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Create a simplified version of your problem.

Use the exact distances in the simplified version
as heuristic estimates in the original.
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Applications
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Puzzles

* Rubik’'s Cube (Korf, 1997)
— 10%° states

— First random problems ever solved optimally by a
general-purpose search algorithm

— Hardest took 17 CPU-days

— Best known MD-like heuristic would have taken a
CPU-century

» 15-puzzle

— 1013 states

— Average solution time 0.021 seconds, with only
36,000 nodes expanded
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Parsing

Klein & Manning (2003)

Used A* to find the most probable parse of a
sentence.

A “state” is a partial parse, g(s) is the “cost” of the
parsing completed in s, h(s) estimates the “cost” of
completing the parse.

The heuristic is defined by simplifying the
grammar, and is precomputed and stored in a
lookup table.

Special purpose code was written to compute the
heuristic.

Eliminates 96% of the work done by exhaustive
parsing.
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Dynamic Programming — SSR

State Space Relaxation = mapping a state space
onto another state space of smaller cardinality.
Christofides, Mingozzi, and Toth (1981)
Abstraction: very general definition and several

different examples of abstractions for TSP and
routing problems.

Implemented but not thoroughly tested.

Noted that the effectiveness of this method
depends on how the problem is formulated.

Did not anticipate creating a hierarchy of
abstractions.
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Weighted Logic Programs

Felzenszwalb & McAllester (unpublished)

Generalizes the statistical parsing and
dynamic programming methods to the
problem of finding a least-cost derivation
of a set of statements (the “goal”) given a
set of weighted inference rules.

Inference at multiple levels of abstraction
is interleaved.

Application: finding salient contours in an
image.
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QoS Network Routing

Li, Harms & Holte (2005)

Find a least-cost path from start to goal
subject to resource constraints.

Each edge in the network has a cost and
consumes some amount of resources.

There are separate h(s) functions for the
cost and for each type of resource.

h.(s) is defined as the minimum cost of
reaching the goal from state s subject only
to constraints on resource r. ,
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Sequential Ordering Problem Co-operative Pathfinding

» Hernadvolgyi (2003)  Silver (2005)
e S.0O.P. is the Travelling Salesman Problem * Many agents, each trying to get from its
with: current position to its goal position.

— Asymmetric costs

— Precedence constraints (must visit city A
before city B)
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Co-operative = agents want each other to
succeed and will plan paths accordingly.

Need a very efficient algorithm (because in
computer games very little CPU time is
allocated to pathfinding).
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Vertex Cover

Multiple Sequence Alignment

* Felner, Korf & Hanan (2004)

« fastest known algorithm for finding the
smallest subset of vertices that includes at
least one endpoint for every edge in the
given graph .
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Korf & Zhang (2000)

McNaughton, Lu, Schaeffer & Szafron (2002)

Zhou & Hansen (AAAI, 2004)

Sets of N sequences are optimally aligned
according to a mismatch scoring matrix.

The heuristic is to find optimal matches of
disjoint subsets of size k<N and add their
scores.
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Building Macro-Tables

Hernadvolgyi (2001)

A macro-table is an ultra-efficient way of
constructing suboptimal solutions to problems that
can be decomposed into a sequence of subgoals.

For the jt subgoal, and every possible state that
satisfies subgoals 1...(j-1), the macro-table has
an entry — a sequence of operators that maps the
state to a state satisfying subgoals 1...].

Solutions are built by concatenating entries from
the macro-table.

Constructing the table is the challenge. Each
entry is found by search. Heuristics are needed to
find optimal entries in reasonable time.

) A\ ALBERTA INGENUITY N
|LAAAI05/Holte _Handout, Slide 13 | 428 ;

Planning

Edelkamp, 2001
Bonet & Geffner, 2001
Haslum & Geffner, 2000

Abstraction is computed automatically
given a declarative state space definition.

Has been used successfully with a variety
of different abstraction methods and
search techniques. Some guarantee
optimal solutions, many do not.
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Constrained Optimization

Kask & Dechter (2001)

Mini-bucket elimination (MBE) provides an
optimistic bound on solution cost, and therefore
can be used to compute an admissible heuristic
for A*, branch-and-bound, etc.

