Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

Three-Head Neural Network Architecture for Monte Carlo Tree Search

Chao Gao, Martin Miiller, Ryan Hayward
University of Alberta
{cgao3, mmueller, hayward } @ualberta.ca

Abstract

AlphaGo Zero pioneered the concept of two-
head neural networks in Monte Carlo Tree Search
(MCTS), where the policy output is used for prior
action probability and the state-value estimate is
used for leaf node evaluation.

We propose a three-head neural net architecture
with policy, state- and action-value outputs, which
could lead to more efficient MCTS since neural
leaf estimate can still be back-propagated in tree
with delayed node expansion and evaluation. To
effectively train the newly introduced action-value
head on the same game dataset as for two-head
nets, we exploit the optimal relations between par-
ent and children nodes for data augmentation and
regularization. In our experiments for the game of
Hex, the action-value head learning achieves sim-
ilar error as the state-value prediction of a two-
head architecture. The resulting neural net mod-
els are then combined with the same Policy Value
MCTS (PV-MCTS) implementation. We show that,
due to more efficient use of neural net evalua-
tions, PV-MCTS with three-head neural nets con-
sistently performs better than the two-head ones,
significantly outplaying the state-of-the-art player
MoHex-CNN.

1 Introduction

Monte Carlo Tree Search (MCTS) [Coulom, 2006; Kocsis
and Szepesvdri, 2006; Browne et al., 2012] is a modern
heuristic search paradigm that has been applied to a large
number of sequential decision making problems. It has led to
spectacular progress in two-player games with large branch-
ing factors such as Go [Enzenberger et al., 2010; Silver et
al., 2016] and Hex [Arneson et al., 2010; Huang et al., 2013;
Gao et al., 2017].

MCTS grows a selective tree by concentrating on nodes
with better averaged estimations. Each search iteration con-
sists of four distinct phases: 1) The in-tree phase traverses
the current tree from the root until a leaf is reached. Child
nodes are selected by a function such as UCT [Kocsis and
Szepesvari, 2006], which balances exploration and exploita-
tion; 2) The expansion phase expands a leaf node, typically
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after its visit count has reached an expansion threshold; 3)
Leaf nodes are evaluated, for example by randomized roll-
outs; 4) Results are back-propagated in the tree. The leaf
evaluation result can be viewed as a “critic” which influences
later growth of the tree. While MCTS works without any
game-specific evaluation, its performance is often drastically
improved by incorporating domain knowledge [Gelly and Sil-
ver, 2007].

Deep neural networks [LeCun ef al., 2015] have been ap-
plied to a variety of sequential decision problems, includ-
ing single agent Atari games [Mnih et al., 2015], or two-
player games such as Go [Clark and Storkey, 2015; Tian
and Zhu, 2015; Maddison et al., 2015; Silver et al., 2016;
2017] or Hex [Gao et al., 2017; Anthony et al., 2017]. In
those works, the neural nets are served as an expressive func-
tion approximator that can provide high quality policy or
value outputs after well-training.

AlpahGo Zero [Silver et al., 2017] introduced a PV-MCTS
framework with a two-head neural net that gives policy and
state-value outputs, used respectively for prior probability
initialization and leaf node evaluation. However, one lim-
itation of two-head net is that it requires to always expand
the leaf nodes to obtain neural leaf evaluation. In contrast,
many MCTS programs expand a node only when its visit
count exceeds a positive threshold. Evaluating each node
by a neural network is computationally expensive. In Al-
phaGo Zero, despite running on special purpose TPU hard-
ware, asynchronous evaluation is still needed [Silver et al.,
2017].

Contributions: In this paper, we introduce a Three Head
Neural Network (3HNN) architecture for Monte Carlo Tree
Search. The main advantage brought by this architecture is
that the action-value can be immediately back-propagated to
the tree without expanding a node. To train 3HNN, we uti-
lize optimal minimax consistency between a parent state and
its successor states. Specifically, the observation that a losing
game state implies all after-states be winning (for the oppo-
nent) is used for augmenting training data for the action-value
head. The inconsistency between state- and action-value pre-
dictions is added to the loss function as a penalty.

