Available online at www.sciencedirect.com

: SCIENCE@DIRECT@ R{)SI'JCLI}EESE
o\ . MATHEMATICS
ELSEVIER Discrete Applied Mathematics 143 (2004) 307-311
www.elsevier.com/locate/dam
Notes

A note on tolerance graph recognition’™
Ryan B. Hayward?, Ron Shamir®

2 Department of Computing Science, University of Alberta, Edmonton, Alta., Canada T6G 2ES8
YSchool of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel

Received 23 May 2002; received in revised form 23 May 2003; accepted 27 August 2003

Abstract

A graph G=(V,E) is a tolerance graph if there is a set /={I, | v € V'} of closed real intervals and a set t={t, |[v € V'} of
positive real numbers such that (x, y) € E < |, NI,| > min{ty, 7, }. We show that every tolerance graph has a polynomial
size integer representation. It follows that tolerance graph recognition is in NP.
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1. Overview

A graph G=(V,E) is a tolerance graph if there is a set I ={I, |v€ V'} of closed real intervals and a set t={7, |veE V'}
of positive real numbers called tolerances such that

(x,y)€E & | NI, = min{t,, 1y} ()

Any such triple (V,1,7) is a tolerance representation for G. A tolerance t, of a tolerance representation is unbounded if
7, > |I;|. Notice that if a tolerance 7, is unbounded, 7, can have any value greater than |/,|, since for any other vertex
w, |L, N 1,| = min{z,, 7, } if and only if |/, N ],| = 7,.. Each interval /, of a tolerance representation is represented by its
ordered pair of endpoints [p, , p; ], where p, and p,; denote the respective left and right endpoints; thus p, < p, and
|1,| = pi — py . For each v in ¥ with bounded tolerance, we refer to p;~ = p; + 1, and p;™ = p; — 1, as the respective
left and right tolerance points of v.

Tolerance graphs were introduced by Golumbic and Monma [8] as a generalization of interval graphs; see also [9].
While much is known about tolerance graphs (see the monograph by Golumbic and Trenk [10] and the bibliography by
Golumbic [7]), the complexity of recognizing them is an open problem; in fact, even the complexity of verifying that a
graph is a tolerance graph has been an open problem, as it was not known whether every tolerance graph has a polynomial
size tolerance representation. In this paper we show that this is indeed the case, and so tolerance graph recognition is
in NP.

Our method also applies to the related classes of bounded tolerance graphs [1,5], in which all tolerances are bounded, and
(bounded) bi-tolerance graphs [2], in which left and right endpoint tolerances are specified separately, so the recognition
of these graph classes is also in NP.

Roughly, our argument is that

e for any tolerance representation of a graph with n vertices, the adjacency conditions which define a tolerance represen-
tation are completely determined by two linear orders defined in terms of / and 7, namely the linear orders consisting
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of (i) the 2n interval endpoints together with the 2n (or fewer) tolerant points, and (ii) the bounded tolerances and the
lengths of all intervals with unbounded tolerance;

e given these linear orders, a system of inequalities (SI) can be formulated to which any feasible solution yields a
tolerance representation of G;

e there is some feasible non-negative integer SI solution for which the size of the integers needed to represent the intervals
and tolerances is polynomial in the size of G.

The details follow.

2. From tolerance representation to linear orders

We begin by identifying the essential order information encoded in a tolerance representation.

Given a multiset M = {x1,x2,...,x;} of real numbers, a linear order (or sorting) ¥ (M) of M is an ordering Xp()'1Xp(2)
72 ... Xpa—1)ri—1Xp) of the elements of M, where for each j, the relation 7; is either equality (=) or less-than (<). Given
a tolerance representation with vertex set V, define V7 and Vy as the vertex subsets whose tolerances are, respectively,
bounded and unbounded.

Lemma 1. For any tolerance representation R = (V,1,1), the set of pairs of vertices x,y with |I, N 1,| = min{ty,7,} is
determined by the partition (Vr,Vy) of V together with the linear orders of the two multisets

O(R)={p,,p lve W}y U{p,.pl pi . pi lveVr}  and

QZ(R) = {IIzl | veE VU} U {Tu | veE VT}

Proof. There are six cases to consider, depending on the linear order of the four endpoints of /. and /,. By relabelling x
and y if necessary, we may assume that p; < p; and that py < py if p; = p,, and so there are only three cases to
consider. Whichever of these cases occurs can be determined from Q. In one case, p; < p, , so |l:N1,|=0 < min{ty,7,}.
In another case, p; < p, < py < pi, so [t N1,|=]|l|, and whether |/,| > min{t,,7,} can be determined from Q»,
since the inequality holds if and only if y€ V7, or y€Vy and |I;] > t.. In the last case, p;y < p; < pi < py, s0
|LN1,| = pl — p,, and p! — p, =min{t.,1,} < p, + min{t.,1,} < pi & p;~ < p! or p, < pi', and whether
the last condition holds can be determined from Q;. [J

3. Expansive representations

We next present some simplifying assumptions which can be made about tolerance representations.