MBE relaxes constraints. The objective function
ming, , off(a,b)+g(b,c)} is relaxed to

ming, 1 f(a b)} + ming, .{g(b,c)}, in effect dropping
the constralnt that the two values of b be equal.

Applications include max-CSP and calculating
the most probable explanation of observatlons in
a Bayesian network.
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Historical Notes
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Prehistory: Two Key ldeas

Somalvico & colleagues (1976-79)

Using Lower Bounds to Prune Search
1958: branch-and-bound
1966 (Doran & Michie): Graph Traverser, first use of

estimated distance-to-goal to guide state space
search.

1968 (Hart, Nilsson, Raphael): A*

Using Abstraction to Guide Search

1963 (Minsky): abstraction=simplified problem
+ refinement

1974 (Sacerdoti): ABSTRIPS
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* Brought together the two key ideas.

» Proposed mechanically generating an
abstract space by dropping preconditions.

* Proved this would produce admissible,
monotone heuristics.

» Envisaged a hierarchy of abstract levels, with
search at one level guided by a heuristic
defined by distances at the level above.
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Edge Supergraph

Gaschnig (1979)
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» Relaxing preconditions introduces additional
edges between states and might add new states
(by making a state reachable that is not
reachable with the original preconditions).

* e.g. there is no edge from X to Y because of a
precondition. If it is relaxed, there is an edge.
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» Proposed that the cost of solutions in
space S could be estimated by the exact
cost of solutions in auxiliary space T.

» Estimates are admissible if T is an edge
supergraph of S.

» Observes: “If T is solved by searching this
could consume more time than solving in
S directly with breadth-first search.”

— T should be supplied with an efficient solver
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Valtorta (1980,1984)

* Proved that Gaschnig was right!

e Theorem: If T is an edge supergraph of S,
and distances in T are computed by BFS,
and A* with distances in T as its heuristic is
used to solve problem P, then for any sIS
that is necessarily expanded if BFS is used
to solve P, either:

—sis expanded by A*in S, or
—sis expanded by BFSin T
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Pearl (1984)

Famous book, Heuristics

» Popularized the idea that heuristics could
very often be defined as exact costs to
“relaxed” versions of a problem.

* To be efficiently computable, the heuristics
should be semi-decomposabile.

» Proposed searching through the space of
relaxations for semi-decomposable ones.
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Mostow & Prieditis (1989)

 ABSOLVER, implemented the idea of searching
through the space of abstractions AND speed-up
transformations.

* Reiterated that computing a heuristic by search at
the abstract level is generally ineffective.

» Had a library with a variety of abstractions and
speedups, not just “relax” and “factor”.

 First successful automatic system for generating
effective heuristics.

* Emphasized that success depends on having the
right problem formulation to start with.

3 , ALBERTA INGENUITY
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Mostow & Prieditis cont'd

* When a good abstraction is found, ABSOLVER
calls itself recursively to create a hierarchy of
abstractions, in order to speedup the
computation of the heuristic.

Added in 1993 (Prieditis):

To make a heuristic “effective” precompute all the
heuristic values before base-level search begins
and store them in a hash table (today called a
“pattern database”).
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Hansson, Mayer, Valtorta (1992)

» Generalized Valtorta’'s theorem to show
that a hierarchy of abstractions created by
relaxing preconditions was no use.

* Pseudocode for Hierarchical A*.
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Using Memory to Speed Up Search

1985 (Korf): IDA*

1989 (Chakrabatrti et al.): MA*

1992 (Russell): IE, SMA*

1994 (Dillenburg & Nelson): Perimeter Search
1994 (Reinefeld & Marsland): Enhanced IDA*
1994 (Ghosh, Mahanti & Nau): ITS
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Culberson & Schaeffer (1996)

» 1994: technical report with full algorithm and
results for pattern databases (PDB)

» 1996: first published account of PDBs

» Impressive results: 1000x faster than Manhattan
Distance on the 15-puzzle.

» Several good ideas:
— A general and effective type of abstraction

— Efficiently precomputing and storing all the abstract
distances

— Exploiting problem symmetry
— “Dovetailing” two PDBs
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Holte (1996)

* 1994: published the Hierarchical A* idea.