We apply 3HNN to the game of Hex. We show that, us-
ing the proposed techniques, when trained on the same set of
expert games, the obtained three-head neural nets attain sim-
ilar policy and value prediction accuracies as the two-head
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Figure 1: Two-head architecture in PV-MCTS: The leaf node must
be expanded (a) with threshold 0, otherwise no neural net value es-
timation can be backed up (b). fg represents a two-head neural net
that each evaluation of state s yields a vector of move probabilities
p and state-value v. N (s) is the visit count of s.

ones. However, when combined with PV-MCTS, due to the
usage of action-value head in delayed node expansion, our
new programs with 3HNN consistently achieve better per-
formance than those using two-head (policy and state-value)
neural nets, significantly outperforming MoHex-CNN [Gao
et al., 2017] — the 2017 computer Olympiad champion on
13x13 Hex — without training on new game datasets.

The rest of the paper is organized as follows. In Section 2,
we describe our three-head neural net architecture for MCTS.
Section 3 discusses related work. We present experimental
results in Section 4, and conclude the paper in Section 5.

2 Three-Head Neural Net for Monte Carlo
Tree Search

In this section, we review the limitation of PV-MCTS with
two-head neural net, and then discuss how to effectively train
the three-head neural net on existing training data. The aim of
this paper to learn better neural nets that would lead to more
efficient MCTS, given fixed training games.

2.1 PV-MCTS with Delayed Node Expansion

In Policy Value Monte Carlo Tree Search (PV-MCTS), typ-
ically, each neural net evaluation is computed along with
node expansion. The move probabilities are saved to children
nodes, then used as prior probability in the selection phase
of MCTS. The state-value estimate is used to replace Monte
Carlo leaf evaluation. However, with a Two Head Neural Net
(2HNN), PV-MCTS is restricted to use expansion threshold
of 0, because otherwise there would be no neural value esti-
mation backed up. See Figure 1.

To address such an issue, we propose a three-head neural
net that outputs also a vector of action-values, illustrated in
Figure 2. When expanding a node s, s is evaluated by the
parameterized neural net, yielding three outputs: policy p, a
vector of next action-values q, and state-value v. The pol-
icy and action-value information are stored by newly created
children nodes. When the visit count N(s) is below expan-
sion threshold, the stored action-value can be backed up to
the tree.
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N(s) < threshold
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Figure 2: PV-MCTS with three-head neural net fp: The leaf node
be expanded with any threshold. The action-value estimate can be
backed up even if the leaf has not been expanded, because it was
stored there upon node creation.

It is apparent that, to have an efficient usage of neural net
evaluations, PV-MCTS with 2HNN can either 1) restrict the
expansion threshold to be 0, or 2) still use playout result when
the leaf node is below an expansion threshold ¢ > 1.

For case 1), suppose PV-MCTS-2HNN and PV-MCTS-
3HNN are allocated with the same amount of computation
time T on the same hardware. Let ¢ and ¢’ be respectively
the one simulation time cost for PV-MCTS-2HNN and PV-
MCTS-3HNN. Assuming negligible time overhead for the
extra action-head in 3HNN, then ¢/ < ¢t since PV-MCTS-
2HNN calls the neural net every simulation while PV-MCTS-
3HNN does not. Thus, the number of neural leaf estimates
received by PV-MCTS-3HNN is % — % more than that of
PV-MCTS-2HNN.

For case 2), a reasonable assumption is that PV-MCTS-
3HNN and PV-MCTS-2HNN will have equal computation
time for the same number of simulations, then we have the
following observation:

Proposition 1. Suppose the total number of simulations for
MCTS is T, expansion threshold is ( > 1, after the search
terminates, PV-MCTS-3HNN receives at least T — % more

neural leaf estimates than PV-MCTS-2HNN.

Proof. Tt is clear that the number of neural leaf estimates
received by PV-MCTS-3HNN is 7', since every simulation
will back up a leaf estimate of either state-value or action
value. For PV-MCTS-2HNN, let 7 be the number of internal
nodes after T simulations, L be the set of leaf nodes. The
number of neural leaf estimates used by PV-MCTS-2HNN
is thus 7, since neural net is called whenever there is an
expansion. Another observation is that n{ < T, because
T = ¢ + Yger, N(3), so 2 < L. Therefore, PV-MCTS-

3HNN uses at least 7 — L more neural leaf estimates than
PV-MCTS-2HNN. O

2.2 Training 3HNN

In the loss function described in [Silver et al., 2017], the state-
value head is trained by replaying each game backward and
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Figure 3: A game implies extra data via the AND constraint.

minimize the mean square error between the predicated val-
ues and observed game results. Combining policy loss and
L5 regularization, the loss function is expressed as:

L(fo; D) = Z
(s,a,z5)€D

(w(zs —u(s))*~log p(als) +c| 9||2>
(1

Here, 0 < w < 1is a weighting factor that used to control the
relative weight of the value loss. c is a constant for the level
of Ly regularization. (s,a) is a state-action pair from dataset
D, and z; is the game result with respect to s.

