A FAST ALGORITHM FOR FINDING BETTER ROUTES
BY Al SEARCH TECHNIQUES

Takahiro Ikeda, Min-Yao Hsu, Hiroshi Imai
Department of Information Science, University of Tokyo, Hongo, Tokyo 113, Japan

Shigeki Nishimura, Hiroshi Shimoura, Takeo Hashimoto, Kenji Tenmoku, and Kunihiko Mitoh
Sumitomo Electric Industries, Ltd., Osaka, Japan

Abstract

The shortest path problem is one of the most fundamen-
tal problems applicable in various fields, and has close
relation to route navigation systems. This paper surveys
algorithms for the two-terminal shortest path problem
and proposes bidirectional A* algorithm based on a new
approach. This algorithm is suitable for finding not only
the shortest route but also better routes. The efficien-
cy and the property of these algorithms are discussed
through experiments applying them to an actual road
network.

1 Introduction

Presenting the route minimizing the necessary time to
the destination is one of the most fundamental function
required for route navigation systems. From the diffi-
culty of keeping information on appropriate routes for
all pairs of the origin and the destination and the possi-
bility of using dynamic information such as traffic flow,
this problem must be solved at every request by the us-
er. In this way, it is important to produce more effective
method to search appropriate route on a road network.

This subject is generalized as the two-terminal short-
est path problem on graphs, which is the problem to
find the shortest path from s to ¢t on a directed graph
G = (V, E) such that the length of an edge (u,v) in E'is
l(u,v) where the origin s and the destination t are giv-
en. Because of wide range of its application, this kind of
problem has been studied in various fields for long time.
For example, the Dijkstra method is a traditional algo-
rithm for this problem. Besides, the A* algorithm [2][6]
and the bidirectional search algorithms [3][4] are well-
known algorithm based on AI (Artificial Intelligence)
search techniques.

This paper surveys these algorithms from the point
of view of applying them to the two-terminal shortest
path problem on the road network, and proposes bidi-
rectional A* algorithm based on a new approach based
on the technique translating the A* algorithm into the
Dijkstra method. This algorithm is suitable for find-
ing not only the shortest route but also better routes,
namely suboptimal routes as the candidates for alter-

native routes containing paths not the shortest but less
number of turns, for instance. The efficiency and the
property of these algorithms are discussed through ex-
periments using actual road data.

2 Preliminary Works

2.1 The Dijkstra Method

The Dijkstra method is a basic algorithm to solve the
shortest path problem. Although the original algorithm
by Dijkstra is for the single-origin all-destination prob-
lem, it is applicable for two-terminal problem with little
modification. The following is the outline of the Dijkstra
method for two-terminal problem.

1. Let S be the empty set, and p,(v), the potential
of a vertex v, be 400 except for the origin s. Let
ps(s) be zero.

2. Find the vertex vy which has the minimum poten-
tial in V' — S and add vy to S. If vy equals to t,
then halt.

3. For all vertices v such that (vg, v) isin E, if ps(vo)+
l(vo, v) is less than p,(v), replace the path from s
to v with the path from s to vy and the edge (vg, v),
and let ps(v) be ps(vo) + (o, v).

4. Go to step 2.

On this algorithm, each vertex keeps the shortest
path from s among have been searched and its poten-
tial denotes the length of this path. A vertex is added
to S if its current shortest path from s is shorter than all
other paths kept by vertices. This indicates S consists
of vertices such that the actual shortest paths from s to
them has been already decided. In this way, Dijkstra
method finds the shortest path from s to a vertex in or-
der of the path length from s to the vertex. This suggests
the searched area with this algorithm is in a circle with s
as the center if G is homogeneous. Dijkstra method has
the disadvantage of searching in all directions regardless
of the place of ¢ for two-terminal shortest path problem.

2.2 The A" Algorithm

The A* Algorithm finds the shortest path from s to ¢
more efficiently when a heuristic estimate of the short-
est path length from each vertex to t, which must be
less than the actual shortest path length, is given [2][6].
Let hs(v) denote this estimate for a vertex v. Then the
outline of the A* Algorithm is described as follows:

1. Let S be the empty set, and ps(v), the potential
of a vertex v, be +00 except for the origin s. Let
ps(s) be zero.

2. Find the vertex vy which has the minimum value
of ps(v) + he(v) in V — S and add vy to S. If vy
equals to ¢, then halt.

