
AAAI05/Holte Handout, Slide 1

Where Do Heuristics Come From ?
(Using Abstraction to Speed Up Search)

Robert C. Holte
Computing Science Department

University of Alberta

© 2005, Robert Holte

Full set of slides and list of papers referenced is available at:
http://www.cs.ualberta.ca/~holte/Heuristics

AAAI05/Holte Handout, Slide 2

The Big Idea

Create a simplified version of your problem.

Use the exact distances in the simplified version
as heuristic estimates in the original.

AAAI05/Holte Handout, Slide 3

Applications

AAAI05/Holte Handout, Slide 4

Puzzles

• Rubik’s Cube (Korf, 1997)
– 1019 states
– First random problems ever solved optimally by a

general-purpose search algorithm
– Hardest took 17 CPU-days
– Best known MD-like heuristic would have taken a

CPU-century

• 15-puzzle
– 1013 states
– Average solution time 0.021 seconds, with only

36,000 nodes expanded

AAAI05/Holte Handout, Slide 5

Parsing

• Klein & Manning (2003)
• Used A* to find the most probable parse of a

sentence.
• A “state” is a partial parse, g(s) is the “cost” of the

parsing completed in s, h(s) estimates the “cost” of
completing the parse.

• The heuristic is defined by simplifying the
grammar, and is precomputed and stored in a
lookup table.

• Special purpose code was written to compute the
heuristic.

• Eliminates 96% of the work done by exhaustive
parsing.

AAAI05/Holte Handout, Slide 6

Dynamic Programming – SSR

• State Space Relaxation = mapping a state space
onto another state space of smaller cardinality.

• Christofides, Mingozzi, and Toth (1981)
• Abstraction: very general definition and several

different examples of abstractions for TSP and
routing problems.

• Implemented but not thoroughly tested.
• Noted that the effectiveness of this method

depends on how the problem is formulated.
• Did not anticipate creating a hierarchy of

abstractions.

AAAI05/Holte Handout, Slide 7

Weighted Logic Programs

• Felzenszwalb & McAllester (unpublished)
• Generalizes the statistical parsing and

dynamic programming methods to the
problem of finding a least-cost derivation
of a set of statements (the “goal”) given a
set of weighted inference rules.

• Inference at multiple levels of abstraction
is interleaved.

• Application: finding salient contours in an
image.

AAAI05/Holte Handout, Slide 8

QoS Network Routing

• Li, Harms & Holte (2005)
• Find a least-cost path from start to goal

subject to resource constraints.
• Each edge in the network has a cost and

consumes some amount of resources.
• There are separate h(s) functions for the

cost and for each type of resource.
• hr(s) is defined as the minimum cost of

reaching the goal from state s subject only
to constraints on resource r.

AAAI05/Holte Handout, Slide 9

Sequential Ordering Problem

• Hernadvolgyi (2003)
• S.O.P. is the Travelling Salesman Problem

with:
– Asymmetric costs
– Precedence constraints (must visit city A

before city B)

AAAI05/Holte Handout, Slide 10

Co-operative Pathfinding

• Silver (2005)
• Many agents, each trying to get from its

current position to its goal position.
• Co-operative = agents want each other to

succeed and will plan paths accordingly.
• Need a very efficient algorithm (because in

computer games very little CPU time is
allocated to pathfinding).

AAAI05/Holte Handout, Slide 11

Vertex Cover

• Felner, Korf & Hanan (2004)
• fastest known algorithm for finding the

smallest subset of vertices that includes at
least one endpoint for every edge in the
given graph .

AAAI05/Holte Handout, Slide 12

Multiple Sequence Alignment

• Korf & Zhang (2000)
• McNaughton, Lu, Schaeffer & Szafron (2002)
• Zhou & Hansen (AAAI, 2004)
• Sets of N sequences are optimally aligned

according to a mismatch scoring matrix.
• The heuristic is to find optimal matches of

disjoint subsets of size k<N and add their
scores.

AAAI05/Holte Handout, Slide 13

Building Macro-Tables

• Hernadvolgyi (2001)
• A macro-table is an ultra-efficient way of

constructing suboptimal solutions to problems that
can be decomposed into a sequence of subgoals.