* 1996: published working HA* algorithm,
generalized Valtorta’s Theorem to all kinds
of abstractions, and showed (theoretically
and experimentally) that speedup was
possible with Hierarchical Heuristic Search
if homomorphic abstractions are used.
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Defining Abstractions
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Domain Abstraction

1 2
3 4 5
6 7 8
state » abstract state

Domain =blank 1
Abstract = blank =

LI\
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m O
=
m O

Finer-grained Domain Abstraction

Possible Domain Abstractions

1] 2
3141]5
6| 71]8

Domain=blank 1 2 345
Abstract=blank ¥® & ®

30,240 abstract states
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Easy to enumerate all possible domain
abstractions
Domain=blank 1 2 3456 7 8
Abstract=blank W8 8 0 B ® O ®

They form a lattice, e.qg.

Domain=blank 1 23456 7 8
Abstract=blank DO ®mR 0O O®R O O

iIs “more abstract” than the domain abstraction
above

[ AAAIOS/Holte Handout, Slide 32 |

ALBERTA INGENUITY CENTRE FOR
MACHINE |LEAR N

ALBERTA INGENUITY CENTRE FOR
MACHINE LEAR




The Arrow Puzzle

LR

operator A: flip Arrowl, flip Arrow2
operator B: flip Arrow2, flip Arrow3
operator C: flip Arrow3, flip Arrow4
operator D: flip Arrow4, flip Arrow5
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Solve a Subproblem
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Solve any 4-arrow subproblem, e.g.
e

For many problems this will reduce the
state space exponentially while only
reducing the solution lengths linearly,
so heuristics are accurate and quick to
calculate.
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Projection

Remove all references to Arrow4
® © ®

operator A: flip Arrowl, flip Arrow2
operator B: flip Arrow2, flip Arrow3
operator C: flip Arrow3

operator D: flip Arrow5
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Towers of Hanol puzzle
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3-disk TOH State Space Abstract State = Group of States

This grouping
corresponds to solving
the subproblem with the
2 largest disks.
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Spoiled for Choice

* Any way of doing any of these methods
produces an admissible and consistent
heuristic.

» Moreover, domain abstraction and
projection produce different heuristics
when applied to different encodings of the
search space.

» And, the techniques can be used in
combination with one another.

Choosing Good Abstractions
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Size Matters Korf & Reid (1998)
~ - . Total nodes expanded = 2N(j)*P(j,d-j)
. -puzzle
% —_—— ] — N()) = # nodes at level j in the brute-force tree
g 5 il E — P(j,X) = % of nodes, n, at level j with h(n) < x
Ly + N()=b
g : |l ! ' : (b is the branching factor in the brute force tree)
O @ 7 - .
g Iy, . P(j,dj) = ?7?
” — for a pattern database (defined in a few slides)
] — this can be computed exactly*
# of abstract states * assuming every entry in the PDB represents the same number of states
. and that j can be ignored
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Prediction of Search Time (A*) Good, Easy-to-Compute Measures
O o — - average value in a Pattern Database

va00 |-  the value of h(start)

1100

1000 |

* When there are non-identical edge costs:

=T s ] Aim to minimize the discrepancy of the
N : costs of edges that get merged.

Korf & Reid’ s prediction

1
900 1000 1100

ecl)o 7cl)o SCI)O
actual # nodes expanded
° & ALBERTA INGENUITY

[ AAAIOS/Holte Handout, Slide 43 | f{,}?

L
400 500

; ALBERTA INGENUITY ¢
|| AAAIO5/Holte Handout, Slide 44 || V' / N - "
y / A VAL




Computing Abstract Distances
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Calculating h(s)

8l1]4
Given a state, s |3 5

6(7]2

Compute the corresponding
abstract state, @(s)

n(s) = distance(@(s) ¢(goal) = 2
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Two Main Approaches

o Pattern Databases

— all possible h(s) values calculated in advance,

in a preprocessing step
— Culberson & Schaeffer (1996)

 Hierarchical Heuristic Search
— h(s) values calculated on demand
— Holte et al. (1996), Hierarchical A*
— Holte et al. (2005), Hierarchical IDA*
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Pattern Databases
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* Enumerate the entire abstract space as a
preprocessing step (e.g. by breadth-first
search backwards from ¢(goal)).