3. For all vertices v such that (vg,v) isin E, if ps(vo)+
(v, v) is less than p,(v), replace the path from s
to v with the path from s to v and the edge (vo, v),

and let ps(v) be ps(vo)+1(vg, v), and remove v from
Sifvisin S.

4. Go to step 2.

On this algorithm, ps(v) also denotes the tempo-
rary shortest path length from s to v, and p,(v) + hs(v)
denotes the temporary estimate for the shortest path
length from s to ¢t via v. Hence A* algorithm searches
vertices considered to be on the shortest path from s to ¢
preferentially. This implies searched vertices distribute
toward t with an appropriate estimator. If estimator
tells the actual shortest path length to ¢, the algorithm
never searches vertices off the shortest path from s to t.

The assumption hs(v) is less than the actual short-
est path length from v to t is necessary to guarantee the
finally obtained path is the shortest in all paths from s
to t. The algorithm using an estimator without this as-
sumption is called A algorithm. A* algorithm is defined
as the special type of of A algorithm properly.

In the A* algorithm, the shortest path from s is not
always fixed for each vertex in S, that is, shorter paths
may be found in future search. This is the reason why
the vertex is removed from S in step 3 when its poten-
tial is renewed. This ineffective operation inducing the
increase of searches can be eliminated if the estimator is
dual feasible as the following definition.

Definition 1 The estimator for the shortest path to t,
hs, 1s dual feasible if and only if h, satisfies the following
condition for each edge (u,v) in E:

l(u,v) + he(v) > hy(u) . (1)

If the graph is a road network, Euclid distance be-
tween a vertex and t is utilized as the dual feasible esti-
mate for the shortest path from the vertex to ¢.

2.3 The Bidirectional Dijkstra Method

Previous two methods are unidirectional search algo-
rithms searching vertices with the origin as the center.

In these algorithms, the destination plays a minor role
than the origin. On the other hand, bidirectional search
algorithms utilize both the origin and the destination
uniformly by searching alternatively from the origin side
and from the destination side. In the following, a for-
ward search denotes a search from the origin side and a
backward search denotes a search from the destination
side for convenience.

The bidirectional Dijkstra method uses the Dijkstra
method both for forward and backward searches [3][4].
The outline of the bidirectional Dijkstra method is de-
scribed as follows.

1. Let S and T be the empty sets, and the potential
of a vertex v, ps(v) for s and p;(v) for ¢, be +o00
except for s and ¢ respectively. Let ps(s) and p(t)
be zero.

2. Find the vertex vy which has the minimum poten-
tial for s in V — S and add vg to S. If vg isin T,
then go to step 7.

3. For all vertices v such that (v, v) isin E, if ps(vo)+
(v, v) is less than p,(v), replace the path from s
to v with the path from s to vy and the edge (v, v),
and let ps(v) be ps(vo) + I(vg, v).

4. Find the vertex vy which has the minimum poten-
tial for ¢ in V' — T and add vy to T'. If vy is in S,
then go to step 7.

5. For all vertices v such that (v,vy) is in E, if [(v, vy)
+pi(vg) is less than p,(v), replace the path from v
to t with the edge (v,vy) and the path from v, to
t, and let py(v) be l(v,vg) + pe(vo).

6. Go to step 2.

7. Find the edge (u,v) minimizing ps(u) + (u,v) +
pe(v) such that « is in S and v isin 7. The shortest
path from s to ¢ consists of the path from s to u
and the edge (u,v) and the path from v to t if
ps(u) + I, v) + pi(v) is less than p;(vo) + pe(vo),
otherwise it consists of the path from s to vy and
the path from vq to t.

