

Parsing

- Klein & Manning (2003)
- Used A* to find the most probable parse of a sentence.
- A "state" is a partial parse, g(s) is the "cost" of the parsing completed in s, h(s) estimates the "cost" of completing the parse.
- The heuristic is defined by simplifying the grammar, and is precomputed and stored in a lookup table.
- Special purpose code was written to compute the heuristic.
- Eliminates 96% of the work done by exhaustive parsing.

 AAA105/Holte Handout, Slide 5
 AAAIO5/Holte Handout, Slide 5

Dynamic Programming – SSR

- State Space Relaxation = mapping a state space onto another state space of smaller cardinality.
- Christofides, Mingozzi, and Toth (1981)
- Abstraction: very general definition and several different examples of abstractions for TSP and routing problems.
- Implemented but not thoroughly tested.
- Noted that the effectiveness of this method depends on how the problem is formulated.
- Did not anticipate creating a hierarchy of abstractions.

AAAI05/Holte Handout, Slide 6

ALBERTA INGENUITY CENTRE FOR MACHINE LEARNING

Weighted Logic Programs

- Felzenszwalb & McAllester (unpublished)
- Generalizes the statistical parsing and dynamic programming methods to the problem of finding a least-cost derivation of a set of statements (the "goal") given a set of weighted inference rules.
- Inference at multiple levels of abstraction is interleaved.
- Application: finding salient contours in an image.

QoS Network Routing

- Li, Harms & Holte (2005)
- Find a least-cost path from start to goal subject to resource constraints.
- Each edge in the network has a cost and consumes some amount of resources.
- There are separate h(s) functions for the cost and for each type of resource.
- h_r(s) is defined as the minimum cost of reaching the goal from state s subject only to constraints on resource r.

AAAI05/Holte Handout, Slide 8

AAAI05/Holte Handout, Slide 7

ALBERTA INGENUITY CENTRE

ACHINE IFARNIN

Sequential Ordering Problem

- Hernadvolgyi (2003)
- S.O.P. is the Travelling Salesman Problem with:
 - Asymmetric costs
 - Precedence constraints (must visit city A before city B)

AAAI05/Holte Handout, Slide 9

Co-operative Pathfinding

- Silver (2005)
- Many agents, each trying to get from its current position to its goal position.
- Co-operative = agents want each other to succeed and will plan paths accordingly.
- Need a very efficient algorithm (because in computer games very little CPU time is allocated to pathfinding).

AAAI05/Holte Handout, Slide 10

ALBERTA INGENUITY CENTRE

ALBERTA INGENUITY

Vertex Cover

ALBERTA INGENUITY CENTRE FO

ALBERTA INGENUITY CENT

- Felner, Korf & Hanan (2004)
- fastest known algorithm for finding the smallest subset of vertices that includes at least one endpoint for every edge in the given graph.

Multiple Sequence Alignment

- Korf & Zhang (2000)
- McNaughton, Lu, Schaeffer & Szafron (2002)
- Zhou & Hansen (AAAI, 2004)
- Sets of N sequences are optimally aligned according to a mismatch scoring matrix.
- The heuristic is to find optimal matches of disjoint subsets of size k<N and add their scores.

AAAI05/Holte Handout, Slide 12

Building Macro-Tables

- Hernadvolgyi (2001)
- A macro-table is an ultra-efficient way of constructing suboptimal solutions to problems that can be decomposed into a sequence of subgoals.
- For the jth subgoal, and every possible state that satisfies subgoals 1...(j-1), the macro-table has an entry – a sequence of operators that maps the state to a state satisfying subgoals 1...j.
- Solutions are built by concatenating entries from the macro-table.
- Constructing the table is the challenge. Each entry is found by search. Heuristics are needed to find optimal entries in reasonable time.

```
AAAI05/Holte Handout, Slide 13
```

ALBERTA INGENUITY CENTRE FOR MACHINE LEARNING

Planning

- Edelkamp, 2001
- Bonet & Geffner, 2001
- Haslum & Geffner, 2000
- Abstraction is computed automatically given a declarative state space definition.
- Has been used successfully with a variety of different abstraction methods and search techniques. Some guarantee optimal solutions, many do not.