• For the jth subgoal, and every possible state that
satisfies subgoals 1…(j-1), the macro-table has
an entry – a sequence of operators that maps the
state to a state satisfying subgoals 1…j.

• Solutions are built by concatenating entries from
the macro-table.

• Constructing the table is the challenge. Each
entry is found by search. Heuristics are needed to
find optimal entries in reasonable time.

AAAI05/Holte Handout, Slide 14

Planning

• Edelkamp, 2001
• Bonet & Geffner, 2001
• Haslum & Geffner, 2000
• Abstraction is computed automatically

given a declarative state space definition.
• Has been used successfully with a variety

of different abstraction methods and
search techniques. Some guarantee
optimal solutions, many do not.

AAAI05/Holte Handout, Slide 15

Constrained Optimization

• Kask & Dechter (2001)
• Mini-bucket elimination (MBE) provides an

optimistic bound on solution cost, and therefore
can be used to compute an admissible heuristic
for A*, branch-and-bound, etc.

• MBE relaxes constraints. The objective function
min{a,b,c}{f(a,b)+g(b,c)} is relaxed to
min{a,b}{f(a,b)} + min{b,c}{g(b,c)}, in effect dropping
the constraint that the two values of b be equal.

• Applications include max-CSP and calculating
the most probable explanation of observations in
a Bayesian network.

AAAI05/Holte Handout, Slide 16

Historical Notes

AAAI05/Holte Handout, Slide 17

Prehistory: Two Key Ideas

Using Lower Bounds to Prune Search
1958: branch-and-bound
1966 (Doran & Michie): Graph Traverser, first use of

estimated distance-to-goal to guide state space
search.

1968 (Hart, Nilsson, Raphael): A*

Using Abstraction to Guide Search
1963 (Minsky): abstraction=simplified problem

+ refinement
1974 (Sacerdoti): ABSTRIPS

AAAI05/Holte Handout, Slide 18

Somalvico & colleagues (1976-79)

• Brought together the two key ideas.
• Proposed mechanically generating an

abstract space by dropping preconditions.
• Proved this would produce admissible,

monotone heuristics.
• Envisaged a hierarchy of abstract levels, with

search at one level guided by a heuristic
defined by distances at the level above.

AAAI05/Holte Handout, Slide 19

Edge Supergraph

• Relaxing preconditions introduces additional
edges between states and might add new states
(by making a state reachable that is not
reachable with the original preconditions).

• e.g. there is no edge from X to Y because of a
precondition. If it is relaxed, there is an edge.

S

X

Y

AAAI05/Holte Handout, Slide 20

Gaschnig (1979)

• Proposed that the cost of solutions in
space S could be estimated by the exact
cost of solutions in auxiliary space T.

• Estimates are admissible if T is an edge
supergraph of S.

• Observes: “If T is solved by searching this
could consume more time than solving in
S directly with breadth-first search.”
– T should be supplied with an efficient solver

AAAI05/Holte Handout, Slide 21

Valtorta (1980,1984)

• Proved that Gaschnig was right!
• Theorem: If T is an edge supergraph of S,

and distances in T are computed by BFS,
and A* with distances in T as its heuristic is
used to solve problem P, then for any s∈∈∈∈S
that is necessarily expanded if BFS is used
to solve P, either:
– s is expanded by A* in S, or
– s is expanded by BFS in T

AAAI05/Holte Handout, Slide 22

Pearl (1984)

• Famous book, Heuristics
• Popularized the idea that heuristics could

very often be defined as exact costs to
“relaxed” versions of a problem.

• To be efficiently computable, the heuristics
should be semi-decomposable.

• Proposed searching through the space of
relaxations for semi-decomposable ones.

AAAI05/Holte Handout, Slide 23

Mostow & Prieditis (1989)

• ABSOLVER, implemented the idea of searching
through the space of abstractions AND speed-up
transformations.

• Reiterated that computing a heuristic by search at
the abstract level is generally ineffective.

• Had a library with a variety of abstractions and
speedups, not just “relax” and “factor”.

• First successful automatic system for generating
effective heuristics.

• Emphasized that success depends on having the
right problem formulation to start with.