After forward and backward searches reach the same
vertex, the shortest path from s to t is obtained by simple
post-processing such as step 7. This is due to the prop-
erty of the Dijkstra method that it decides the shortest
path from s to a vertex in order of the path length from
s to the vertex. If G is homogeneous, the number of
searched vertices is approximately half of that with uni-
directional Dijkstra method since searched vertices dis-
tributes in two circles with two terminals as the centers
in this case.

3 A New Approach for a Simple
Bidirectional A* Algorithm

It is natural to use A* algorithm for both forward search
and backward search to reduce the searched area. As-
sume that for each vertex v a heuristic estimate for the

shortest path from v to t, hs(v), and from s to v, hy(v),
are given. The algorithm using hg as the estimator for
the forward search and h; as the estimator for the back-
ward search has been proposed [1][5]. This method cor-
responds to applying the orthodox A* algorithm inde-
pendently both from s and ¢. Although this approach
is natural, the algorithm is complex because it cannot
specify the shortest path from s to ¢ when searched ar-
eas from both sides overlap each other. This means the
shortest path from s to t does not always pass the over-
lapped point and the algorithm cannot stop searching
after reaching the vertex have been searched from an-
other side. This is due to the fact that the algorithm
utilizes independent estimators for two inner A* algo-
rithms and does not change if both estimators are dual
feasible.

In order to avoid such a demerit, this paper proposes
a new bidirectional A* algorithm based on another ap-
proach based on the following technique translating the
A* algorithm into the Dijkstra algorithm in the case that
each estimator is dual feasible.

Theorem 1 The Dikstra method using the edge length
" modified as follows is equivalent to the A* algorithm
using the original edge length | with dual feasible estima-
tor hy:

U(u,v) = l(u,v) + hs(v) — hy(u) . (2)

Proof: Since l'(u,v) is not negative from dual feasibility
of hg, it is possible to use I'(u, v) for the length of an edge
(u,v) in the Dijkstra method. Let P be the temporary
path from s to a vertex v. Then the following formula is
satisfied for the potential of v in the Dijkstra method:

ps(v) = Z U(u,u)

(u,u')eP

= > Uu,)+ hy(v) = ha(s)

(uu')EP

Notice that h,(s) is a constant and 3, uyep [(u, u') de-
notes the potential of v in the A* algorithm. This indi-
cates the Dijkstra method using modified edge lengths
is equivalent to the A* algorithm. O

This theorem indicates the the A* algorithm can be
transformed into the Dijkstra method by using special
edge length given by (2) if h is dual feasible. This
means bidirectional A* algorithm is realized by applying
the bidirectional Dijkstra method using modified edge
lengths by (2). However, this method has a problem
that backward search does not changed to A* algorithm
because (2) does not contain hy, the estimator for the
shortest path from s.

To apply A* algorithm using h; to the backward
search, the length of a edge (u,v) must be changed as
follows:

U(u,v) = l(u,v) + he(u) — hy(v) . (3)

Hence it is natural to adopt the following I’ as the new
edge length for translating both forward and backward

searches into A* algorithm:
1
ll(ua 1)) = l(?j,, 1)) + E(hs(v) - hs(u))

) —h@) . @)

This I’ is always not negative because of dual feasibility
of hy and h;. This modification of edge lengths corre-
sponds to utilizing (1/2)(hs(v) — he(v)) as the estimate
for the shortest path from v to ¢t and (1/2)(h(v) — hs(v))
as the estimate for the shortest path from s to v. These
new estimators satisfy the following inequalities when-
ever hg(v) and h(v) have meaningful value, that is not
negative value, for each vertex v:

o(t)2 5 (hs(0) = hu®) |)
o) 2 5 (bn(v) = he(0) - ©)

Each inequality guarantees the corresponding new esti-
mator does not exceed the actual shortest path length

for which it estimates. In this way, the following theorem
is established.

Theorem 2 The bidirectional Dijkstra method using the
edge length I defined as (4) is equivalent to a bidirection-
al A* algorithm using the original edge length | utilizing
(1/2)(hs(v) — hy(v)) as the estimate for the shortest path
from v to t and (1/2)(hi(v) — hs(v)) as the estimate for
the shortest path from s to v.