Call a tolerance representation integer (respectively, rational) if all endpoints and tolerances are integer (rational).
Call a tolerance representation expansive if all endpoints and tolerance points are distinct and all bounded tolerances and
unbounded interval lengths are distinct (namely, the multisets Q1(V,/,7) and O»(V,1,7) are each sets). Call two tolerance
representations R and R’ order-equivalent if they preserve order relations among all endpoints and tolerance points and
among all bounded tolerances and unbounded interval lengths, namely, if Z(Q1(R)) = ZL(O1(R")) and Z(0x(R)) =

Z(0x(R")).
Lemma 2. FEvery tolerance graph has an expansive integer representation.

Proof. By making small perturbations to endpoints and tolerances, any tolerance representation can be transformed into
a tolerance representation R of the same graph, such that in R all endpoints and tolerance points are distinct and all
tolerances are distinct (see [10] or [12] for a detailed proof of this result). Let ¢ be the smallest difference between
consecutive but non-equal terms in £(Q1(R)) or ZL(02(R)), and let ¢, and ¢, be any equal elements in Z(02(R)) (so
each of 1, is either a bounded tolerance or the length of an interval with unbounded tolerance). Let R’ be the tolerance
representation obtained from R as follows: if ¢ is a tolerance Ty, replace 7, with 1, — ¢/2; if #, is the length |I| of the
interval Iy, replace this interval’s right endpoint p§ with p! + ¢/2. Tt is easy to check that R’ represents the same graph
as R, that the elements of Q)(R’) are all distinct (as are the elements of Q;(R)), and that the number of distinct elements
of O»(R’) is one more than the number of distinct elements of O»(R), since f, is now different from all other elements.
Thus repeating this argument yields an expansive representation.
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Once we have an expansive representation, we can obtain an order-equivalent expansive rational representation by
repeatedly defining ¢ as above, selecting any non-rational endpoint or tolerance, and replacing it with a rational number
that differs from the non-rational number by less than ¢/2. Once we have an expansive rational representation, we can
obtain an order-equivalent integer expansive representation by mulitplying all endpoint and tolerance values by the least
common multiple of all denominators. [

4. From linear orders to a system of inequalities

We now show how the partition (7, V) and the linear orders Q;(R), O>(R) which encode the essential information of
a tolerance representation R can be described with a system of inequalities.

Given an expansive integer tolerance representation R = (V,1,7), let n,n, represent |V|,|Vr|, respectively, and let S(R)
be the system of equations (in fact, exactly one equation) and strict inequalities whose 2n + n, variables correspond to
the 2n interval endpoints and 7, bounded tolerances, and whose relations are

(i) the 2n + 2ny relations which establish the linear order of Q;(/,7) and set the minimum point in Q;(/,7) to 0,
(ii) the n — 1 relations which establish the linear order of Q»(/, 7).

Observe that since p;™*, p; *,|I,| can be expressed in terms of p;, p; ,7s,, we do not need to introduce new variables
for p*, p, *,|I,|. Also, observe that since R is a tolerance representation and expansive, the minimum value in Q»(R) is
positive. Also, observe that S(R) implicitly encodes the partition (V7, Vi), since a vertex v is in V7 if and only if the 7,
is one of the elements of O»(R).

Using S(R), we can establish our main result.

Theorem 3. Every tolerance graph with n vertices has a non-negative integer tolerance representation R in which the
maximum integer is at most 1+ 5n2%".

Proof. Let G be a tolerance graph. By Lemma 2, G has an expansive integer representation R. Since shifting all endpoints
by the same amount does not change any order information, we may assume that the smallest endpoint of R has value 0.

Let S’(R) be the system of equalities and inequalities obtained from S(R) by replacing each strict inequality (<) with a
non-strict inequality (<) with a gap of at least 1 (namely, each relation x; < x; is replaced with the relation x; +1 < x).
Any integer solution to S is a solution to S’, so S’ has an integer solution (namely, R). Let R’ be any integer solution to
S’. Then R’ is a tolerance representation of some graph H (this can be shown by letting the values of R’ correspond to
interval endpoints and tolerance lengths in exactly the same way that R was obtained); since R’ is order-equivalent to R,
H =G by Lemma 1.

Following standard linear programming techniques, S’ can be expressed as a matrix equation

Ax=b x=0, (2)
where
e the first 2n variables xi,...,x,, correspond to the interval endpoints p;, pi,..., pn, Py,
o the next n, variables x2,41,...,X2,1s, correspond to the bounded tolerances 7i,..., 7y,
e the next 2n + 2n, — 1 (slack) variables X2y4n,+1...,X4nt3n,—1 correspond to the 2n + 2n, — 1 gaps which determine
L(0i(1, 1)),
e the next n — 1 (slack) variables X4,13n,,...,X5143s,—2 correspond to the n — 1 gaps which determine Z(01(R)),

and

e the first 2n + 2n, rows of A correspond to the relations which determine #(Qi(R)) and set the minimum value of
Oi1(R) to 0,
e the next n — 1 rows of 4 correspond to the relations which determine Z(Q>(R)).