It seems much more data intensive to train a three-head
neural net, since all action-values must be available. We show
that by using the consistency between a parent and a child
node in minimax, we can augment large number of action-
values to train 3HNN on the same training data as for 2HNN.

Assume a game has only two outcomes, either first player
win or second player win. Then, for any given game state s,
the following relations hold:

e The OR constraint: if s is winning, then at least one
action leads to a losing state for the opponent.

e The AND constraint: if s is losing, then all actions lead
to a winning state for the opponent.

Let dataset D be a collection of games obtained from some
strong players. Under ideal condition, if the games in D were
played by perfect players, for each game g € D, g implies a
tree rather than a single trajectory. See Figure 3.

Reflecting in the loss function, we introduce the following
loss term:

Lo(fe; D)= )

(s,a,z5)€D

max(—zs, 0)

a’€A(s)

@)

where A(s) is the action set at s.

A two-player alternate-turn zero-sum game can be for-
mulated as an Alternating Markov Game (AMG) [Littman,
1996]. For an AMG, suppose the value function v(s), ¢(s, a)
are with respect to the player to play at s or (s, a). The opti-
mal Bellman equation can be expressed as:

v*(s) = —ming*(s,a),s € S, 3)

Here, v* and ¢* are the optimal state-value and action-value
functions. The above optimal Bellman equation expresses the
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consistency of state and action values under an optimal pol-
icy.

Since in our three-head neural net, there are both state- and
action-value outputs, to force the state and action values to
satisfy the optimal consistency, we augment our loss function
by adding the optimal Bellman error as a quadratic penalty.

Lp(fo;D) = Z (1r1(1li/nq(s7a’)—HJ(S))2 4)

(s,a,zs)€ED

Combining the usual state-, action-value and policy losses,
we propose the following loss function:

LD = Y <w(§us—v@»2

(s,a,25)

+ 5 a0 ®)

—logp(als) + c|9||2> +wLg +wLp

Note that we assume the game is with deterministic tran-
sition, which means ¢(s, a) is equivalent to v(s’) if taking a
at s leads to s’. w and c¢ are weighting parameters as in (1),
v(s), q(s,a) and p(a|s) are predictions from 3HNN fy.

3 Related Work

Monte Carlo Tree Search has been an active research domain
after the seminal work by [Coulom, 2006] for Computer Go.
[Kocsis and Szepesvari, 2006] introduces UCT search which
uses upper confidence bound in the selection phase, striking
a balance between exploration and exploitation.

Deep neural nets can provide strong domain knowledge.
The PV-MCTS algorithm [Silver et al., 2016; 2017] uses a
deep policy net to set prior move probabilities, and a deep
value net for estimating the value of leaf nodes in the search.
The resulting AlphaGo program [Silver e al., 2016] convinc-
ingly beat top human professional players [Silver et al., 2016]
in 19x19 Go. The updated version AlphaGo Zero [Silver et
al., 2017] adopts essentially the same search framework, in
which the Monte Carlo rollout was totally abandoned. The
better performance is much due to better quality of neural
nets obtained by an iterated training style that optimizes the
neural net based on data generated by PV-MCTS with pre-
vious neural net models. The success of PV-MCTS in Go
relies on advanced hardware TPU [Jouppi and al, 2017] for
fast neural net inference. It is still a research question how to
further improve the efficiency of PV-MCTS on regular hard-
ware, and obtain large number of high quality expert games
with limited computation resources.

[Nash, 1952] proved that the game theoretic result of Hex
is the first player win, but explicit winning strategy is un-
known. Hex has been a challenging domain in Artificial
Intelligence research since Shannon’s seminal work [Shan-
non, 1953]. Similar to Go, the problem of lacking re-
liable hard-crafted evaluation function was sidestepped by
Monte Carlo tree search [Arneson et al., 2010; Huang et
al., 2013]. Deep neural nets that learn on expert MCTS
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games have also been applied to Hex [Gao er al., 2017;
Anthony et al., 2017]. MoHex-CNN [Gao ef al., 2017] was
the state-of-the-art computer player on 13x13 Hex, winning
against MoHex 2.0 [Huang er al., 2013; Pawlewicz er al.,
2015].