AAAI05/Holte Handout, Slide 14

ALBERTA INGENUITY CENTRE FOR MACHINE LEARNING

ALBERTA INGENUITY CENTR

CHINE IFA

Constrained Optimization

- Kask & Dechter (2001)
- Mini-bucket elimination (MBE) provides an optimistic bound on solution cost, and therefore can be used to compute an admissible heuristic for A*, branch-and-bound, etc.
- MBE relaxes constraints. The objective function min_{a,b,c}{f(a,b)+g(b,c)} is relaxed to min_{a,b}{f(a,b)} + min_{b,c}{g(b,c)}, in effect dropping the constraint that the two values of b be equal.
- Applications include max-CSP and calculating the most probable explanation of observations in a Bayesian network.

AAAI05/Holte Handout, Slide 15

Historical Notes

Prehistory: Two Key Ideas

Using Lower Bounds to Prune Search

- 1958: branch-and-bound
- 1966 (Doran & Michie): Graph Traverser, first use of estimated distance-to-goal to guide state space search.

1968 (Hart, Nilsson, Raphael): A*

Using Abstraction to Guide Search

1963 (Minsky): abstraction=simplified problem + refinement

1974 (Sacerdoti): ABSTRIPS

AAAI05/Holte Handout, Slide 17

Somalvico & colleagues (1976-79)

- Brought together the two key ideas.
- Proposed mechanically generating an abstract space by dropping preconditions.
- Proved this would produce admissible, monotone heuristics.
- Envisaged a hierarchy of abstract levels, with search at one level guided by a heuristic defined by distances at the level above.

Edge Supergraph

- Relaxing preconditions introduces additional edges between states and might add new states (by making a state reachable that is not reachable with the original preconditions).
- e.g. there is no edge from X to Y because of a precondition. If it is relaxed, there is an edge.

AAAI05/Holte Handout, Slide 19

ALBERTA INGENUITY CENTRE FOR MACHINE LEARNING

ALBERTA INGENUITY CENTRE FOI

Gaschnig (1979)

AAAI05/Holte Handout, Slide 18

- Proposed that the cost of solutions in space S could be estimated by the exact cost of solutions in auxiliary space T.
- Estimates are admissible if T is an edge supergraph of S.
- Observes: "If T is solved by searching this could consume more time than solving in S directly with breadth-first search."

- T should be supplied with an efficient solver

AAAI05/Holte Handout, Slide 20

ALBERTA INGENUITY CENTRE I

Valtorta (1980,1984) Pearl (1984) • Famous book, Heuristics Proved that Gaschnig was right! Theorem: If T is an edge supergraph of S, Popularized the idea that heuristics could and distances in T are computed by BFS, very often be defined as exact costs to and A* with distances in T as its heuristic is "relaxed" versions of a problem. used to solve problem P, then for any $s \in S$ • To be efficiently computable, the heuristics that is necessarily expanded if BFS is used should be semi-decomposable. to solve P, either: Proposed searching through the space of -s is expanded by A^{*} in S, or relaxations for semi-decomposable ones. - s is expanded by BFS in T ALBERTA INGENUITY CENTRE FOI ALBERTA INGENUITY CENTRE F AAAI05/Holte Handout, Slide 21 AAAI05/Holte Handout, Slide 22 Mostow & Prieditis cont'd Mostow & Prieditis (1989) ABSOLVER, implemented the idea of searching When a good abstraction is found, ABSOLVER through the space of abstractions AND speed-up calls itself recursively to create a hierarchy of transformations. abstractions, in order to speedup the computation of the heuristic. Reiterated that computing a heuristic by search at the abstract level is generally ineffective. Had a library with a variety of abstractions and Added in 1993 (Prieditis): speedups, not just "relax" and "factor". To make a heuristic "effective" precompute all the First successful automatic system for generating heuristic values before base-level search begins effective heuristics. and store them in a hash table (today called a "pattern database"). Emphasized that success depends on having the right problem formulation to start with. ALBERTA INGENUITY CENTRE ALBERTA INGENUITY <mark>CE</mark> AAAI05/Holte Handout, Slide 23 AAAI05/Holte Handout, Slide 24 ACHINE IFARNI

Hansson, Mayer, Valtorta (1992)

- Generalized Valtorta's theorem to show that a hierarchy of abstractions created by relaxing preconditions was no use.
- Pseudocode for Hierarchical A*.

