a simulated parental breakpoint site could arise in be-
tween two consecutive homozygous SNP loci, thus it cannot be precisely recovered
by any computational approach. We adopted the criteria mentioned in previous
work [16, 20, 42] to do the mapping between the simulated breakpoint sites and
the breakpoint sites computed by iBDD: a simulated breakpoint site is classified
as recovered if there is a computed breakpoint site on the same parent such that
the SNPs in between these two locations, if any, are all homozygous; otherwise, the
breakpoint is classified as missed.

The breakpoint recovery precision is defined as the ratio of the number of simu-
lated breakpoint sites that are recovered (true positives) over the number of break-
point sites computed by iBDD (true and false positives). The breakpoint recovery
recall is defined as the ratio of the number of true positives over the total number of
simulated breakpoint sites. We calculated the precision and recall on each simulated
dataset as the averages over all the haplotyping solutions. The mean precision and
recall values over all 100 datasets associated with the pedigree are reported in Ta-
ble 2. The general conclusion on breakpoint recovery is that iBDD generates slightly
fewer breakpoints than the simulated truth, achieving average precision of 79.3%,
to recover most of the true breakpoints (average recall 79.0%). Fig. 1 plots the
mean recall (y-axis) versus precision (x-axis) values on the 100 datasets simulated
for pedigree No. 1. One can see from this plot and Table 2 that the breakpoint
recovery is quite stable across the 100 datasets for each pedigree, suggesting its
variation depends mostly on the pedigree structure.

3.2. Haplotype allele sharing recovery

We use the F -score from information retrieval to measure the accuracy of haplotype
allele sharing recovery, compared with the simulated sharing. More specifically, we
determine all the zero-recombination chromosomal regions for the simulated hap-
lotype configuration. These simulated zero-recombination chromosomal regions in-
tersect with the iBDD zero-recombination chromosomal regions to produce a set
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Fig. 1. The mean recall versus precision values on the 100 datasets simulated for pedigree No. 1.

Table 2. The mean breakpoint recovery precision and recall by iBDD on each of the six pedigrees,

over the averages of 100 simulated datasets, and their standard deviations.

Pedigree No. Precision Recall

1 0.893±0.053 0.748±0.066
2 0.684±0.064 0.879±0.061
3 0.862±0.057 0.793±0.060
4 0.915±0.043 0.683±0.053
5 0.729±0.082 0.886±0.065
6 0.678±0.075 0.751±0.074

Average 0.793 0.790

of common zero-recombination chromosomal regions to the simulated sharing and
the iBDD sharing. Note that on each of these zero-recombination chromosomal re-
gions, the simulated sharing is also a collection of pedigree member clusters labeled
with the founder identity. We first arbitrarily name the two clusters associated with



November 28, 2012 9:15 WSPC/INSTRUCTION FILE ibdd

13

the same founder paternal and maternal, respectively. The two clusters associated
with the same founder in the iBDD sharing are accordingly named, paternal and
maternal respectively, such that the F -score of the mapping between the simulated
and the iBDD sharings is maximized (over two possible choices). Upon completing
all the founders, the (weighted) F -score for this chromosomal region is computed
between the two collections of labeled clusters. The chromosomal F -score between
the simulated and the iBDD haplotype allele IBD sharings is taken as the weighted
average F -score over all maximal zero-recombination chromosomal regions, where
the weight of a region is taken as the number of SNPs in that region.
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Fig. 2. The mean F -scores of the haplotype allele IBD and IBS sharings compared with the

simulated sharings, respectively, on the 100 datasets simulated for pedigree No. 1.

In addition to the haplotype allele IBD sharing, we have also collected all dis-
tinct haplotype allele IBS sharings produced by iBDD, and calculated the F -score
between the simulated haplotype allele IBS sharing and each iBDD haplotype al-
lele IBS sharing. That is, on each simulated dataset, we calculated the F -score
of each IBD (IBS, respectively) sharing against the simulated IBD (IBS, respec-
tively) sharing to demonstrate the performance of haplotype allele sharing recovery
by iBDD. The average F -score over all distinct IBD (IBS, respectively) sharings by
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iBDD against the simulated IBD (IBS, respectively) sharing, across all 100 datasets
simulated for each of the six pedigrees, is reported in Table 3. Note that given a
haplotyping solution, the associated haplotype allele IBD sharing is a refinement of
the associated haplotype allele IBS sharing. The number of distinct haplotype allele
IBS sharings produced by iBDD is about four times the number of distinct haplo-
type allele IBD sharings, for all the 600 datasets in our simulation studies. Fig. 2
plots the average recovery F -scores (i.e. against simulation) on the 100 datasets
simulated for pedigree No. 1. One can see from Fig. 2 and Table 3 that most of
the haplotype allele sharings produced by iBDD are close to the simulated truth,
yet some could be a bit far away. This suggests that using only one sharing in link-
age and association studies might not work well, as the sharing could significantly
deviate from the truth.

Table 3. The mean haplotype allele sharing F -scores by iBDD against the simulated ones on each

of the six pedigrees, over the averages of 100 simulated datasets, and their standard deviations.