AAAI05/Holte Handout, Slide 24

Mostow & Prieditis cont’d

• When a good abstraction is found, ABSOLVER
calls itself recursively to create a hierarchy of
abstractions, in order to speedup the
computation of the heuristic.

Added in 1993 (Prieditis):
To make a heuristic “effective” precompute all the

heuristic values before base-level search begins
and store them in a hash table (today called a
“pattern database”).

AAAI05/Holte Handout, Slide 25

Hansson, Mayer, Valtorta (1992)

• Generalized Valtorta’s theorem to show
that a hierarchy of abstractions created by
relaxing preconditions was no use.

• Pseudocode for Hierarchical A*.

AAAI05/Holte Handout, Slide 26

Using Memory to Speed Up Search

• 1985 (Korf): IDA*
• 1989 (Chakrabarti et al.): MA*
• 1992 (Russell): IE, SMA*
• 1994 (Dillenburg & Nelson): Perimeter Search
• 1994 (Reinefeld & Marsland): Enhanced IDA*
• 1994 (Ghosh, Mahanti & Nau): ITS

AAAI05/Holte Handout, Slide 27

Culberson & Schaeffer (1996)

• 1994: technical report with full algorithm and
results for pattern databases (PDB)

• 1996: first published account of PDBs
• Impressive results: 1000x faster than Manhattan

Distance on the 15-puzzle.
• Several good ideas:

– A general and effective type of abstraction
– Efficiently precomputing and storing all the abstract

distances
– Exploiting problem symmetry
– “Dovetailing” two PDBs

AAAI05/Holte Handout, Slide 28

Holte (1996)

• 1994: published the Hierarchical A* idea.
• 1996: published working HA* algorithm,

generalized Valtorta’s Theorem to all kinds
of abstractions, and showed (theoretically
and experimentally) that speedup was
possible with Hierarchical Heuristic Search
if homomorphic abstractions are used.

AAAI05/Holte Handout, Slide 29

Defining Abstractions

AAAI05/Holte Handout, Slide 30

Domain Abstraction

876

543

21

state abstract state

Abstract = blank
Domain = blank 1 2 3 4 5 6 7 8

AAAI05/Holte Handout, Slide 31

Finer-grained Domain Abstraction

876

543

21

876

30,240 abstract statesDomain = blank 1 2 3 4 5 6 7 8
Abstract = blank 6 7 8

AAAI05/Holte Handout, Slide 32

Possible Domain Abstractions

• Easy to enumerate all possible domain
abstractions

• They form a lattice, e.g.

is “more abstract” than the domain abstraction
above

Domain = blank 1 2 3 4 5 6 7 8
Abstract = blank

Domain = blank 1 2 3 4 5 6 7 8
Abstract = blank

AAAI05/Holte Handout, Slide 33

The Arrow Puzzle

operator A: flip Arrow1, flip Arrow2
operator B: flip Arrow2, flip Arrow3
operator C: flip Arrow3, flip Arrow4
operator D: flip Arrow4, flip Arrow5

1 432 5

A B C D

AAAI05/Holte Handout, Slide 34

Solve a Subproblem

Solve any 4-arrow subproblem, e.g.

For many problems this will reduce the
state space exponentially while only
reducing the solution lengths linearly,
so heuristics are accurate and quick to
calculate.

1 32

A B C

4

AAAI05/Holte Handout, Slide 35

Projection

Remove all references to Arrow4

operator A: flip Arrow1, flip Arrow2
operator B: flip Arrow2, flip Arrow3
operator C: flip Arrow3
operator D: flip Arrow5

1 32 5

A B C D

AAAI05/Holte Handout, Slide 36

Towers of Hanoi puzzle

AAAI05/Holte Handout, Slide 37

3-disk TOH State Space

AAAI05/Holte Handout, Slide 38

Abstract State = Group of States

This grouping
corresponds to solving
the subproblem with the
2 largest disks.

AAAI05/Holte Handout, Slide 39

Spoiled for Choice

• Any way of doing any of these methods
produces an admissible and consistent
heuristic.

• Moreover, domain abstraction and
projection produce different heuristics
when applied to different encodings of the
search space.

• And, the techniques can be used in
combination with one another.

