
Heuristics/Holte Part 1, Slide 1

Where Do Heuristics Come From ?
(Using Abstraction to Speed Up Search)

Robert C. Holte
Computing Science Department

University of Alberta

© 2005, Robert Holte

Complete set of slides and bibliography
available at:

http://www.cs.ualberta.ca/~holte/Heuristics

Heuristics/Holte Part 1, Slide 2

Outline

Part 1: Introduction
– Refresher on heuristic search

– Using abstraction to create heuristics: basics
– Similar but different ideas

– Applications
– Historical notes

Part 2: Details
Part 3: Enhancements

Heuristics/Holte Part 1, Slide 3

Refresher on Heuristic Search

Heuristics/Holte Part 1, Slide 4

Search

• Find a shortest (least cost) path between two
nodes (start, goal) in a given graph (state space).

• Typical “uninformed” algorithms (e.g. Dijkstra’s
algorithm) order their search based on g(s), a
state’s distance from the start state.

• The state space is usually defined implicitly, by
a set of operators.

Heuristics/Holte Part 1, Slide 5

Example: 8-puzzle

876

543

21

181,440 states

Example Operator:
If the blank is in location (1,1) it can be
exchanged with the tile in location (1,2).

Total number of operators: 24

For the general (NxN) sliding tile puzzle,
the number of states grows exponentially with N
but the number of operators grows quadratically.

Heuristics/Holte Part 1, Slide 6

Heuristic Search

• A heuristic, h(s), estimates the distance
from state s to the goal state.

• f(s)=g(s)+h(s)
is the estimated cost of a path from start
to goal through state s.

• Heuristic search algorithms use f(s) to
prune and guide their search.

Heuristics/Holte Part 1, Slide 7

Manhattan Distance Heuristic

For a sliding-tile puzzle, Manhattan Distance
looks at each tile individually, counts how
many moves it is away from its goal
position, and adds up these numbers.

32

1

21

3

goal state s

MD(s) = 2 + 1 + 2 = 5

Heuristics/Holte Part 1, Slide 8

Heuristic Properties

• h(s) is admissible:
– if it never overestimates distance to goal

– guarantees certain algorithms will find a
least-cost path from start to goal

• h(s) is monotone (consistent)
– if f(s)=g(s)+h(s) never decreases along a path.

– guarantees A* will never re-open a closed state

Heuristics/Holte Part 1, Slide 9

Heuristic Search Algorithms

Guaranteed to find optimal solutions*
A*, Breadth-first Heuristic search, IDA*, “C”,
Branch and Bound, Limited Discrepancy
Search, RBFS, SMA*, etc.

Might not find optimal solutions
Weighted A*, beam search, BULB, RTA*, etc.

* if h(s) is admissible

Heuristics/Holte Part 1, Slide 10

Terminology

• Expanding a state means generating its
successors (children).

• A state is open if it has been generated
but not expanded.

• A state is closed if it has been expanded.
• Open list = data structure holding all

currently open states.
• Closed list = data structure indicating

which states are closed.
• BFS = Breadth-first search

Heuristics/Holte Part 1, Slide 11

Using Abstraction
to Create Heuristics

– basics –

Heuristics/Holte Part 1, Slide 12

The Big Idea

Create a simplified version of your problem.

Use the exact distances in the simplified version
as heuristic estimates in the original.

Heuristics/Holte Part 1, Slide 13

Heuristics Defined by Abstraction

• An abstraction of state space S is any
state space (S) such that:

– for every state s∈∈∈∈S there is a corresponding
state (s) ∈∈∈∈ (S).

– distance((s1), (s2)) distance(s1,s2).

• Exact distances in (S) are admissible and
consistent heuristics for searching in S.