Culberson & Schaeffer (1996)

AAAI05/Holte Handout, Slide 25

- 1994: technical report with full algorithm and results for pattern databases (PDB)
- 1996: first published account of PDBs
- Impressive results: 1000x faster than Manhattan Distance on the 15-puzzle.
- Several good ideas:
 - A general and effective type of abstraction
 - Efficiently precomputing and storing all the abstract distances
 - Exploiting problem symmetry
 - "Dovetailing" two PDBs

Using Memory to Speed Up Search

- 1985 (Korf): IDA*
- 1989 (Chakrabarti et al.): MA*
- 1992 (Russell): IE, SMA*
- 1994 (Dillenburg & Nelson): Perimeter Search
- 1994 (Reinefeld & Marsland): Enhanced IDA*

ALBERTA INGENUITY CENTRE I

ALBERTA INGENUITY <mark>CE</mark>

• 1994 (Ghosh, Mahanti & Nau): ITS

Holte (1996)

AAAI05/Holte Handout, Slide 26

- 1994: published the Hierarchical A* idea.
- 1996: published working HA* algorithm, generalized Valtorta's Theorem to all kinds of abstractions, and showed (theoretically and experimentally) that speedup was possible with Hierarchical Heuristic Search if homomorphic abstractions are used.

ALBERTA INGENUITY CENTRE FOI

Comparison - Memory

- Pattern Databases
 - Perfect hash function
 - No empty hash table entries
 - Each entry stores only a distance (15-puzzle: 1 byte)
 - Only a tiny fraction of entries are needed to solve an individual search problem
- Hierarchical Heuristic Search
 - Imperfect hash function (15-puzzle: 8 bytes)
 - Multiple levels of abstraction, not just one
 - Only store entries needed to solve the given problem

ALBERTA INGENUITY CENTRE FOI

MACHINE LEARNING

AAAI05/Holte Handout, Slide 55

%PDB Entries Actually Needed

FDD SIZE	#needed	%
(000s)	(000s)	
4,151,347	2,657	0.06
4,151,347	787	0.02
57,657	3,423	5.9
17,297	229	1.3
	(000s) 4,151,347 4,151,347 57,657 17,297	(000s)(000s)4,151,3472,6574,151,34778757,6573,42317,297229

AAAI05/Holte Handout, Slide 56

MACHINE LEARNIN

Perfect Hashing of Permutations

- Often a state (base-level, not abstract) is a permutation, e.g. the 15-puzzle*.
- Myrvold & Ruskey (2001) give an algorithm for mapping a permutation on N values to an integer 0...(N!-1) and the inverse mapping.
- Both are O(N). (for the 15-puzzle, N=16).
- Their mapping does not give lexicographic order (see Korf 2005 if you want this).

Only half of the 16! states of the15-puzzle are reachable so for a truly perfect hash function the last two constants have to be treated as justione.

Myrvold & Ruskey Hash Function

- given state S, an array indexed by 0...(N-1) containing the values 0...(N-1).
- 1. initialize array W*, W[S[i]]=i for $0 \le i \le (N-1)$
- 2. perfect hash index for S = HASH(N,S,W)

HASH(N,S,W):

- 1. IF (N == 1) RETURN(0)
- 2. D = S[N-1]
- 3. SWAP(S[N-1], S[W[N-1]])
- 4. SWAP(W[N-1], W[D])
- 5. RETURN(D + N*HASH(N-1,S,W))

Example S (permuta D N Value(N)=D+N*Value(N-1) 188 = 2 + 6*315 0 6 3 4 1 5 5 3 0 2 = 1 + 5*64 31 5 3 4 4 6 $= 2 + 4^{*1}$ 0 1 $= 1 + 3^{*}0$ 2 3 5 3 1 4 0 5 2 3 2 0 $= 0 + 2^{*}0$ 4 1 3 2 4 5 0 0 1 ALBERTA INGENUITY CENTRE AAAI05/Holte Handout, Slide 63 MACHINE LEARNIN

Hashing Abstract States

* W stands for "where". W[v] is the location of x in S

AAAI05/Holte Handout, Slide 62

- An abstract state has the same number of locations (N) as a state but only K of them contain distinct values V₁...V_K, the rest of the locations contain "don't care".
- The array S, in this case, is indexed by 0...(N-1), and S[N-a] contains the location of value V_a when 1≤a≤K. S[0]...S[N-K-1] contain the locations of the "don't cares".
- Use the Myrvold & Ruskey hash function but stop the recursion after K iterations.

AAAI05/Holte Handout, Slide 64

ALBERTA INGENUITY CENTRE F

MACHINE IFARNING

