Where Do Heuristics Come From ?
(Using Abstraction to Speed Up Search)

Outline

Robert C. Holte
Computing Science Department
University of Alberta

Complete set of slides and bibliography
available at:

http://www.cs.ualberta.ca/~holte/Heuristics

| © 2005, Robert Holte |

ALBERTA INGENUITY

| Heuristics/Holte Part 1, Slide 1 ||

Part 1: Introduction
— Refresher on heuristic search
— Using abstraction to create heuristics: basics
— Similar but different ideas
— Applications
— Historical notes
Part 2: Detalls

Part 3: Enhancements

ALBERTA INGENUITY

|| Heuristics/Holte Part 1, Slide 2 ||

Refresher on Heuristic Search

ALBERTA INGENUITY

| Heuristics/Holte Part 1, Slide 3 ||

Search

* Find a shortest (least cost) path between two
nodes (start, goal) in a given graph (state space).

» Typical “uninformed” algorithms (e.g. Dijkstra’s
algorithm) order their search based on g(s), a
state’s distance from the start state.

» The state space is usually defined implicitly, by
a set of operators.

ALBERTA INGENUITY

|| Heuristics/Holte Part 1, Slide 4 ||

Example: 8-puzzle

1 | 2 | Example Operator:
If the blank is in location (1,1) it can be

exchanged with the tile in location (1,2).
3lals 9 (1.2)

6 | 7 | 8 | Total number of operators: 24

181,440 states

For the general (NxN) sliding tile puzzle,
the number of states grows exponentially with N
but the number of operators grows quadratically.

ALBERTA INGENUITY

| Heuristics/Holte Part 1, Slide 5 ||

Heuristic Search

» A heuristic, h(s), estimates the distance
from state s to the goal state.

* f(s)=g(s)*+h(s)
is the estimated cost of a path from start
to goal through state s.

» Heuristic search algorithms use f(s) to
prune and guide their search.

ALBERTA INGENUITY

|| Heuristics/Holte Part 1, Slide 6 ||

Manhattan Distance Heuristic

For a sliding-tile puzzle, Manhattan Distance
looks at each tile individually, counts how
many moves it is away from its goal
position, and adds up these numbers.

1 3

MD(s)=2+1+2=5

2 3 1 2

goal state s

ALBERTA INGENUITY

| Heuristics/Holte Part 1, Slide 7 ||

Heuristic Properties

* h(s) is admissible:
—if it never overestimates distance to goal

— guarantees certain algorithms will find a
least-cost path from start to goal

* h(s) is monotone (consistent)
—if f(s)=g(s)+h(s) never decreases along a path.
— guarantees A* will never re-open a closed state

ALBERTA INGENUITY

|| Heuristics/Holte Part 1, Slide 8 ||

Heuristic Search Algorithms

Guaranteed to find optimal solutions*

A*, Breadth-first Heuristic search, IDA*, “C”,
Branch and Bound, Limited Discrepancy
Search, RBFS, SMA*, etc.

Might not find optimal solutions

Weighted A*, beam search, BULB, RTA*, etc.

| *if h(s) is admissible |

ALBERTA INGENUITY

| Heuristics/Holte Part 1, Slide 9 ||

Terminology

Expanding a state means generating its
successors (children).

A state is open if it has been generated
but not expanded.

A state is closed if it has been expanded.

Open list = data structure holding all
currently open states.

Closed list = data structure indicating
which states are closed.

BFS = Breadth-first search

|| Heuristics/Holte Part 1, Slide 10 ||

ALBERTA INGENUITY

Using Abstraction
to Create Heuristics
— basics —

ALBERTA INGENUITY

| Heuristics/Holte Part 1, Slide 11 ||

The Big Idea

Create a simplified version of your problem.

Use the exact distances in the simplified version
as heuristic estimates in the original.