AAAI05/Holte Handout, Slide 40

Choosing Good Abstractions

AAAI05/Holte Handout, Slide 41

Size Matters

no
de

s
ex

pa
nd

ed
 (

A
*)

of abstract states

8-puzzle

AAAI05/Holte Handout, Slide 42

Korf & Reid (1998)

• Total nodes expanded = ΣN(j)*P(j,d-j)
– N(j) = # nodes at level j in the brute-force tree
– P(j,x) = % of nodes, n, at level j with h(n) ≤ x

• N(j) ≈ bj

(b is the branching factor in the brute force tree)

• P(j,d-j) ≈ ???
– for a pattern database (defined in a few slides)

this can be computed exactly*
* assuming every entry in the PDB represents the same number of states

and that j can be ignored

AAAI05/Holte Handout, Slide 43

Prediction of Search Time (A*)

actual # nodes expanded

K
or

f
&

 R
ei

d’
s

pr
ed

ic
tio

n

8-puzzle

AAAI05/Holte Handout, Slide 44

Good, Easy-to-Compute Measures

• average value in a Pattern Database
• the value of h(start)

• When there are non-identical edge costs:
Aim to minimize the discrepancy of the
costs of edges that get merged.

AAAI05/Holte Handout, Slide 45

Computing Abstract Distances

AAAI05/Holte Handout, Slide 46

Calculating h(s)

Given a state, s
276

53

418

2

Compute the corresponding
abstract state, (s)

h(s) = distance((s), (goal)) =

AAAI05/Holte Handout, Slide 47

Two Main Approaches

• Pattern Databases
– all possible h(s) values calculated in advance,

in a preprocessing step
– Culberson & Schaeffer (1996)

• Hierarchical Heuristic Search
– h(s) values calculated on demand

– Holte et al. (1996), Hierarchical A*
– Holte et al. (2005), Hierarchical IDA*

AAAI05/Holte Handout, Slide 48

Pattern Databases

• Enumerate the entire abstract space as a
preprocessing step (e.g. by breadth-first
search backwards from (goal)).

• Store distance-to-goal for every abstract
state in a lookup table (PDB).

• During search in the original state space,
h(s) is computed by a lookup in the PDB.

AAAI05/Holte Handout, Slide 49

Abstract State Space

(goal)

AAAI05/Holte Handout, Slide 50

Pattern Database

Pattern

Distance to goal 0 1 1 2 2 2

Pattern

Distance to goal 3 3 4

AAAI05/Holte Handout, Slide 51

• No preprocessing.
• When h(s) is needed, it is calculated by

searching for a shortest path in the
abstract space from (s) to (goal).

• Need to cache all information about
abstract distance-to-goal and reuse,
otherwise this will be hopelessly inefficient.

Hierarchical Heuristic Search

AAAI05/Holte Handout, Slide 52

Code Comparison

PDB has this line:
h(s) = PDB[(s)]

Hierarchical Heuristic Search has:
h(s) = search((s), (goal))

(recursive) call to a search algorithm to compute
the abstract distance to goal for state s

AAAI05/Holte Handout, Slide 53

Hierarchical Heuristic Search

Original space, S

Abstract space, 1(S)

1

Abstract space, 2(1(S))

2

AAAI05/Holte Handout, Slide 54

Comparison - Time

• Pattern Databases
– Large preprocessing time

• 15-puzzle: 3 hours*
• TopSpin: 50 minutes*

– Very fast h(s) computation during search
• 15-puzzle instance solved in 0.028 seconds (avg)

• Hierarchical Heuristic Search
– No preprocessing time
– Relatively slow h(s) computation

Times are for the best-performing PDBs. Smaller PDBs take less time to build
but take correspondingly longer to solve problems.

AAAI05/Holte Handout, Slide 55

Comparison - Memory

• Pattern Databases
– Perfect hash function

• No empty hash table entries
• Each entry stores only a distance (15-puzzle: 1 byte)

– Only a tiny fraction of entries are needed to solve an
individual search problem

• Hierarchical Heuristic Search
– Imperfect hash function (15-puzzle: 8 bytes)
– Multiple levels of abstraction, not just one
– Only store entries needed to solve the given problem

AAAI05/Holte Handout, Slide 56

%PDB Entries Actually Needed

1.322917,29714-Pancake

5.93,42357,657(17,4)-TopSpin

0.027874,151,347Macro-15

0.062,6574,151,34715-puzzle

%#needed

(000s)

PDB size

(000s)

State Space

AAAI05/Holte Handout, Slide 57

When to Use Each Approach ?