4 Experiments

In this section, we present experimental results on 13x13
Hex, the largest board size that has been adopted in computer
program competitions. We first present the neural net train-
ing results, then show its performance when combined with
MCTS. We give detailed comparisons between two and three
heads architectures trained using similar loss functions. Fi-
nally, we present results after strengthening the neural critic
by considering both state- and action- value estimates.

4.1 Setup

Dataset

We use the publicly available training dataset of MoHex-
CNN [Gao et al., 2017], generated from MoHex 2.0 self-
play', containing about 106 distinct state-action-value exam-
ples. Each game is an alternating sequence of black and white
moves, along with game result.

Neural Net Design

We adopt a thin residual neural net [He er al., 2016a] that
has 10 blocks, each block with two convolution layers, each
layer with 32 3x3 filters. We use pre-activation [He et al.,
2016b] in each residual block which applies batch normaliza-
tion [loffe and Szegedy, 2015] and ReLU before convolution.
The input features have 4 binary planes that contain only ba-
sic board state information, i.e., black stones, white stones,
empty points, and toplay plane. In Hex, each player owns
two of the board’s four sides: to indicate this, we pad each
board’s side with a row of stones of the appropriate color.
See Figure 4 for detailed neural network design.

By contrast, [Gao er al., 2017] used 9 feature planes, e.g.
adding precomputed small virtual connections called bridges,
which improved net accuracy. In this paper, rather than adopt
game-specific features, we take a zero-knowledge approach,
using only basic features, and relying on the deep neural net
to extract more meaningful features.

Implementation

The neural nets are implemented with Tensorflow, trained by
Adam optimizer [Kingma and Ba, 2014] using default learn-
ing rate with mini-batch size of 128 for 100 epochs. We exe-
cute experiments on the same Intel i7-6700 CPU computer
with a single GTX 1080 GPU and 32 GB RAM. For loss
function (5), we set Ly regularization constant ¢ to 10~°, and
value loss weight w to 0.01.

4.2 Prediction Accuracies

As in [Gao et al., 2017], the dataset is partitioned into train-
ing and testing sets, where examples from testing set do not

!The trained neural net models of MoHex-CNN and dataset
are publicly available https://drive.google.com/drive/folders/
18MdnvMItU702sEJDIbmk_ZzUhZG7yDKO9.
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Figure 4: Neural net architecture. Each residual block repeats twice
batch normalization, ReLU, convolution using 32 3 x 3 filters, then
adds up original input before leaving the block.
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Figure 5: Mean Square Errors of two and three heads residual nets.

appear in the training set. The testing set contains about 10°
positions.

To show the learning progress of the neural nets, at the end
of each epoch, model parameters are saved and evaluated on
the test data. We then plot the move prediction accuracies and
mean square errors (MSEs) in Figures 5 and 6. The possible
range of MSE is [0, 4.0].

We also train a 2HNN with identical residual architecture
as our 3HNN except that it has only policy and state-value
heads. This can be emulated by ignoring the action-value
head in Figure 4, optimized with loss function (1).

Figures 5 (left) shows that the MSEs from the newly intro-
duced action-value heads in 3HNN achieved similar accura-
cies with the state-value head of 2HNN. As learning epoch
increases, both state- and action-value heads in 3HNN appear
to have lower variances than 2HNN, presumably because of
the quadratic penalty term in function (5) helped to regularize
3HNN. Although 3HNN did not produce significantly better
predictions than 2HNN, it is advantageous in the sense that
it gives an additional vector of all action-values with a single
neural net forward pass.

Figure 6 contains the comparison of the move prediction
accuracies. The 2HNN and 3HNN have almost indistinguish-
able learning curves, much because they are trained on the
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Figure 6: MSEs (left) and top one move prediction accuracies (right)
of two and three heads residual nets.

same dataset with identical policy loss.
The training times of two and three heads neural nets are
similar, all within 20 hours on the GTX1080 machine.