ALBERTA INGENUITY

|| Heuristics/Holte Part 1, Slide 12 ||

Heuristics Defined by Abstraction

» An abstraction of state space S is any
state space ¢(S) such that:

— for every state sLIS there is a corresponding
state @(s) L @(S).
— distance(@(s,), 9(s,)) < distance(s,,S,).

» Exact distances in @(S) are admissible and
consistent heuristics for searching in S.

L. ., -~ ANE ALBERTA INGENUITY
| Heuristics/Holte Part 1, Slide 13 || A (ACHINE LEARNING

Example: 8-puzzle

1] 2
3141]5
6171]8

181,440 states

Doman=blank 1 2 3456 7 8

L.l ANEA ALBERTA INGENUITY
|| Heuristics/Holte Part 1, Slide 14 || A {ACHINE LEARNING

Domain abstraction

1 2

3 4 5

6 7 8
state » abstract state

Domain=blank 1 23456 7 8
Abstract=blank e s s s m B B B

< ., - AN ALBERTA INGENUITY
| Heuristics/Holte Part 1, Slide 15 || A “HINE LEARNING

Abstract State Space

Calculating h(s)

8l1]4
Given a state, s |3 5

6(7]2

Compute the corresponding
abstract state, @(s)

h(s) = distance(®(s),p(goal)) = 2

AN ALBERTA INGENUITY

| Heuristics/Holte Part 1, Slide 17 ||

Similar but Different Ideas

"""""""""""""""""""""
/N

|| Heuristics/Holte Part 1, Slide 18 ||

Abstract Path Refinement

Use the abstract solution path as a skeleton
Construct the final solution path by “fleshing
out details” and filling in gaps

Very fast, but solutions not necesarily optimal
ABSTRIPS (Sacerdoti, 1974)

ALPINE (Knoblock, 1994)

Potential problem: what if the abstract
solution cannot be refined ?
(Bacchus & Yang, 1994)

AN Aseria iNcENUITY

| Heuristics/Holte Part 1, Slide 19 ||

Refinement Example

. - A —stRTA INGENUITY
\"_/HEUFISIICS/HORE Part 1, Slide 20 "\/

HOG Simulation Framework Learning Heuristics

« HOG (Hierarchical Open Graph) » Use past problem-solving experience to
— C++ Framework for abstraction & refinement invent or improve the heuristic.
— Test-bed & visualization for abstraction in pathfinding

~ Two papers at AAAI05 using HOG: « Example: the value function in
« Partial Pathfinding Using Map Abstraction and Refinement

» Speeding Up the Convergence of Learning Real-time Search remf_orgement_learnmg (?an be viewed as _a
via Abstraction heuristic function in settings where there is
— http://www.cs.ualberta.ca/~nathanst/hog.html a set of goal locations giving reward and
actions have costs.

» Often called speedup learning.

ALBERTA INGENUITY ALBERTA INGENUITY

| Heuristics/Holte Part 1, Slide 21 || || Heuristics/Holte Part 1, Slide 22 ||

Lookahead Search Metalevel Reasoning
« To evaluate a node in game-tree search, it « “Reasoning at the meta-level concerns either
: ’ choosing the right strategy from among
IS common to search forward from the node alternatives or constructing a strategy by
to a certain depth, compute the static assembling a sequence of methods that

together can accomplish a desired state.”

evaluation function at the lookahead frontier, (Cox & Ram, 1999)

and backup those values. » 1960 (Newell, Shaw & Simon): GPS searched at
« Can also be done in single-agent search. the metalevel for a control strategy for GPS to
use in searching at the base level.
* Korf (1990) « 1993 (Minton): Multi-Tac searches the space of
- Bulitko et al. (2003, 2005) combinations of CSP heuristics to find the

optimal combination for the given problem and
instance distribution.

|| Heuristics/Holte Part 1, Slide 24 ||

ALBERTA INGENUITY ALBERTA INGENUITY

| Heuristics/Holte Part 1, Slide 23 ||

Applications

ALBERTA INGENUITY

| Heuristics/Holte Part 1, Slide 25 ||

Puzzles

Rubik’s Cube (Korf, 1997)
— 10%° states

— First random problems ever solved optimally by a
general-purpose search algorithm