Heuristics/Holte Part 1, Slide 14

Example: 8-puzzle

876

543

21

Domain = blank 1 2 3 4 5 6 7 8

181,440 states

Heuristics/Holte Part 1, Slide 15

Domain abstraction

876

543

21

state abstract state

Abstract = blank
Domain = blank 1 2 3 4 5 6 7 8

Heuristics/Holte Part 1, Slide 16

Abstract State Space

(goal)

Heuristics/Holte Part 1, Slide 17

Calculating h(s)

Given a state, s
276

53

418

2

Compute the corresponding
abstract state, (s)

h(s) = distance((s), (goal)) =

Heuristics/Holte Part 1, Slide 18

Similar but Different Ideas

Heuristics/Holte Part 1, Slide 19

Abstract Path Refinement

• Use the abstract solution path as a skeleton
• Construct the final solution path by “fleshing

out details” and filling in gaps
• Very fast, but solutions not necesarily optimal
• ABSTRIPS (Sacerdoti, 1974)
• ALPINE (Knoblock, 1994)
• Potential problem: what if the abstract

solution cannot be refined ?
(Bacchus & Yang, 1994)

Heuristics/Holte Part 1, Slide 20

Refinement Example

Heuristics/Holte Part 1, Slide 21

HOG Simulation Framework

• HOG (Hierarchical Open Graph)
– C++ Framework for abstraction & refinement
– Test-bed & visualization for abstraction in pathfinding
– Two papers at AAAI’05 using HOG:

• Partial Pathfinding Using Map Abstraction and Refinement
• Speeding Up the Convergence of Learning Real-time Search

via Abstraction

– http://www.cs.ualberta.ca/~nathanst/hog.html

Heuristics/Holte Part 1, Slide 22

Learning Heuristics

• Use past problem-solving experience to
invent or improve the heuristic.

• Example: the value function in
reinforcement learning can be viewed as a
heuristic function in settings where there is
a set of goal locations giving reward and
actions have costs.

• Often called speedup learning.

Heuristics/Holte Part 1, Slide 23

Lookahead Search

• To evaluate a node in game-tree search, it
is common to search forward from the node
to a certain depth, compute the static
evaluation function at the lookahead frontier,
and backup those values.

• Can also be done in single-agent search.
• Korf (1990)
• Bulitko et al. (2003, 2005)

Heuristics/Holte Part 1, Slide 24

Metalevel Reasoning

• “Reasoning at the meta-level concerns either
choosing the right strategy from among
alternatives or constructing a strategy by
assembling a sequence of methods that
together can accomplish a desired state.”

(Cox & Ram, 1999)
• 1960 (Newell, Shaw & Simon): GPS searched at

the metalevel for a control strategy for GPS to
use in searching at the base level.

• 1993 (Minton): Multi-Tac searches the space of
combinations of CSP heuristics to find the
optimal combination for the given problem and
instance distribution.

Heuristics/Holte Part 1, Slide 25

Applications

Heuristics/Holte Part 1, Slide 26

Puzzles

• Rubik’s Cube (Korf, 1997)
– 1019 states
– First random problems ever solved optimally by a

general-purpose search algorithm
– Hardest took 17 CPU-days
– Best known MD-like heuristic would have taken a

CPU-century

• 15-puzzle
– 1013 states
– Average solution time 0.021 seconds, with only

36,000 nodes expanded

Heuristics/Holte Part 1, Slide 27

Parsing

• Klein & Manning (2003)
• Used A* to find the most probable parse of a

sentence.
• A “state” is a partial parse, g(s) is the “cost” of the

parsing completed in s, h(s) estimates the “cost” of
completing the parse.

• The heuristic is defined by simplifying the
grammar, and is precomputed and stored in a
lookup table.

• Special purpose code was written to compute the
heuristic.

• Eliminates 96% of the work done by exhaustive
parsing.

Heuristics/Holte Part 1, Slide 28

Dynamic Programming – SSR

• State Space Relaxation = mapping a state space
onto another state space of smaller cardinality.

• Christofides, Mingozzi, and Toth (1981)
• Abstraction: very general definition and several

different examples of abstractions for TSP and
routing problems.

• Implemented but not thoroughly tested.
• Noted that the effectiveness of this method

depends on how the problem is formulated.
• Did not anticipate creating a hierarchy of

abstractions.

Heuristics/Holte Part 1, Slide 29

Dynamic Programming – CFDP

• Coarse-to-Fine Dynamic Programming
• C. Raphael (2001)
• Works on continuous or discrete spaces.
• Abstraction = grouping together states.
• Multiple levels of abstraction.
• Somewhat resembles refinement, but guaranteed

to find optimal solution.
• Application: finding optimal convex region

boundaries in an image.
• Algorithm illustrated at the end of Part 3

Heuristics/Holte Part 1, Slide 30

Weighted Logic Programs

• Felzenszwalb & McAllester (unpublished)
• Generalizes the statistical parsing and

dynamic programming methods to the
problem of finding a least-cost derivation
of a set of statements (the “goal”) given a
set of weighted inference rules.

