combinatorics 001 handout

k-sequence of n-set

a.k.a. $ordered\ k$ -list $with\ repetition$

- def'n: ordered arrangement (a_1, a_2, \ldots, a_k) of elements of *n*-set
- e.g. all 3-sequences of $\{a, b, c, d, e\}$?

(how many? 125)

$$(a, a, a)$$
 (a, a, b) (a, a, c) (a, a, d) (a, a, e) (a, b, a) ... (e, e, e)

• number of k-sequences of n-set is . . .

 n^k

- -n choices for each a_j
- product rule
- $-n \times n \times \ldots \times n = n^k$

k-permutation of n-set

a.k.a. ordered k-list

- \bullet def'n: k-sequence with no repetition
- e.g. all 3-permutations of $\{1, 2, 3, 4, 5\}$?

(how many? 60)

$$(1,2,3)$$
 $(1,2,4)$ $(1,2,5)$ $(1,3,2)$ $(1,3,4)$ $(1,3,5)$ $(1,4,2)$... $(5,4,3)$

- number of k-permutations of n-set is . . .
- P(n,k) = n!/(n-k)!
 - -n-j choices for each a_j
 - product rule
 - $-n \times (n-1) \times \ldots \times (n-(k-1)) = (n!)/(n-k)!$

a.k.a. k-combination with repetition

• def'n: unordered collection $\{a_1, a_2, \dots, a_k\}$ of elements of *n*-set

• e.g. all 3-multisets of
$$\{a, b, c, d, e\}$$
? (how many? 35)

$$\{a, a, a\} \{a, a, b\} \{a, a, c\} \{a, a, d\} \{a, a, e\} \{a, b, b\} \dots \{e, e, e\}$$

- number of k-multisets of n-set is ... C(k+n-1,k)
 - represent k-multiset with k marks and n-1 dividers
 - from k + n 1 positions, choose positions of k marks

k-subset of n-set

a.k.a. k-combination

- def'n: k-multiset with no repetition
- e.g. all 3-subsets of $\{1, 2, 3, 4, 5\}$? (how many? 10)

$$\{1,2,3\}$$
 $\{1,2,4\}$ $\{1,2,5\}$ $\{1,3,4\}$ $\{1,3,5\}$ $\{1,4,5\}$... $\{3,4,5\}$

- number of k-subsets of n-set is . . . $C(n,k) = \binom{n}{k} = \frac{n!}{k!(n-k)!}$
 - taking all k-permutations of all k-subsets yields each k-permutation exactly once, so

$$-C(n,k) = P(n,k)/(k!) = \frac{n!}{k!(n-k)!}$$