• If the same abstraction can be used to
solve many problems, use PDB.

• If there is only one problem to solve, or a
small batch of problems, use Hierarchical
Heuristic Search.

AAAI05/Holte Handout, Slide 58

Implementation Issues

AAAI05/Holte Handout, Slide 59

Pattern Databases

• Ideally, use a perfect hashing function.

• More memory is needed to create the PDB
than to store it, because of the Open and
Closed lists needed for breadth-first search.
– may need to use a disk-based implementation of

breadth-first search (Korf’s DDD) and other
space-saving measures such as Frontier search.

AAAI05/Holte Handout, Slide 60

Perfect Hashing Function

• Every time a state, s, is generated need to
lookup h(s) in the pattern database.

• PDB[ϕϕϕϕ(s)] really is
PDB[hash(ϕϕϕϕ(s))]

where hash(x) maps an abstract state, x, to an
integer in the range 0…(PDBsize-1).

• Because it is used so often, hash(x) needs to be
as efficient as possible.

• We also want it to be perfect so that PDBsize
can equal the number of abstract states with no
collisions.

AAAI05/Holte Handout, Slide 61

Perfect Hashing of Permutations

• Often a state (base-level, not abstract) is a
permutation, e.g. the 15-puzzle*.

• Myrvold & Ruskey (2001) give an algorithm
for mapping a permutation on N values to an
integer 0…(N!-1) and the inverse mapping.

• Both are O(N). (for the 15-puzzle, N=16).
• Their mapping does not give lexicographic

order (see Korf 2005 if you want this).
Only half of the 16! states of the15-puzzle are reachable so for a truly perfect hash
function the last two constants have to be treated as just one.

AAAI05/Holte Handout, Slide 62

Myrvold & Ruskey Hash Function

given state S, an array indexed by 0…(N-1) containing the
values 0…(N-1).

1. initialize array W*, W[S[i]]=i for 0 i (N-1)
2. perfect hash index for S = HASH(N,S,W)

HASH(N,S,W):

1. IF (N == 1) RETURN(0)

2. D = S[N-1]

3. SWAP(S[N-1], S[W[N-1]])

4. SWAP(W[N-1], W[D])

5. RETURN(D + N*HASH(N-1,S,W))

* W stands for “where”. W[v] is the location of v in S

AAAI05/Holte Handout, Slide 63

Example

S (permutation) N Value(N)=D+N*Value(N-1)

215403

D

6

512403 5

542103 4

543102 3

543201 2

543210 1 0

0 = 0 + 2*0

1 = 1 + 3*0

6 = 2 + 4*1

31 = 1 + 5*6

188 = 2 + 6*31

AAAI05/Holte Handout, Slide 64

Hashing Abstract States

• An abstract state has the same number of
locations (N) as a state but only K of them
contain distinct values V1…VK, the rest of
the locations contain “don’t care”.

• The array S, in this case, is indexed by
0…(N-1), and S[N-a] contains the location
of value Va when 1 a K. S[0]…S[N-K-1]
contain the locations of the “don’t cares”.

• Use the Myrvold & Ruskey hash function
but stop the recursion after K iterations.

AAAI05/Holte Handout, Slide 65

Example

State = 312504

31x5xx

254310

domain = 0 1 2 3 4 5
abstract = x 1 x 3 x 5

Abstract State =

Permutation to use in the algorithm:

Location of 1 Location of 3 Location of 5

AAAI05/Holte Handout, Slide 66

Hierarchical Heuristic Search

• To get high performance, the Hierarchical
Search algorithm is more complex than
the naïve version described earlier.
– "optimal path caching"
– "P-g caching"
– Various code & data structure optimizations

• Selecting abstractions and cache sizes is
not automatic, and is non-trivial

AAAI05/Holte Handout, Slide 67

Optimal Path Caching

S1

X

G Cache[X] = exact distance 3

On subsequent searches … S2

g 3 + g

AAAI05/Holte Handout, Slide 68

P-g Caching

S

X

G

P = solution length
g = distance from S to X.
P-g never overestimates distance from X to G

cache[X] = max(cache[X], P-g)

P

g

AAAI05/Holte Handout, Slide 69

Max’ing Multiple Heuristics

• Given heuristics h1 and h2 define

h(s) = max (h1(s), h2(s))
• Preserves key properties:

– lower bound
– consistency

AAAI05/Holte Handout, Slide 70

Question

• Given a fixed amount of memory, M,
which gives the best heuristic ?