— Hardest took 17 CPU-days

— Best known MD-like heuristic would have taken a
CPU-century

15-puzzle

— 1013 states

— Average solution time 0.021 seconds, with only
36,000 nodes expanded

|| Heuristics/Holte Part 1, Slide 26 ||

ALBERTA INGENUITY

Parsing

Klein & Manning (2003)

Used A* to find the most probable parse of a
sentence.

A “state” is a partial parse, g(s) is the “cost” of the
parsing completed in s, h(s) estimates the “cost” of
completing the parse.

The heuristic is defined by simplifying the
grammar, and is precomputed and stored in a
lookup table.

Special purpose code was written to compute the
heuristic.

Eliminates 96% of the work done by exhaustive
parsing.

ALBERTA INGENUITY

| Heuristics/Holte Part 1, Slide 27 ||

Dynamic Programming — SSR

State Space Relaxation = mapping a state space
onto another state space of smaller cardinality.

Christofides, Mingozzi, and Toth (1981)

Abstraction: very general definition and several
different examples of abstractions for TSP and
routing problems.

Implemented but not thoroughly tested.

Noted that the effectiveness of this method
depends on how the problem is formulated.

Did not anticipate creating a hierarchy of
abstractions.

ALBERTA INGENUITY

|| Heuristics/Holte Part 1, Slide 28 ||

Dynamic Programming — CFDP

» Coarse-to-Fine Dynamic Programming

» C. Raphael (2001)

» Works on continuous or discrete spaces.
» Abstraction = grouping together states.

» Multiple levels of abstraction.

» Somewhat resembles refinement, but guaranteed

to find optimal solution.

» Application: finding optimal convex region
boundaries in an image.

 Algorithm illustrated at the end of Part 3

ALBERTA INGENUITY

| Heuristics/Holte Part 1, Slide 29 ||

Weighted Logic Programs

Felzenszwalb & McAllester (unpublished)

Generalizes the statistical parsing and
dynamic programming methods to the
problem of finding a least-cost derivation
of a set of statements (the “goal”) given a
set of weighted inference rules.

Inference at multiple levels of abstraction
is interleaved.

Application: finding salient contours in an
image.

ALBERTA INGENUITY

|| Heuristics/Holte Part 1, Slide 30 ||

QoS Network Routing

 Li, Harms & Holte (2005)

* Find a least-cost path from start to goal
subject to resource constraints.

» Each edge in the network has a cost and
consumes some amount of resources.

* There are separate h(s) functions for the
cost and for each type of resource.

* h.(s) is defined as the minimum cost of

reaching the goal from state s subject only

to constraints on resource r.

| Heuristics/Holte Part 1, Slide 31 ||

ALBERTA INGENUITY

Sequential Ordering Problem

Hernadvolgyi (2003)

S.0.P. is the Travelling Salesman Problem
with:

— Asymmetric costs

— Precedence constraints (must visit city A
before city B)

ALBERTA INGENUITY

|| Heuristics/Holte Part 1, Slide 32 ||

Co-operative Pathfinding

Silver (2005)

Many agents, each trying to get from its
current position to its goal position.

Co-operative = agents want each other to
succeed and will plan paths accordingly.

Need a very efficient algorithm (because in
computer games very little CPU time is
allocated to pathfinding).

AAAAAAAAAAAAAAAA

| Heuristics/Holte Part 1, Slide 33 ||

Vertex Cover

Felner, Korf & Hanan (2004)

fastest known algorithm for finding the
smallest subset of vertices that includes at
least one endpoint for every edge in the
given graph .