» Store distance-to-goal for every abstract
state in a lookup table (PDB).

» During search in the original state space,
h(s) is computed by a lookup in the PDB.

A
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Abstract State Space

< oo |
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Pattern Database

e ol [l o B AR T

1 2 2 2

Distance to goal 0 1

o W ER

Distanceto goal 3 3 4
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Hierarchical Heuristic Search

* NO preprocessing.

* When h(s) is needed, it is calculated by
searching for a shortest path in the
abstract space from ¢(s) to ¢(goal).

* Need to cache all information about

abstract distance-to-goal and reuse,
otherwise this will be hopelessly inefficient.
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Code Comparison

PDB has this line:
h(s) = PDB[ ¢(s) ]

Hierarchical Heuristic Search has:
h(s) = search(g(s), ¢(goal) )

ﬂ

(recursive) call to a search algorithm to compute
the abstract distance to goal for state s

ALBERTA INGENUITY CE}
MACHINE LEAR
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Hierarchical Heuristic Search

Abstract space, @,(Q(S))
f-

Abstract space, @
I-.

Original space, S
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Comparison - Time

» Pattern Databases
— Large preprocessing time
* 15-puzzle: 3 hours*
» TopSpin: 50 minutes*
— Very fast h(s) computation during search
» 15-puzzle instance solved in 0.028 seconds (avg)
 Hierarchical Heuristic Search
— No preprocessing time
— Relatively slow h(s) computation

Times are for the best-performing PDBs. Smaller PDBs take less time to build
but take correspondingly longer to solve problems.
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Comparison - Memory

» Pattern Databases

— Perfect hash function
* No empty hash table entries
e Each entry stores only a distance (15-puzzle: 1 byte)

— Only a tiny fraction of entries are needed to solve an
individual search problem

 Hierarchical Heuristic Search
— Imperfect hash function (15-puzzle: 8 bytes)
— Multiple levels of abstraction, not just one
— Only store entries needed to solve the given problem
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%PDB Entries Actually Needed

State Space | PDB size |#needed %
(000s) (000s)
15-puzzle 4,151,347 2,657 0.06
Macro-15 4,151,347 787 0.02

(17,4)-TopSpin 57,657 3,423 5.9

14-Pancake 17,297 229 1.3
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When to Use Each Approach ?

 |f the same abstraction can be used to
solve many problems, use PDB.

* If there is only one problem to solve, or a
small batch of problems, use Hierarchical
Heuristic Search.
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Implementation Issues
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Pattern Databases

* |deally, use a perfect hashing function.

* More memory is needed to create the PDB
than to store it, because of the Open and
Closed lists needed for breadth-first search.
— may need to use a disk-based implementation of

breadth-first search (Korf's DDD) and other
space-saving measures such as Frontier search.
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Perfect Hashing Function

Every time a state, s, is generated need to
lookup h(s) in the pattern database.

PDB[¢(s)] really is
PDB[hash(¢(s))]

where hash(x) maps an abstract state, x, to an
integer in the range 0...(PDBsize-1).

Because it is used so often, hash(x) needs to be
as efficient as possible.

We also want it to be perfect so that PDBsize
can equal the number of abstract states with no
collisions.
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Perfect Hashing of Permutations

Often a state (base-level, not abstract) is a
permutation, e.g. the 15-puzzle*.

Myrvold & Ruskey (2001) give an algorithm
for mapping a permutation on N values to an
integer 0...(N!-1) and the inverse mapping.

Both are O(N). (for the 15-puzzle, N=16).

Their mapping does not give lexicographic
order (see Korf 2005 if you want this).

Only half of the 16! states of thel5-puzzle are reachable so for a truly perfect hash
function the last two constants have to be treated as jusione.
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Myrvold & Ruskey Hash Function

given state S, an array indexed by 0...(N-1) containing the
values 0...(N-1).