– 1 pattern database (PDB) of size M
– max’ing 2 PDBs of size M/2

– max’ing 3 PDBs of size M/3
– etc.

AAAI05/Holte Handout, Slide 71

Rubik’s Cube*

5,329,829253,222,400

Nodes Generated

61,465,5411106,444,800

3,096,919426,611,200

2,639,969617,740,800

2,654,689813,305,600

nPDB Size

* “easy” problems

AAAI05/Holte Handout, Slide 72

Rubik’s Cube CPU Time

1.00

9.87

13.43

14.31

12.09

Time Ratio

1.00

11.53

19.85

23.28

23.15

Nodes Ratio

6

4

2

1

8

#PDBs

time/node is 1.67x higher using six PDBs

AAAI05/Holte Handout, Slide 73

Why Does Max’ing
Speed Up Search ?

AAAI05/Holte Handout, Slide 74

Static Distribution
of Heuristic Values

max of 5 small PDBs.

1 large PDB.
2.38x nodes generated

15-puzzle,
100M states.

AAAI05/Holte Handout, Slide 75

Runtime Distribution
of Heuristic Values

AAAI05/Holte Handout, Slide 76

Example of Max Failing

8,13216,3125,581TOTAL

8201,8391,19720

2,4355,48019

2,0563,6222,67918

9491,99417

8161,3481,04516

40080115

31453044014

12426913

9618814212

5311011

43785910

16369

1017198

max(h1,h2)h2h1Depth Bound

AAAI05/Holte Handout, Slide 77

Squeezing More into Memory

AAAI05/Holte Handout, Slide 78

Approaches

• Compress an individual Pattern Database
– Lossless compression

– Lossy compression must maintain admissibility
– Allows you to

• use a PDB bigger than will fit in memory
• use multiple PDBs instead of just one

• Merge two PDBs into one the same size
– Culberson & Schaeffer’s dovetailing

AAAI05/Holte Handout, Slide 79

Compression Results

• 16-disk 4-peg TOH, PDB based on 14 disks
– No compression: 256Megs memory, 14.3 secs
– lossless compression: 256k memory, 23.8 secs
– Lossy compression: 96Megs, 15.9 secs

• 15-puzzle, additive PDB triple (7-7-1)
– No compression: 537Megs memory, 0.069 secs
– Lossy compression, two PDB triples

537Megs memory, 0.021 secs

AAAI05/Holte Handout, Slide 80

Additive Pattern Databases

AAAI05/Holte Handout, Slide 81

Adding instead of Max’ing

• Under some circumstances it is possible to
add the values from two PDBs instead of
just max’ing them and still have an
admissible heuristic.

• This is advantageous because*
h1(s) + h2(s) ≥≥≥≥ max(h1(s), h2(s))

* but see slide “Compared to Max’ing”

AAAI05/Holte Handout, Slide 82

Manhattan Distance Heuristic

For a sliding-tile puzzle, Manhattan Distance
looks at each tile individually, counts how
many moves it is away from its goal
position, and adds up these numbers.

32

1

21

3

goal state s

MD(s) = 2 + 1 + 2 = 5

AAAI05/Holte Handout, Slide 83

M.D. as Additive PDBs (1)

1

1

ϕϕϕϕ1(s)

ϕϕϕϕ1(x)=
x if x = 1

blank otherwise

ϕϕϕϕ1(goal)
MD(s) = PDB1[ϕϕϕϕ1(s)]

+ PDB2[ϕϕϕϕ2(s)]

+ PDB3[ϕϕϕϕ3(s)]

PDB1[ϕϕϕϕ1(s)] = 2

AAAI05/Holte Handout, Slide 84

In General…

Partition the tiles in groups, G1, G2, … Gk

x if x ∈∈∈∈ Gi

blank otherwise
ϕϕϕϕi(x)=

AAAI05/Holte Handout, Slide 85

Korf & Felner’s Method

Partition the tiles in groups, G1, G2, … Gk

ϕϕϕϕi(x)=
x if x ∈∈∈∈ Gi

blank if x = blank

otherwise

Moves of cost zero

AAAI05/Holte Handout, Slide 86

What’s the Difference ?