AAAAAAAAAAAAAAAA

|| Heuristics/Holte Part 1, Slide 34 ||

Multiple Sequence Alignment

Korf & Zhang (2000)
McNaughton, Lu, Schaeffer & Szafron (2002)
Zhou & Hansen (AAAI, 2004)

Sets of N sequences are optimally aligned
according to a mismatch scoring matrix.

The heuristic is to find optimal matches of
disjoint subsets of size k<N and add their
scores.

AAAAAAAAAAAAAAAA

| Heuristics/Holte Part 1, Slide 35 ||

Building Macro-Tables

Hernadvolgyi (2001)

A macro-table is an ultra-efficient way of
constructing suboptimal solutions to problems that
can be decomposed into a sequence of subgoals.

For the jt" subgoal, and every possible state that
satisfies subgoals 1...(j-1), the macro-table has
an entry — a sequence of operators that maps the
state to a state satisfying subgoals 1...].

Solutions are built by concatenating entries from
the macro-table.
Constructing the table is the challenge. Each

entry is found by search. Heuristics are needed to
find optimal entries in reasonable time.

|| Heuristics/Holte Part 1, Slide 36 ||

AAAAAAAAAAAAAAAA

Planning

Edelkamp, 2001
Bonet & Geffner, 2001
Haslum & Geffner, 2000

Abstraction is computed automatically
given a declarative state space definition.

Has been used successfully with a variety
of different abstraction methods and
search techniques. Some guarantee
optimal solutions, many do not.

ALBERTA INGENUITY

| Heuristics/Holte Part 1, Slide 37 ||

Constrained Optimization

o Kask & Dechter (2001)

* Mini-bucket elimination (MBE) provides an
optimistic bound on solution cost, and therefore
can be used to compute an admissible heuristic
for A*, branch-and-bound, etc.

» MBE relaxes constraints. The objective function
ming, , off(a,b)+g(b,c)} is relaxed to
ming, {}(a b)} + ming, .{g(b,c)}, in effect dropping
the constralnt that the two values of b be equal.

» Applications include max-CSP and calculating
the most probable explanation of observations in
a Bayesian network.

|| Heuristics/Holte Part 1, Slide 38 ||

ALBERTA INGENUITY

Historical Notes

ALBERTA INGENUITY

| Heuristics/Holte Part 1, Slide 39 ||

Prehistory: Two Key ldeas

Using Lower Bounds to Prune Search

1958: branch-and-bound

1966 (Doran & Michie): Graph Traverser, first use of
estimated distance-to-goal to guide state space
search.

1968 (Hart, Nilsson, Raphael): A*

Using Abstraction to Guide Search

1963 (Minsky): abstraction=simplified problem
+ refinement
1974 (Sacerdoti): ABSTRIPS

ALBERTA INGENUITY

|| Heuristics/Holte Part 1, Slide 40 ||

Somalvico & colleagues (1976-79)

Brought together the two key ideas.
Proposed mechanically generating an
abstract space by dropping preconditions.
Proved this would produce admissible,
monotone heuristics.

» Envisaged a hierarchy of abstract levels, with
search at one level guided by a heuristic
defined by distances at the level above.

AAAAAAAAAAAAAAAA

| Heuristics/Holte Part 1, Slide 41 ||

Edge Supergraph

’,V
iz@- -»

Relaxing preconditions introduces additional
edges between states and might add new states
(by making a state reachable that is not
reachable with the original preconditions).

e.g. there is no edge from X to Y because of a
precondition. If it is relaxed, there is an edge.

AAAAAAAAAAAAAAAA

|| Heuristics/Holte Part 1, Slide 42 ||

Gaschnig (1979)

» Proposed that the cost of solutions in
space S could be estimated by the exact
cost of solutions in auxiliary space T.

» Estimates are admissible if T is an edge
supergraph of S.

» Observes: “If T is solved by searching this
could consume more time than solving in
S directly with breadth-first search.”

— T should be supplied with an efficient solver

AAAAAAAAAAAAAAAA

| Heuristics/Holte Part 1, Slide 43 ||

Valtorta (1980,1984)

Proved that Gaschnig was right!