Pedigree No. F -score
IBD IBS

1 0.978±0.005 0.996±0.002
2 0.968±0.007 0.998±0.001
3 0.980±0.003 0.996±0.002
4 0.984±0.003 0.999±0.001
5 0.986±0.003 0.998±0.002
6 0.975±0.004 0.996±0.002

Average 0.978 0.997

4. Discussion

Guaranteed by its worst-case cubic running time, iBDD runs fast to produce all
haplotyping solutions, from which it takes only a fraction of time to determine all
the distinct haplotype allele IBD and IBS sharings together with their associated
numbers of haplotyping solutions. Among the six pedigrees used in our study, pedi-
gree No. 1 is moderately complex (Table 1). iBDD was able to terminate in about
two minutes on average, using an Intel E6850 3.0GHz processor with 4GB RAM.
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4.1. The huge number of haplotyping solutions versus a handful

distinct haplotype allele sharings

Previously, the uncertainty in the inferred multiple haplotyping solutions was con-
jectured to be a potential problem for haplotype-based association studies. By using
the haplotype allele sharing status, we believe that haplotype ambiguities in multi-
ple haplotyping solutions can be eliminated.

From the simulation study, we observed that for each simulated dataset, the
number of haplotyping solutions by iBDD is always large, in the trillions. Indeed,
for a pedigree of n non-founders and a total number of H heterozygous loci across all
genomes of all individuals, there could be 2H−n haplotyping solutions. Nevertheless,
there are only a few to dozens of, or up to a few thousand distinct haplotype
allele IBD sharings (i.e., up to 2n), each associated with thousands to millions of
haplotyping solutions. For example, across the 100 simulated datasets for pedigree
No. 1 (plotted in Fig. 3) the average number of distinct haplotype allele IBS sharings
is 48.24, the average number of distinct haplotype allele IBD sharings is 235.78, and
their associated numbers of haplotyping solutions are in the range of 260’s.

The observation suggests that using only one or a few inferred haplotyping
solutions in genetic linkage and association studies [16, 20, 26] is not appropriate.
Given that trying all haplotyping solutions is computationally prohibitive, our iBDD
becomes helpful in feasibly enumerating all distinct haplotype allele IBD (or IBS)
sharings.

4.2. Comparison to existing haplotyping methods

Our iBDD is derived from PedPhase [17], and therefore it is reasonable to make
comparison to PedPhase. Unfortunately, since PedPhase requires full pedigree struc-
ture (i.e., every non-founder member must have both parents genotyped), it does
not run on any of the six pedigrees we used earlier. Moreover, PedPhase is a zero-
recombination haplotyping algorithm only, which has to be extended into a general
haplotyping algorithm for comparison purposes. We thus adopted the parsimony
rule in the same way as in iBDD to extend it to xPedPhase, which determines
all maximal zero-recombination chromosomal regions together with all haplotyping
solutions. We also made a comparison to iLinker [20], another rule-based haplotyp-
ing algorithm which returns only one haplotyping solution. For fair comparison to
iLinker, we adopted the scheme to use the first haplotyping solutions by iBDD and
xPedPhase, respectively, and made comparison among these three using breakpoint
recovery and haplotype allele IBD sharing recovery.

Note that iLinker accepts only pedigrees with a couple founders or a single
founder, while xPedPhase accepts only full pedigrees. We therefore used another
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Fig. 3. The numbers of haplotyping solutions, distinct haplotype allele IBD and IBS sharings on

the 100 datasets simulated for pedigree No. 1. It is interesting to note that 2 datasets have a

unique IBS sharing — 2 crosses in column 0.

set of ten pedigrees in this comparative study, summarized in Table 4. This, how-
ever, makes the direct comparison between iLinker and xPedPhase impossible; so
the only comparison is via iBDD. That is, these ten pedigrees all have a couple
founders, and thus we can run both iLinker and iBDD. For each of them, missing
founders are added to make the pedigree full, and subsequently simulation datasets
are generated for running xPedPhase and iBDD. Again, 100 full-datasets are simu-
lated for each full pedigree, from which the genotype data for the missing founders
are dropped to form the nonfull-datasets for the corresponding non-full pedigree.
The average breakpoint precision and recall, and haplotype allele IBD sharing F -
score are collected, for xPedPhase on the full-datasets only, for iBDD on both the
full-datasets and the nonfull-datasets, and for iLinker on the nonfull-datasets only.

Fig. 4 plots the average recall against average precision on the ten pedigrees.
In the plot, there are four dots associated with each pedigree, except for the first
two pedigrees on which xPedPhase regularly failed. These four dots correspond to
the four pairs of (precision, recall) by iLinker on the non-full datasets, by iBDD on
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Table 4. Properties of pedigrees used to compare the performance of xPedPhase, iLinker, and

iBDD.