4.3 Evaluating the Integration in PV-MCTS

In this section, we present experimental comparisons between
two and three heads nets in the same search framework. We
build our programs upon code base MoHex 2.0 [Huang et
al., 2013; Pawlewicz et al., 2015; Enzenberger et al., 2010],
and use MoHex-CNN [Gao et al., 2017] as a benchmark to
measure the relative strength of the new programs. We list
the differences between the new programs, MoHex 2.0 and
MoHex-CNN in below:

e We use in-tree formula,

score(s,a) = (1 — w) (Q(S’ a) + cpy | 2 (s))

N(s,a)

p(s;a)
+wR(s,a) + cpp NG.a) 11
from MoHex 2.0, where the prior probability p(s, a) in
MoHex 2.0 is from pattern weights. For other programs,
p(s,a) is computed by different neural nets. R(s,a) is
the RAVE [Gelly and Silver, 2011] value. We leave pa-
rameters w, ¢, Cpp Unchanged. Therefore, the relative
performance of those programs depends on the qual-
ity of neural nets and the efficiency in using them. In
previous report [Gao er al., 2017], with those default
parameters, this formula achieved better results than a
PUCT [Rosin, 2011] variant.

e Leaf node evaluation. Default expansion threshold in
MoHex 2.0’s code base is 10, hence before the leaf
node’s visit count reaches expansion threshold, PV-
MCTS-2HNN still uses playout result while PV-MCTS-
3HNN backs up previously stored action-value. MoHex-
CNN always uses playout result, since it does not have
a value net. To be consistent with the code base of
MoHex, before backing up, neural value estimates in
range [—1,+1] are linearly scaled to range [0, 1]. For
all the programs, even when playout result is not back-
propagated in tree, to keep consistent RAVE updates,
playout was always conducted.
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Figure 7: Winrates against MoHex-CNN of PV-MCTS-2H and PV-
MCTS-3H. All programs use the same 1000 simulations per move.
PV-MCTS-2H uses playout results when there is no node expan-
sion. Notice that after epochs 70 and 60, PV-MCTS-3HNN and PV-
MCTS-2HH’s performance decreased, possibly due to over-fitting
of the neural nets: Figures 5 and 6 show that around epoch 70, the
value heads of 3HNN generally achieve smaller errors than epochs
around 80 and 90.

Since we implement PV-MCTS-2HNN and PV-MCTS-
3HNN upon MoHex, we call the new programs MoHex-
2HNN and MoHex-3HNN. The same as MoHex-CNN [Gao
et al., 2017], at each node expansion, the new programs eval-
uate the neural net in parallel with MoHex’s children prior
pruning. Because of this implementation, the computation
overhead with neural nets become small. We note that on the
GTX1080 machine, each forward pass costs about 0.001 sec-
onds for both two and three heads neural nets, MoHex-CNN’s
neural net model is shallower and generally 0.0001 seconds
faster.

We sample 10 neural net models at epochs 10,20,. . .,100.
Each neural net model is then combined with MoHex’s
MCTS and played against MoHex-CNN with the same 1000
simulations per move. Following a practice in the litera-
ture [Gao et al., 2017; Huang et al., 2013], the matches
are played by iterating all openings (Symmetric cells were
removed). Each match between two players consists of 5
rounds, in each round each player plays an opening twice as
black and white, therefore a round consists of 170 games in
total. No swap rule was applied.

Figure 7 shows the results, which indicate that PV-MCTS-
3H is clearly better than PV-MCTS-2H under this set-
ting. Both PV-MCTS-3H and PV-MCTS-2H achieve win-
rates larger than 50% against MoHex-CNN, presumably be-
cause MoHex-CNN only uses neural net as prior knowledge
during in-tree phase. As explained by Proposition 1, given
that neural net estimates more accurate leaf value than ran-
dom playout, PV-MCTS-3H is better than PV-MCTS-2H, be-
cause it always uses neural net value estimation as the critic
while PV-MCTS-2H has to use playout result when the leaf
is below expansion threshold.

We then compare PV-MCTS-2H to PV-MCTS-3H using
expansion threshold of 0. To have a fair comparison, we give
both programs the same search time 10s per move. The re-
sults are summarized in Table 1. As a reference, we also
present result from PV-MCTS-2H with the default expansion
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Player Player as  Player as  Overall

black white winrate

MoHex-3HNN 76.5% 70.6% 73.5%
MoHex-2HNN threshold 0 65.9% 57.6% 61.8%
MoHex-2HNN default threshold ~ 69.4% 56.5% 62.9%

Table 1: Winrates against Mohex-CNN with the same time per
move. For best performance, MoHex-3HNN and MoHex-2HNN re-
spectively use the neural net models at epochs 70 and 60.