• Inference at multiple levels of abstraction
is interleaved.

• Application: finding salient contours in an
image.

Heuristics/Holte Part 1, Slide 31

QoS Network Routing

• Li, Harms & Holte (2005)
• Find a least-cost path from start to goal

subject to resource constraints.
• Each edge in the network has a cost and

consumes some amount of resources.
• There are separate h(s) functions for the

cost and for each type of resource.
• hr(s) is defined as the minimum cost of

reaching the goal from state s subject only
to constraints on resource r.

Heuristics/Holte Part 1, Slide 32

Sequential Ordering Problem

• Hernadvolgyi (2003)
• S.O.P. is the Travelling Salesman Problem

with:
– Asymmetric costs
– Precedence constraints (must visit city A

before city B)

Heuristics/Holte Part 1, Slide 33

Co-operative Pathfinding

• Silver (2005)
• Many agents, each trying to get from its

current position to its goal position.
• Co-operative = agents want each other to

succeed and will plan paths accordingly.
• Need a very efficient algorithm (because in

computer games very little CPU time is
allocated to pathfinding).

Heuristics/Holte Part 1, Slide 34

Vertex Cover

• Felner, Korf & Hanan (2004)
• fastest known algorithm for finding the

smallest subset of vertices that includes at
least one endpoint for every edge in the
given graph .

Heuristics/Holte Part 1, Slide 35

Multiple Sequence Alignment

• Korf & Zhang (2000)
• McNaughton, Lu, Schaeffer & Szafron (2002)
• Zhou & Hansen (AAAI, 2004)
• Sets of N sequences are optimally aligned

according to a mismatch scoring matrix.
• The heuristic is to find optimal matches of

disjoint subsets of size k<N and add their
scores.

Heuristics/Holte Part 1, Slide 36

Building Macro-Tables

• Hernadvolgyi (2001)
• A macro-table is an ultra-efficient way of

constructing suboptimal solutions to problems that
can be decomposed into a sequence of subgoals.

• For the jth subgoal, and every possible state that
satisfies subgoals 1…(j-1), the macro-table has
an entry – a sequence of operators that maps the
state to a state satisfying subgoals 1…j.

• Solutions are built by concatenating entries from
the macro-table.

• Constructing the table is the challenge. Each
entry is found by search. Heuristics are needed to
find optimal entries in reasonable time.

Heuristics/Holte Part 1, Slide 37

Planning

• Edelkamp, 2001
• Bonet & Geffner, 2001
• Haslum & Geffner, 2000
• Abstraction is computed automatically

given a declarative state space definition.
• Has been used successfully with a variety

of different abstraction methods and
search techniques. Some guarantee
optimal solutions, many do not.

Heuristics/Holte Part 1, Slide 38

Constrained Optimization

• Kask & Dechter (2001)
• Mini-bucket elimination (MBE) provides an

optimistic bound on solution cost, and therefore
can be used to compute an admissible heuristic
for A*, branch-and-bound, etc.

• MBE relaxes constraints. The objective function
min{a,b,c}{f(a,b)+g(b,c)} is relaxed to
min{a,b}{f(a,b)} + min{b,c}{g(b,c)}, in effect dropping
the constraint that the two values of b be equal.

• Applications include max-CSP and calculating
the most probable explanation of observations in
a Bayesian network.

Heuristics/Holte Part 1, Slide 39

Historical Notes

Heuristics/Holte Part 1, Slide 40

Prehistory: Two Key Ideas

Using Lower Bounds to Prune Search
1958: branch-and-bound
1966 (Doran & Michie): Graph Traverser, first use of

estimated distance-to-goal to guide state space
search.

1968 (Hart, Nilsson, Raphael): A*

Using Abstraction to Guide Search
1963 (Minsky): abstraction=simplified problem

+ refinement
1974 (Sacerdoti): ABSTRIPS

Heuristics/Holte Part 1, Slide 41

Somalvico & colleagues (1976-79)

• Brought together the two key ideas.
• Proposed mechanically generating an

abstract space by dropping preconditions.
• Proved this would produce admissible,

monotone heuristics.
• Envisaged a hierarchy of abstract levels, with

search at one level guided by a heuristic
defined by distances at the level above.

