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Defining Abstractions
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Domain Abstraction  

876

543

21

state abstract state

Abstract = blank                     
Domain = blank  1  2  3  4  5  6  7  8                     
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Finer-grained Domain Abstraction  

876

543

21

876

30,240 abstract statesDomain = blank  1  2  3  4  5  6  7  8
Abstract = blank                     6  7  8
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Possible Domain Abstractions

• Easy to enumerate all possible domain 
abstractions

• They form a lattice, e.g.

is “more abstract” than the domain abstraction 
above

Domain = blank  1  2  3  4  5  6  7  8
Abstract = blank                     

Domain = blank  1  2  3  4  5  6  7  8
Abstract = blank                     
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The Arrow Puzzle

operator A:  flip Arrow1, flip Arrow2
operator B:  flip Arrow2, flip Arrow3
operator C:  flip Arrow3, flip Arrow4
operator D:  flip Arrow4, flip Arrow5

1 432 5

A B C D
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Solve a Subproblem

Solve any 4-arrow subproblem, e.g.

For many problems this will reduce the 
state space exponentially while only 
reducing the solution lengths linearly, 
so heuristics are accurate and quick to 
calculate.

1 32

A B C

4
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Projection

Remove all references to Arrow4

operator A:  flip Arrow1, flip Arrow2
operator B:  flip Arrow2, flip Arrow3
operator C:  flip Arrow3
operator D:                    flip Arrow5

1 32 5

A B C D

Heuristics/Holte Part 2, Slide 10

Towers of Hanoi puzzle
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3-disk TOH State Space
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Abstract State = Group of States

This grouping 
corresponds to solving 
the subproblem with the 
2 largest disks.
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Spoiled for Choice

• Any way of doing any of these methods 
produces an admissible and consistent 
heuristic.

• And, the techniques can be used in 
combination with one another.

• Moreover, domain abstraction and 
projection produce different heuristics 
when applied to different encodings of the 
search space.
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Problem: Non-surjectivity
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1x3 sliding tile puzzle

21

21

21

OPERATORS

YX YX

YX YX
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Non-surjective Abstraction

??

21

21

21

1

1

1

Domain = blank     1      2 
Abstract = blank    1   blank
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Why Does This Happen ?

Original space is actually
a set of isolated components.

21

21

21

12

12

12

… etc.
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Why Does This Happen ?

Abstraction makes two states in 
different components identical.

1

21

1

12

Domain = blank     1      2 
Abstract = blank    1   blank
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Choosing Good Abstractions
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Size Matters
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Korf & Reid (1998) 

• Total nodes expanded = ΣN(j)*P(j,d-j)
– N(j) = # nodes at level j in the brute-force tree
– P(j,x) = % of nodes, n, at level j with h(n) ≤ x

• N(j) ≈ bj

(b is the branching factor in the brute force tree)

• P(j,d-j) ≈ ???
– for a pattern database (defined in a few slides) 

this can be computed exactly*
* assuming every entry in the PDB represents the same number of states

and that j can be ignored
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Prediction of Search Time (A*)

actual # nodes expanded
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Good, Easy-to-Compute Measures

• average value in a Pattern Database
• the value of h(start)

• When there are non-identical edge costs:
Aim to minimize the discrepancy of the 
costs of edges that get merged.
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Computing Abstract Distances
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Calculating h(s)

Given a state, s
276

53

418

2

Compute the corresponding
abstract state, (s) 

h(s) = distance( (s), (goal)) =
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Two Main Approaches

• Pattern Databases
– all possible h(s) values calculated in advance, 

in a preprocessing step
– Culberson & Schaeffer (1996)

• Hierarchical Heuristic Search
– h(s) values calculated on demand

– Holte et al. (1996), Hierarchical A*
– Holte et al. (2005), Hierarchical IDA*
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Pattern Databases

• Enumerate the entire abstract space as a 
preprocessing step (e.g. by breadth-first 
search backwards from (goal)).

• Store distance-to-goal for every abstract 
state in a lookup table (PDB).