Theorem: If T is an edge supergraph of S,
and distances in T are computed by BFS,
and A* with distances in T as its heuristic is
used to solve problem P, then for any s1S
that is necessarily expanded if BFS is used
to solve P, either:

—sis expanded by A*in S, or

—sis expanded by BFSin T

AAAAAAAAAAAAAAAA

|| Heuristics/Holte Part 1, Slide 44 ||

Pearl (1984)

Famous book, Heuristics

Popularized the idea that heuristics could
very often be defined as exact costs to
“relaxed” versions of a problem.

* To be efficiently computable, the heuristics
should be semi-decomposabile.

» Proposed searching through the space of
relaxations for semi-decomposable ones.

ALBERTA INGENUITY

| Heuristics/Holte Part 1, Slide 45 ||

Mostow & Prieditis (1989)

ABSOLVER, implemented the idea of searching
through the space of abstractions AND speed-up
transformations.

Reiterated that computing a heuristic by search at
the abstract level is generally ineffective.

Had a library with a variety of abstractions and
speedups, not just “relax” and “factor”.

First successful automatic system for generating
effective heuristics.

Emphasized that success depends on having the
right problem formulation to start with.

ALBERTA INGENUITY

|| Heuristics/Holte Part 1, Slide 46 ||

Mostow & Prieditis cont’d

* When a good abstraction is found, ABSOLVER
calls itself recursively to create a hierarchy of
abstractions, in order to speedup the
computation of the heuristic.

Added in 1993 (Prieditis):

To make a heuristic “effective” precompute all the
heuristic values before base-level search begins
and store them in a hash table (today called a
“pattern database”).

ALBERTA INGENUITY

| Heuristics/Holte Part 1, Slide 47 ||

Hansson, Mayer, Valtorta (1992)

* Generalized Valtorta’s theorem to show

that a hierarchy of abstractions created by
relaxing preconditions was no use.

* Pseudocode for Hierarchical A*.

ALBERTA INGENUITY

|| Heuristics/Holte Part 1, Slide 48 ||

Using Memory to Speed Up Search

1985 (Korf): IDA*

1989 (Chakrabatrti et al.): MA*

1992 (Russell): IE, SMA*

1994 (Dillenburg & Nelson): Perimeter Search
1994 (Reinefeld & Marsland): Enhanced IDA*
1994 (Ghosh, Mahanti & Nau): ITS

AAAAAAAAAAAAAAAA

| Heuristics/Holte Part 1, Slide 49 ||

Culberson & Schaeffer (1996)

» 1994: technical report with full algorithm and
results for pattern databases (PDB)

» 1996: first published account of PDBs

» Impressive results: 1000x faster than Manhattan
Distance on the 15-puzzle.

» Several good ideas:
— A general and effective type of abstraction

— Efficiently precomputing and storing all the abstract
distances

— Exploiting problem symmetry
— “Dovetailing” two PDBs

AAAAAAAAAAAAAAAA

|| Heuristics/Holte Part 1, Slide 50 ||

Holte (1996)

* 1994: published the Hierarchical A* idea.

* 1996: published working HA* algorithm,
generalized Valtorta’'s Theorem to all kinds
of abstractions, and showed (theoretically
and experimentally) that speedup was
possible with Hierarchical Heuristic Search
if homomorphic abstractions are used.

AAAAAAAAAAAAAAAA

| Heuristics/Holte Part 1, Slide 51 ||

Generalized Valtorta’s Theorem

» If §(S) is any abstraction of S, for any s(1S

that is necessarily expanded if BFS is used
to solve problem P, if A* is used to solve P
using distances in ¢(S) computed by BFS as
its heuristic, then either:

— s is expanded by A*in S, or

—¢(s) is expanded by BFS in ¢(S)

AAAAAAAAAAAAAAAA

|| Heuristics/Holte Part 1, Slide 52 ||