Inequalities (5) and (6) indicate new estimators are
inferior than original ones with regard to their perform-
ance as estimators. However this approach has the ad-
vantage of realizing a simple bidirectional A* algorithm,
which can specify the shortest path with less operations
when searched area from both sides overlap each other.

This algorithm is suitable for finding better routes
moreover. Better routes are regarded as suboptimal
routes which are the candidates for alternative routes.
Suppose that better paths are defined as the paths whose
length are longer than the shortest path length by at
most a where « is some constant. These better paths
can be substitutes for better routes. Although it is pos-
sible to find such better paths easily by deciding the
shortest paths both from s and t for all vertices, this
method has the disadvantage of the cost for calculation.
With the bidirectional A* algorithm in this paper, better
paths are obtained by resuming the forward search until
finding the path whose length is larger than the short-
est path by a. Because each vertex in the forward and
backward searched areas knows the shortest path from
the corresponding terminal at that point, all better paths
are in these areas. Then searches in these bounded ar-
eas, which are rather small due to the directionality of
A* algorithm, are required for finding better paths.

4 Experiments on a Road Net-
work

In this section, the efficiency of algorithms described in
this paper is investigated based on experiments applying

Table 1: The number of searched nodes in the forward
search and backward search of the shortest path from
Machida to Tokorozawa.

Algorithm Forward | Backward
Unidirectional Dijkstra | 16177 0
Unidirectional A* 6303 0
Bidirectional Dijkstra 2559 2587
Bidirectional A* 1604 1706

them to the actual road network of 160 kilometers times
80 kilometers region in Tokyo metropolitan area. As the
length of each edge, the necessary time to pass the edge
is utilized in experiments rather than the distance along
the edge. Accordingly, Euclid distance to ¢ and from s
divided by the maximum speed 105 kilometers per hour
is used as h, and h; respectively.

4.1 The Efficiencies of Various Algo-
rithms

The first experiment is for the comparison of algorithms
described in this paper. The experiment to find the
shortest path from Machida to Tokorozawa has been
performed with the following four type of algorithms:
the Dijkstra method, the A* algorithm, the bidirection-
al Dijkstra method, and the bidirectional A* algorithm
based on Theorem 2. Both terminals are selected in the
suburbs where the network is almost homogeneous to
avoid the influence of the network topology. Table 1
shows the number of searched nodes for each case. Fig-
ure 1 illustrates the distribution of searched edges. The
bold line denotes the shortest path from Machida, the
lower terminal, to Tokorozawa, the upper terminal.
Figure 1 directly shows the property of each algo-
rithm. For the Dijkstra method, searched edges dis-
tributes in all directions from the origin. On the oth-
er hand, A* algorithm does not search deeper on the
opposite direction to the destination. The number of
searched nodes with A* algorithm is about 40 percent of
that with the Dijkstra method from Table 1. Whether
this percentage is regarded as small or large is an ar-
guable question. In this case, the performance of the
estimator is not excellent because the estimator always
calculates the necessary time to the destination using the
maximum speed. Although this is inevitable for guaran-
teeing the shortestness of the obtained path, it is no
problem to use stronger estimator in practice because
only few ways are to be passed with maximum speed.
Table 2 shows the number of searched nodes and the
path length, that is, the necessary time along the path,
with A* algorithm using a k times stronger estimate k -
hs(v) for a vertex v. where k is in the range from one
to four. The algorithm is the A* algorithm if £ equals
to one, and is the A algorithm otherwise. The result
indicates the obtained path length is the shortest until
k is less than or equals to two. For the case k equals
to two, the number of searched nodes is less than half
of that for the original case. Figure 2 illustrates the

i

oLt

&
E
SR
"ﬂa
S

(¢) The bidirectional (d) The bidirectional
Dijkstra method A* algorithm

Figure 1: The distribution of searched edges on finding
the shortest path from Machida to Tokorozawa.

Figure 2: The distribution of searched edges with A*
algorithm using two times stronger estimator.