24

1

24

1

4

21

24

1

24

1
the blank cannot

reach this position
without disturbing

tile 1 or tile 2.

AAAI05/Holte Handout, Slide 87

Compared to Max’ing

• If the PDBs were going to be max’d
instead of added, we would count all the
moves in all the PDBs.

• Therefore the PDBs for adding have
smaller entries than the corresponding
PDBs for max’ing.

• In initial experiments on the 15-puzzle,
max’ing returns a higher value than adding
for about 12% of the states.

AAAI05/Holte Handout, Slide 88

Customized PDBs

AAAI05/Holte Handout, Slide 89

Space-Efficient PDBs

• Zhou & Hansen (AAAI, 2004)
– Do not generate PDB entries that are provably

not needed to solve the given problem.
– Prune abstract state A if f(A) > U,

where U is an upper bound on the solution cost
at the base level.

• To work well, needs a heuristic to guide the
abstract search and a fairly tight U.

• Even then requires significantly more
memory than Hierarchical IDA*.

AAAI05/Holte Handout, Slide 90

Reverse Resumable A*

• Silver, 2005
• Aims to minimize the number of PDB entries

– Backward search from abstract goal stops when
abstract start is reached

– If h(x) is needed and has not been computed,
resume the abstract search until you get it.

• Requires abstract Open and Closed lists.

AAAI05/Holte Handout, Slide 91

Super-Customization

• If customizing an abstraction for a given start
state is a good idea, wouldn’t it be even
better to change abstractions in the middle of
the search space to exploit local properties ?

• This does pay off sometimes, even for PDBs:
– Felner, Korf & Hanan (2004)

– Hernadvolgyi (2003; also PhD thesis, chapter 5)

AAAI05/Holte Handout, Slide 92

Related Algorithm – CFPD

AAAI05/Holte Handout, Slide 93

CFDP

• Coarse-to-Fine Dynamic Programming
• Works on continuous or discrete spaces.
• Most easily explained if space is a trellis (level

structure).
• Abstraction = grouping states on the same level.
• Multiple levels of abstraction.
• Resembles refinement, but guaranteed to find

optimal solution.
• Application: finding optimal convex region

boundaries in an image.

AAAI05/Holte Handout, Slide 94

S
G

A

E

H

C

1

5

1

10

20

10

20

B

F

I

D

10

5

50

50

1

20

More

10

CFDP - Example

AAAI05/Holte Handout, Slide 95

S
G

A

E

H

C

1

5

1

10

20

10

20

B

F

I

D

10

5

50

50

1

20

More, all > 30 at
coarsest level

10

CFDP – Coarsest States

AAAI05/Holte Handout, Slide 96

S
G

1
1

5

1

10

CFDP – Abstract Edges

Optimal solution

More, all > 30 at
coarsest level

AAAI05/Holte Handout, Slide 97

S
G

A

C

1

5

1

10

10

10

5

1

10

CFDP – Refine Optimal Path

Optimal solution

More, all > 30 at
coarsest level

AAAI05/Holte Handout, Slide 98

S
G

A

C

1

5

1

10

10

B

D

10

5

50

50

1

10

CFDP – Refine Optimal Path

Optimal solution

More, all > 30 at
coarsest level

AAAI05/Holte Handout, Slide 99

S
G

A

C

1

5

1

10

20

10

B

F

I

D

10

5

50

50

1

20

10

CFDP – Refine Again

Optimal solution

More, all > 30 at
coarsest level

AAAI05/Holte Handout, Slide
100

S
G

A

E

H

C

1

5

1

10

20

10

20

B

F

I

D

10

5

50

50

1

20

10

CFDP – Final Iteration

Final solution

Still at the coarsest levelMore, all > 30 at
coarsest level