1. initialize array W*, W[S]i]]=i for 0<i<(N-1)
2. perfect hash index for S = HASH( N, S, W

HASH(N, S, W :

1. IF (N == 1) RETURN(0)

2. D= S[N1]

3. SWAP( S[N-1], SIWN-1]] )

4, SWAP( WN-1], WD )

5. RETURN( D + NFHASH(N-1,S, W )

| * W stands for “where”. W[v] is the location of & in S |

n 70 ALBERTA INGENUITY
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Example
S (permutg\[l\ N Value(N)=D+N*Value(N-1)
3/0(4|5]1 6 188 = 2 + 6*31
3/0(4|2|@|5| 5 31 = 1+5%
3/0(1|@|4|5]| 4 6 = 2+4*1
2/0/@|3|4|5| 3 1 =1+3*0
1|@2(3|4|5]| 2 0 =0+2*
0/1(2(3|4|5] 1 0
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Hashing Abstract States

» An abstract state has the same number of
locations (N) as a state but only K of them
contain distinct values V,...V,, the rest of
the locations contain “don’t care”.

* The array S, in this case, is indexed by
0...(N-1), and S[N-a] contains the location
of value V, when 1=sas<K. S[0]...S[N-K-1]
contain the locations of the “don’t cares”.

» Use the Myrvold & Ruskey hash function
but stop the recursion after K iterations.
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Example

State= [4|0|5|2|1]3

domain =012 3 45
abstract=x 1 x 3 x 5

Abstract State = | x | x |[5|x |13

Permutation to use in the algorithm:
0/1[3/4|5]|2

Location of 1 ’ Location of Kocation of 5

A
A
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Hierarchical Heuristic Search

» To get high performance, the Hierarchical
Search algorithm is more complex than
the naive version described earlier.

— "optimal path caching"
—"P-g caching"
— Various code & data structure optimizations

» Selecting abstractions and cache sizes is
not automatic, and is non-trivial

A
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Optimal Path Caching

P-g Caching

Cache[X] = exact distance 3

On subsequent searches ...

A
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P = solution length
g = distance from S to X.
P-g never overestimates distance from Xto G

cache[X] = max(cache[X], P-0)
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Question

Max’ing Multiple Heuristics

» Given heuristics hl and h2 define
h(s) = max ( h1(s), h2(s) )
» Preserves key properties:

— lower bound
— consistency
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» Given a fixed amount of memory, M,
which gives the best heuristic ?

— 1 pattern database (PDB) of size M
— max’ing 2 PDBs of size M/2

— max’ing 3 PDBs of size M/3

— etc.
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Rubik’'s Cube*

PDB Size n | Nodes Generated
13,305,600 | 8 2,654,689
17,740,800 | 6 2,639,969
26,611,200 | 4 3,096,919
53,222,400 | 2 5,329,829
106,444,800 | 1 61,465,541
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Rubik’s Cube CPU Time

#PDBs | Nodes Ratio Time Ratio
8 23.15 12.09
6 23.28 14.31
4 19.85 13.43
2 11.53 9.87
1 1.00 1.00

time/node is 1.67x higher using six PDBs
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Why Does Max’ing
Speed Up Search ?

ALBERTA INGENUITY CENTRE FOR

Static Distribution
of Heuristic Values
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Runtime Distribution
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Example of Max Failing

wom viACHINE LEARNING

Depth Bound hl h2 max(h1,h2)
8 19 17 10
9 36 16
10 59 78 43
11 110 53
12 142 188 96
13 269 124
14 440 530 314
15 801 400
16 1,045 1,348 816
17 1,994 949
18 2,679 3,622 2,056
19 5,480 2,435
20 1,197 1,839 820
TOTAL 5,581 16,312 8,132

ALBERTA INGENUITY CENTRE FOR
MACHINE LEARNING
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Approaches

e Compress an individual Pattern Database
— Lossless compression

Squeezing More into Memory — Lossy compression must maintain admissibility

— Allows you to

 use a PDB bigger than will fit in memory
» use multiple PDBs instead of just one

* Merge two PDBs into one the same size
— Culberson & Schaeffer’s dovetailing
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Compression Results

» 16-disk 4-peg TOH, PDB based on 14 disks
— No compression: 256Megs memory, 14.3 secs

— lossless compression: 256k memory, 23.8 secs Additive Pattern Databases
— Lossy compression: 96Megs, 15.9 secs

» 15-puzzle, additive PDB triple (7-7-1)
— No compression: 537Megs memory, 0.069 secs
— Lossy compression, two PDB triples
537Megs memory, 0.021 secs
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Adding instead of Max’ing

» Under some circumstances it is possible to
add the values from two PDBs instead of
just max’ing them and still have an
admissible heuristic.