Since S’ has a feasible (rational) solution, (2) has a feasible solution, and so by a fundamental theorem of linear inequalities
(see Theorem 3.4 in [3] or Theorem 7.1 in [14]), S’ has a basic feasible solution (that is, a feasible solution in which
at most 3n + 2n, — 1 of the variables are non-zero). Also, 4 has rank 3n + 2n, — 1, since the submatrix induced by the
columns indexing the 3n + 2n, — 2 slack variables and the variable corresponding to the minimum value of Q; clearly has
full rank. Thus any submatrix B of A corresponding to such a basis is invertible, and xs=B~'b is a basic feasible solution.
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By Cramer’s rule [4], each entry of B~' can be written as a ratio whose absolute value is of the form |det B;|/|det B|,
where Bj; is the submatrix of B obtained by deleting column ;j and row k.

Now let x3 and b’ be the vectors obtained by multiplying each entry of xz and b, respectively, by the scaling factor
s = |det B|. Notice that xj is a basic feasible solution to

Ax=b" x>0 (3)

and that all entries of xj are integers. Also, the tolerance representations given by xs and xj are clearly order-equivalent,
since one is obtained from the other by multiplicative scaling of endpoints, tolerance points, and tolerances (this can also
be seen by noting that the only difference between (2) and (3) is to change the minimum gap size from 1 to s).

The maximum value of a variable x} of xj is at most (3n + 2n, — 1)max;{|det By |}, since each entry of b is in
{0,£1}. Since each relation of O; is a comparison between two expressions of the form pf(:tp,), and each relation of
0, is a comparison between two expressions of the form 7; or p; — p; , each row of B has at most four non-zero entries,

and those entries are each +1 or —1. Hadamard’s inequality [11] states that for a 0,£1 m X m matrix Z

m 1/2
detz <] (Z) .

j=1 \k=1

It follows that

3n+2n,—1 3n+2n,—1 12 3n+2n,—2
2 1/2 3n+2n,—2
ldetBy| <[] > by | < ] 4V=2vm
p=Lp#j q=1.q97#k J=1

and so the maximum value of a variable of xj is at most (3n + 2n, — 2)23 22 < 5p2%",

Since the tolerance representation under construction is based on S, to this point values have been assigned for all
interval endpoints and all bounded tolerances. Finally, for every vertex which has a tolerance which did not appear in
0>(R), assign the value of 14+ M to this vertex’s tolerance, where M is the maximum integer used so far. This assignment
completes the construction of the desired tolerance representation by ensuring that every vertex which is supposed to has
an unbounded tolerance. Thus the theorem holds. [

Corollary 4. Any n-vertex tolerance graph has an O(n?)-bit tolerance representation, and verifying that such a repre-
sentation represents the given graph takes only O(n®) time. Thus the tolerance graph recognition problem (“given a
graph, is it a tolerance graph?”) is in NP.

Proof. The tolerance representation constructed in Theorem 3 consists of 3z non-negative integers representing 2n end-
points and # tolerances; since the maximum integer requires O(lg(1 4 51n2°")) = O(n) bits, the tolerance representation
requires a total of O(n?) bits.

To show that a decision problem is in the class NP, it is sufficient to show that there is a polynomial time algorithm
which verifies all yes-instances; see for example Chapter 2 in [6], Proposition 9.1 in [13], or Definition 7.16 in [15].

Obviously, any tolerance representation (7,1, 7) of a tolerance graph G = (V, E) with n vertices is a certificate that G is
a tolerance graph, since to verify that G is a tolerance graph it suffices to check that (1) holds for each pair of vertices.
Moreover, this verification takes only O(sn?) integer addition, subtraction, and comparison operations, and these operations
can be performed in time linear in the number of bits needed to represent the integers. It follows from Theorem 3 that
every tolerance graph has an integer tolerance representation in which each number in the representation is represented
as a string of at most 1+ 1g(1 4+ 512%") € O(n) bits. Thus the arithmetic operations needed to verify that G is a tolerance
graph using this particular tolerance representation take O(r*) time.

A reasonable encoding of an n-vertex graph requires €2(n) space, and so the time required for this verification is
polynomial in the size of the encoding of G. It follows that recognizing tolerance graphs is in NP. [

An interesting open problem is whether every tolerance graph has a representation that is substantially more compact
than the one proved here. For example, every n-vertex interval graph has an expansive integer representation in which each
integer is in O(n) and thus requires merely O(logn) bits. We conjecture that each tolerance graph has a representation in
which each interval and tolerance has only a poly-logarithmic number of bits.
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