Heuristics/Holte Part 1, Slide 42

Edge Supergraph

• Relaxing preconditions introduces additional
edges between states and might add new states
(by making a state reachable that is not
reachable with the original preconditions).

• e.g. there is no edge from X to Y because of a
precondition. If it is relaxed, there is an edge.

S

X

Y

Heuristics/Holte Part 1, Slide 43

Gaschnig (1979)

• Proposed that the cost of solutions in
space S could be estimated by the exact
cost of solutions in auxiliary space T.

• Estimates are admissible if T is an edge
supergraph of S.

• Observes: “If T is solved by searching this
could consume more time than solving in
S directly with breadth-first search.”
– T should be supplied with an efficient solver

Heuristics/Holte Part 1, Slide 44

Valtorta (1980,1984)

• Proved that Gaschnig was right!
• Theorem: If T is an edge supergraph of S,

and distances in T are computed by BFS,
and A* with distances in T as its heuristic is
used to solve problem P, then for any s∈∈∈∈S
that is necessarily expanded if BFS is used
to solve P, either:
– s is expanded by A* in S, or
– s is expanded by BFS in T

Heuristics/Holte Part 1, Slide 45

Pearl (1984)

• Famous book, Heuristics
• Popularized the idea that heuristics could

very often be defined as exact costs to
“relaxed” versions of a problem.

• To be efficiently computable, the heuristics
should be semi-decomposable.

• Proposed searching through the space of
relaxations for semi-decomposable ones.

Heuristics/Holte Part 1, Slide 46

Mostow & Prieditis (1989)

• ABSOLVER, implemented the idea of searching
through the space of abstractions AND speed-up
transformations.

• Reiterated that computing a heuristic by search at
the abstract level is generally ineffective.

• Had a library with a variety of abstractions and
speedups, not just “relax” and “factor”.

• First successful automatic system for generating
effective heuristics.

• Emphasized that success depends on having the
right problem formulation to start with.

Heuristics/Holte Part 1, Slide 47

Mostow & Prieditis cont’d

• When a good abstraction is found, ABSOLVER
calls itself recursively to create a hierarchy of
abstractions, in order to speedup the
computation of the heuristic.

Added in 1993 (Prieditis):
To make a heuristic “effective” precompute all the

heuristic values before base-level search begins
and store them in a hash table (today called a
“pattern database”).

Heuristics/Holte Part 1, Slide 48

Hansson, Mayer, Valtorta (1992)

• Generalized Valtorta’s theorem to show
that a hierarchy of abstractions created by
relaxing preconditions was no use.

• Pseudocode for Hierarchical A*.

Heuristics/Holte Part 1, Slide 49

Using Memory to Speed Up Search

• 1985 (Korf): IDA*
• 1989 (Chakrabarti et al.): MA*
• 1992 (Russell): IE, SMA*
• 1994 (Dillenburg & Nelson): Perimeter Search
• 1994 (Reinefeld & Marsland): Enhanced IDA*
• 1994 (Ghosh, Mahanti & Nau): ITS

Heuristics/Holte Part 1, Slide 50

Culberson & Schaeffer (1996)

• 1994: technical report with full algorithm and
results for pattern databases (PDB)

• 1996: first published account of PDBs
• Impressive results: 1000x faster than Manhattan

Distance on the 15-puzzle.
• Several good ideas:

– A general and effective type of abstraction
– Efficiently precomputing and storing all the abstract

distances
– Exploiting problem symmetry
– “Dovetailing” two PDBs

Heuristics/Holte Part 1, Slide 51

Holte (1996)

• 1994: published the Hierarchical A* idea.
• 1996: published working HA* algorithm,

generalized Valtorta’s Theorem to all kinds
of abstractions, and showed (theoretically
and experimentally) that speedup was
possible with Hierarchical Heuristic Search
if homomorphic abstractions are used.

Heuristics/Holte Part 1, Slide 52

Generalized Valtorta’s Theorem

• If ϕϕϕϕ(S) is any abstraction of S, for any s∈∈∈∈S
that is necessarily expanded if BFS is used
to solve problem P, if A* is used to solve P
using distances in ϕϕϕϕ(S) computed by BFS as
its heuristic, then either:
– s is expanded by A* in S, or

– ϕϕϕϕ(s) is expanded by BFS in ϕϕϕϕ(S)