» This is advantageous because*
hy(s) + hy(s) 2 max(hy(s), hy(s))

| * but see slide “Compared to Max’ing” |
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Manhattan Distance Heuristic

For a sliding-tile puzzle, Manhattan Distance
looks at each tile individually, counts how
many moves it is away from its goal
position, and adds up these numbers.

1 3
MD(s)=2+1+2=5
2 3 1 2
goal state s

:"»x

[ AnAIOS/Holte Handout, Slide 82 ] 4 U,{f "\ALBERTA IR N

M.D. as Additive PDBs (1)

]

(I) (X)_ J X if x=1
A {blank otherwise
1 PDB,[(.(s)] = 2
1

¢ .(goal) 0.0 MD(s) = PDB,[{(s)]

+ PDB,[(,(s) ]
+ PDB;[((s) ]

‘\
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In General...
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Partition the tiles in groups, G,, G,, ... G,

¢ _ X if x0OG,;
i(X)_ blank otherwise

A
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Korf & Felner's Method

Partition the tiles in groups, G,, G,, ... G,

X if xOG,
®.(x)= {blank if x=blank
B otherwise

Moves of cost zero
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What's the Difference ?

ALBERTA INGENUITY CENTRE FOR
MACHINE LEARNING

the blank cannot

reach this position
without disturbing
tile 1 or tile 2.

ALBERTA INGENUITY CENTRE FOR
MACHINE LEARNING

Compared to Max’ing

* If the PDBs were going to be max’d
instead of added, we would count all the
moves in all the PDBs.

» Therefore the PDBs for adding have
smaller entries than the corresponding
PDBs for max’ing.

* In initial experiments on the 15-puzzle,
max’ing returns a higher value than adding
for about 12% of the states.
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Customized PDBs

ALBERTA INGENUITY CENTRE FOR
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Space-Efficient PDBs

* Zhou & Hansen (AAAI, 2004)

— Do not generate PDB entries that are provably
not needed to solve the given problem.

— Prune abstract state A if f(A) > U,

where U is an upper bound on the solution cost
at the base level.

» To work well, needs a heuristic to guide the
abstract search and a fairly tight U.

» Even then requires significantly more
memory than Hierarchical IDA*.

3 \ ALBERTA INGENUITY g
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Reverse Resumable A*

» Silver, 2005

e Aims to minimize the number of PDB entries

— Backward search from abstract goal stops when
abstract start is reached

—If h(x) is needed and has not been computed,
resume the abstract search until you get it.

» Requires abstract Open and Closed lists.

- 4O\ ALBERTA INGENUITY
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Super-Customization

* If customizing an abstraction for a given start
state is a good idea, wouldn’t it be even
better to change abstractions in the middle of
the search space to exploit local properties ?

» This does pay off sometimes, even for PDBs:
— Felner, Korf & Hanan (2004)
— Hernadvolgyi (2003; also PhD thesis, chapter 5)
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Related Algorithm — CFPD
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CFDP

Coarse-to-Fine Dynamic Programming
Works on continuous or discrete spaces.

Most easily explained if space is a trellis (level
structure).

Abstraction = grouping states on the same level.
Multiple levels of abstraction.

Resembles refinement, but guaranteed to find
optimal solution.

Application: finding optimal convex region
boundaries in an image.

A
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CFDP - Example

A
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CFDP — Coarsest States

More, all > 30 at N

coarsest level A
" £\ ALBERTA INGENUITY
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CFDP — Abstract Edges

Optimal solution N K@
/
10

More, all > 30 at

= coarsest level . ’
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CFDP — Refine Optimal Path

Optimal solution

10
More, all > 30 at
= coarsest level PR —
" ALBERTA INGENUITY Ct R
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CFDP — Refine Optimal Path

More, all > 30 at
= coarsest level ALBERTA INGENUITY CENTRE FOR
MACHINE LEA
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CFDP — Refine Again

More, all > 30 at
coarsest level ALBERTA INGENUITY CE
MACHIN E CAL
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CFDP — Final Iteration

Final solution

More, all > 30 at Still at the coarsest level

= coarsest level
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