Table 2: The number of searched nodes and the path
length with A* algorithm using k£ times stronger estima-
tor.

k | The Number of Nodes | The Path Length
1.0 6303 2902
1.5 4072 2902
2.0 2485 2902
2.5 1078 2906
3.0 450 2966
3.5 163 3057
4.0 120 3035

distribution searched edges for the case k equals to two.

Again on Table 1 and Figure 1, the ability of bidi-
rectional search algorithms is conspicuous. The bidirec-
tional Dijkstra method only searches approximately a
third of nodes compared with the unidirectional Dijkstra
method. The bidirectional A* algorithm moreover re-
duces searches towards opposite directions and makes
the number of searched nodes about 60 percent of that
with the bidirectional Dijkstra method.

In the following section, the property of bidirectional
A* algorithm is investigated with an experiment for more
general case.

4.2 The Property of the Bidirectional
A* Algorithm

The second experiment is for investigation of the bidirec-
tional A* algorithm based on Theorem 2. In this experi-
ment, the formula translating the edge length is defined
as follows where k; and k; are parameters:

U'(u,v) = lu,v) + ks(hs(v) — hy(u))
+ ki(hi(u) = u(v)) (7)

By changing the combination of ks and k¢, this algorithm
is transformed into various type of bidirectional search
algorithms. The experiment has been performed for the
following four combinations of (ks, k¢): (0, 0), (1, 0), (0,
1), (1/2, 1/2). The case (ks,k;) equals to (1/2, 1/2)
corresponds to the bidirectional A* algorithm based on
Theorem 2. Each estimator in the forward search and
the backward search of this bidirectional A* algorithm
does not equal to h, and h; respectively. The aim of
introducing the parameters k; and k; is to observe the
case this restriction is removed for the one estimator at
the sacrifice of the other estimator.

The experiment has been performed with the origin
Machida and the destination Ichihara. They are selected
as the two location between which the Tokyo bay lies in
order to examine the effect of the A* algorithm for the
case the shortest path is far away from the straight line.
Table 3 shows the number of searched nodes and Figure 3
illustrates the distribution of searched edges as the result
of this experiment. The bold line denotes the shortest
path from Machida, the left terminal, to Ichihara, the
right terminal.

Table 3: The number of searched nodes in the forward
search and backward search of the shortest path from

Machida to Ichihara.

(ks, kt) Forward | Backward
(0, 0) 7110 7064
(1, 0) 5707 5944
(0, 1) 1642 1436
(1/2,1/2) | 4898 4831

,A
N 4 “!’i "x,‘.“" k"
g 5 NS s z 5
QS
B SR o) "
SO (70 MR
g KA

(a) The case (ks, ki) equals to (0, 0)

Y

(d) The case (ks, ki) equals to (1/2, 1/2)

Figure 3: The distribution of searched edges on finding
the shortest path from Machida to Ichihara.

The algorithm for the case (ks, k:) equals to (0, 0) is
the bidirectional Dijkstra method because edge lengths
are not modified in this case. Figure 3(a) shows the
uniform distribution of searched nodes as the standard
case.

The algorithm for the case (ks, k;) equals to (1, 0)
corresponds to a kind of bidirectional A* algorithm uti-
lizing hs(v) as the estimate in the forward search and
—hg(v) as that in the backward search for a vertex wv.
The backward search of this algorithm is meaningless
A* algorithm, while the forward search of this algorithm
is complete A* algorithm, because —hs(v) denotes the
distance between ¢ and v and has no information on the
relation between s and v required for the estimator in
the backward search. The farther away from ¢ a vertex
is, the smaller the estimate for the shortest path length
from s to a vertex v with this eccentric estimator is. This
implies a vertex farther away from t is searched prefer-
entially in the backward search of this algorithm. Notice
that each edge length is measured by its necessary time
in this experiment. Since it costs less time for the same
distance by more speedy way, vertices along the speedy
way tend to be searched earlier in this case. This tenden-
cy also appears in the forward search for the case (ks, k;)
equals to (0, 1), where the corresponding algorithm uti-
lizes —hy(v) as the estimate in the forward search and
hi(v) as that in the backward search for a vertex wv.