Pedigree No. 1 2 3 4 5 6 7 8 9 10

#Members 4 5 7 9 10 13 11 13 15 16
#Generations 2 2 3 3 3 3 3 3 3 3

#Nuclear families 1 1 2 3 3 4 3 3 4 4
#Founders 2 2 3 4 4 5 4 4 5 5

#Ungenotyped 0 0 1 2 2 3 2 2 3 3
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Fig. 4. The mean recall versus precision values of breakpoint recovery for iLinker (red dots) and

iBDD (greed triangles) on ten non-full pedigrees, and xPedPhase (blue triangles) and iBDD (black

diamonds) on the corresponding full pedigrees, respectively; each pedigree is associated with 100

simulated genotype datasets.

the non-full datasets, by xPedPhase on the full datasets, and by iBDD on the full
datasets. They are connected sequentially using red, blue, and green arrows. From
these arrows, one can see the general tendency of improved performance. In terms
of breakpoint recovery, iBDD performance was not significantly different from xPe-
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dPhase on the full datasets — slightly better recall versus slightly worse precision,
iBDD performed better than iLinker on the non-full datasets, and non-surprisingly
breakpoint recoveries on the full datasets are better than on the corresponding non-
full datasets. Note that on the full datasets, iBDD and xPedPhase are expected to
perform no differently, since they essentially use the same haplotyping algorithm;
yet the slight difference we have seen is perhaps due to different implementation.

Besides rule-based haplotyping methods, we have also tried to make compar-
isons with likelihood-based haplotyping algorithms including Haploview [43], fast-
PHASE [6], and SuperLink [15]. Unfortunately, for the most recent versions of all
three programs, Haploview and SuperLink did not produce the complete haplotype
for all pedigree members, while fastPHASE did not seem to follow the pedigree
structure, resulting in haplotyping solutions that break the Mendelian rules of in-
heritance. Consequently we do not have results on this comparison to present here.

4.3. Possible reasons for low breakpoint recovery

The Results section shows that the iBDD haplotype allele sharing recovery is al-
most perfect, but the breakpoint recovery is not. Fig. 4 shows that for each pair of a
full and the corresponding non-full pedigrees, iBDD performed much better on the
datasets associated with the full pedigree; the difference on average is 0.1324 (or
16.0%) in precision and 0.1274 (or 14.8%) in recall. This suggests that the non-full
pedigree structure seems a major reason for low breakpoint recovery. Theoretically,
in the face of non-full pedigree structure where some founder members are not geno-
typed, the constraints derived from them are only a small subset (less than 50%)
of the constraints derived from that member if the member is genotyped. Though
there are no parental source (PS) variables defined for ungenotyped founders, this
could lead to a much larger solution space compared to the solution space associ-
ated with the corresponding full pedigree; furthermore, many of these additional
solutions may be farther away from the true haplotyping solution.

4.4. High haplotype allele sharing recovery

While pedigree structure has a major impact on breakpoint recovery, fortunately,
as we showed in the Results section, it has relatively minor effects to the haplotype
allele sharing. Our comparative study shows that the IBD/IBS sharing recovery
difference is only 0.0069/0.0020, or 0.7%/0.2%. One possible reason is that the
haplotype allele sharing is the same for many distinct haplotyping solutions, and
consequently more robust against the uncertainties arising from phase inference.
This phenomenon also suggests that the use of this more robust haplotype allele
sharing directly in genetic linkage and association studies may resolve the issue of
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phase ambiguities, which has been previously observed [8, 10, 16, 35, 44, 45].

4.5. Use of haplotype allele sharing in genetic linkage

Our simulation study shows that for each simulated dataset, trillions of haplotyping
solutions give rise to only a few close, though distinct, haplotype allele IBD (and
IBS) sharings, most of which are very close to the simulation sharing.

We have access to the real genotype data associated with pedigree No. 1, which
was used for the linkage analysis of a family disease [20] (data not to be released). We
ran iBDD on this dataset for all haplotyping solutions and for all distinct haplotype
allele IBD sharings. Since member M is the diseased founder, we are interested in
the two clusters of pedigree members who share a haplotype allele with M. There are
4096 distinct haplotype allele IBD sharings found (for 258 haplotyping solutions).
These sharings differ slightly towards the tail of the chromosome, and they all point
to two chromosomal regions — 19.62–20.87Mbps (7 SNPs) and 22.48–29.57Mbps
(68 SNPs) — that are shared exclusively by all 9 diseased members including the
diseased founder M. Surprisingly, the LOD score approach [13] does not detect
significant linkage. In this sense, the beauty of our iBDD program — its ability
to determine the explicit sharing of each haplotype allele — is confirmed, while
the traditional LOD score approaches for linkage analysis is not really effective, in
particular when the pedigree is small.

5. Conclusions

We presented an efficient O(m3n3)-time whole genome haplotyping algorithm for a
pedigree genotype dataset to minimize the number of zero-recombination haplotype
blocks, where n is the size of the pedigree and m is the number of SNPs, and the
pedigree can contain ungenotyped founders. With or without explicitly enumerating
all the haplotyping solutions, our iBDD program determines all distinct haplotype
allele IBD sharings among the pedigree members. Extensive simulation experiments
supported that iBDD is able to return all these sharings for downstream genome-
wide linkage and association studies. It would be interesting to develop a similar
score as the LOD score in Merlin, such that the score incorporates all distinct
haplotype allele sharings and their associated number of haplotype configurations.
The new score landscape will be more useful in linkage analysis.
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