Opponent Opponent Opponent  Overall
as black as white winrate
MoHex-3HNN  48.2% 68.2% 58.2%

Table 2: Winrates of MoHex-3HNN® against MoHex-3HNN with
the same time 10s per move. Both use the neural net models at
epoch 70.

threshold.

Consistent with Figure 7, results in Table 1 show that
MoHex-3HNN still achieves the best performance, signifi-
cantly outplaying MoHex-CNN. We found that with the de-
fault expansion threshold, on average MoHex-3HNN took 0.3
milliseconds to execute one simulation. MoHex-2HNN with
expansion threshold 0 used 1.8 milliseconds per simulation,
about 6 times slower, which explains MoHex-3HNN’s better
performance given the same time per move.

For direct comparison, under the same setting using 10s
per move, MoHex-3HNN’s winrates against MoHex-2HNN
using 0 and default expand thresholds are respectively 64.1%
and 70.6%; MoHex-3HNN won 82.4% games against Mo-
Hex 2.0.

4.4 Strengthen the Leaf Estimate

Different from PV-MCTS-2H, when expanding a node s,
PV-MCTS-3H receives an additional vector of action-values.
Rather than solely using the state-value head, a natural ques-
tion is whether the leaf estimate can be improved by consid-
ering the action-values?

Our first attempt is combining the minimum action-values
and state-value at s when they are both available, by the fol-
lowing formula:

° 1 1 .

v(8) = 5o(s) + 5(~ min gls.a) ©)
Same as the previous practice, MoHex-3HNN® adopts all the
default parameters from MoHex 2.0, but combines the critic
by (6) when expanding a node. Table 2 contains the re-
sults of MoHex-3HNN® against the original MoHex-3HNN,
which shows MoHex-3HNN® slightly outplayed MoHex-
3HNN; however, we found its winrate against MoHex-CNN
dropped to 68.8%.

The second approach is to utilize the OR constraint, i.e.,
one losing child is enough to prove that the parent state s
is winning. This means, if there are £k > 1 action-values
close to —1, the confidence that v*(s) = +1 would be
high, since this can only be denied by the fact that all &
action-value predications are “wrong”. More precisely, we
may say an action-value prediction from q is correct when
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k=3 k=4

47.6% 52.4%

k=5
54.7%

k=6
54.7%

Opponent

MoHex-3HNN

Table 3: Different winrates of MoHex-3HNN* against MoHex-
3HNN by varying k. Both use the same neural net model at epoch
70 and are allocated with the same 10s per move.

q(s,a) < 6 A q*(s,a) = —1. Suppose there are k action-
values below ¢, and each of them is correct with probability
P, then the chance that v*(s) = +1is 1 — (1 — p)*, implying
a desirable property for high-confidence estimations. Setting
0 = —0.5, our second attempt is to let MoHex-3HNN replace
v(s) with 1(1 4 v(s)) when at least k action-values from q
are correct. We name the new program as Mohex-3HNN*
and list the playing results against MoHex-3HNN in Table 3
varying k € {3,4,5,6}.

Results in Table 3 show that this also slightly beat MoHex-
3HNN when k > 4. As those modifications are based on the
assumption that value predictions from neural nets are with
small error with respect to optimal, the usefulness of them
may increase when the training data become more accurate.

5 Conclusions and Future Work

We have described a new three-head neural net architecture
for Monte Carlo Tree Search. Learning an additional g-value
improves the efficiency of MCTS by making action-values
available to the search. The action head can be trained with-
out extra training data by exploiting minimax consistency be-
tween a parent and its children in AND nodes. The action-
value head achieves similarly high prediction accuracy as the
state-value head. We evaluated several algorithms based on
this approach in the game of Hex. Our new programs are able
to significantly outplay the previous state-of-art Hex player
MoHex-CNN on 13x 13 Hex.

However, MoHex-3HNN was trained on a fixed dataset.
Previous work has shown that iteratively training the neural
net on stronger games generated by improved PV-MCTS is an
viable approach for continually improving the playing perfor-
mance [Silver ef al., 2017; Anthony et al., 2017]. So far, we
have only investigated the advantage of a three-head neural
net for one iteration of such an iterative procedure. To further
improve the playing performance, a topic for future work is
building a closed loop system, which continues to improve
MoHex-3HNN by learning from self-play games generated
from using recent neural network parameters. The improved
efficiency of the search would hopefully lead to faster conver-
gence.
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