The demerit of this tendency is observed in the north-
east part of Figure 3(b). The backward searched edges
spreads along the expressway in the direction opposite
to s. The forward searched area is smaller than that of
Figure 3(a) with the bidirectional Dijkstra method. This
means A* algorithm is effective under disadvantageous
condition that the shortest path gets out of the straight
line between two terminals.

The property of that vertices along the speedy way
are searched earlier produces good results for the case
(ks, kt) equals to (0, 1), where the forward search has
this property. The forward searched area in the left side
of Figure 3(c¢) occupies smaller region than that of Fig-
ure 3(a) with the bidirectional Dijkstra method. This is
due to the fact that expressways run radially from the
center of Tokyo in the Tokyo metropolitan area. Hence
this phenomenon is noted for most cases that Tokyo lo-
cates between two terminals. In consequence of this phe-
nomenon, this algorithm reduces the number of searched
edges compared with the previous algorithm.

For the case (ks, k) equals to (1/2, 1/2), the algo-
rithm is the bidirectional A* algorithm based on Theo-
rem 2. This algorithm is, as it were, the average of pre-
vious two algorithms. Although the directionality as the
A* algorithm is weaker than the corresponding searches
of the two algorithms, the effect of different estimator
is also weaker. With regard to the number of searched
edges, this algorithm is in a middle of the two. The
algorithm with (k, k;) equal to (0, 1) is better in this
case because of the positive effect of different estimator.
The bidirectional A* algorithm based on Theorem 2 is
regarded as a stable algorithm less influenced by such
effect.

5 Conclusion

In this paper, algorithms to solve the two-terminal short-
est path problem such as the Dijkstra method, the A*
algorithm, and the bidirectional Dijkstra method have
been surveyed and the bidirectional A* algorithm based
on a new approach translating the A* algorithm into the
Dijkstra method has been proposed for the case estima-
tors are dual feasible. This algorithm is fit for finding
not only the shortest route but also better routes. The
efficiency and the property of these algorithms has been
discussed through experiments using actual road data.

In the experiments, the necessary time to pass an
edge is utilized as the length of the edge rather than the
distance along the edge. Euclid distance between two
points divided by the maximum speed is used for the es-
timate in the necessary time between them. The result
of experiments indicates A* algorithm has an effect on
such heterogeneous graph and its directionality toward
the destination can be improved with stronger estima-
tor obtained by multiplying a constant to the original
estimator.

The result of experiments also shows the bidirection-
al A* algorithm proposed in this paper is more effective
than other algorithms. This algorithm is stable com-
pared with the bidirectional A* algorithm utilizing only
one estimator because it is less influenced by the effect
that vertices along the speedy way are searched earlier.

The research concerning the algorithm for the road
network constructed on hierarchical structure, and the
problem to predict the traffic low in the road network
are to be made in the future.

References

.Champeaus, idirectional Searc gain, .
1] D.Ch “Bidi ional S h Again,” J
ACM 30, 1983, pp.22-32.

[2] P.E.Hart, N.J.Nillson, and B.Rafael, “A Formal Ba-
sis for the Heuristic Determination of Minimum
Cost Paths,” IEEFE Trans. Sys. Sci. and Cyb. SSC-
4, 1968, pp.100-107.

[3] T.Hiraga, Y.Koseki, Y.Kajitani, and A.Takahashi,
“An Improved Bidirectional Search Algorithm for
the 2 Terminal Shortest Path,” The 6th Karuizawa
Workshop on Circuits and Systems, 1993, pp.249—
254 (in Japanese).

[4] M.Luby, and P.Ragde, “A Bidirectional Shortest-
Path Algorithm With Good Average-Case Behav-
ior,” Proc. 12th International Colloguium on Au-

tomata, Languages and Programing, LNCS 194,
1985, pp.394-403.

[5] I.Pohl, “Bi-Directional Search,” Machine Intelli-
gence vol.6, pp.127-140, 1971.

[6] Y.Shirai and J.Tsuji, Artificial Intelligence, Iwana-
mi Course: Information Science vol.22, Iwanami,
Tokyo, 1982 (in Japanese).