• During search in the original state space, 
h(s) is computed by a lookup in the PDB.
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Abstract State Space

(goal)
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Pattern Database

Pattern

Distance to goal       0     1      1     2     2     2

Pattern

Distance to goal     3      3    4
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• No preprocessing.
• When h(s) is needed, it is calculated by 

searching for a shortest path in the 
abstract space from (s) to (goal).

• Need to cache all information about 
abstract distance-to-goal and reuse, 
otherwise this will be hopelessly inefficient.

Hierarchical Heuristic Search
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Code Comparison

PDB has this line:
h(s) =  PDB[ (s) ]

Hierarchical Heuristic Search has:
h(s) =  search( (s), (goal) )

(recursive) call to a search algorithm to compute
the abstract distance to goal for state s
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Hierarchical Heuristic Search

Original space, S

Abstract space, 1(S)

1

Abstract space, 2( 1(S))

2
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Comparison - Time

• Pattern Databases
– Large preprocessing time

• 15-puzzle: 2.5 hours*
• TopSpin: 40 minutes*

– Very fast h(s) computation during search
• 15-puzzle instance solved in 0.022 seconds (avg)

• Hierarchical Heuristic Search
– No preprocessing time
– Relatively slow h(s) computation

* Times are for the best-performing PDBs. Smaller PDBs take less time to build
but take correspondingly longer to solve problems.
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Comparison - Memory

• Pattern Databases
– Perfect hash function

• No empty hash table entries
• Each entry stores only a distance (15-puzzle: 1 byte)

– Only a tiny fraction of entries are needed to solve an 
individual search problem

• Hierarchical Heuristic Search
– Imperfect hash function (15-puzzle: 8 bytes)
– Multiple levels of abstraction, not just one
– Only store entries needed to solve the given problem
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%PDB Entries Actually Needed

1.322917,29714-Pancake

5.93,42357,657(17,4)-TopSpin

0.027874,151,347Macro-15

0.062,6574,151,34715-puzzle

%#needed

(000s)

PDB size

(000s)

State Space
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When to Use Each Approach ?

• If the same abstraction can be used to 
solve many problems, use PDB.

• If there is only one problem to solve, or a 
small batch of problems, use Hierarchical 
Heuristic Search.
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Macro-15 puzzle

15141312

111098

765

4321

15141312

111098

765

4321

• Choose tile in same row/column as the blank.
• Slide that tile and all tiles between it and the 

blank one space towards the blank.
• Branching factor 6
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(17,4)-TopSpin

• Ignore cyclic rotations, just count reversals
• One token is a fixed reference point
• Force order on independent reversals
• Branching factor 8, 16! states
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14-Pancake puzzle

• Pick any index K > 1
• Reverse the order of positions 1…K
• Branching factor 13, 14! states

1413121110987654321

1413121110987612345
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Customized Abstractions

• 15-puzzle and Macro-15
– Compute Manhattan Distance (MD) for each tile
– Abstract tiles in increasing order of MD, 7 at 

first level, then 1 per level

• TopSpin
– Two possible abstractions
– Compute h(start) for each, use the better one

• Pancake
– Same for all problems: abstract tokens 1-7, 

then 8, 9, …
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Custom – Individual Problems

3891,539447TopSpin

(PDB: 2,981)

4272684Pancake

2942044Macro-15

122,3835315-puzzle

(PDB: 9,856)

MedianMaxAvg. Time

(seconds)

State Space
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Multiple Abstractions

• 15-puzzle and Macro-15
– One abstraction abstracts 8 tiles at first level
– Three abstractions abstract 9 tiles
– (previous abstraction abstracted 7 tiles, not used now)

• TopSpin
– abstract tokens 1-9, then 10, 11,…
– Complementary abstraction (abstracts 9 different tokens 

at the first level)

• Pancake
– abstract tokens 1-7, then 8, 9, …
– Complementary abstraction (abstracts 7 different tokens 

at the first level)
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Max’ing – Batch of Problems

428Pancake

3,956
(PDB = 75 problems)

TopSpin
(PDB: 2,981)

1,310Macro-15

1,662
(PDB = 551 problems)

15-puzzle

(PDB: 9,160)

Total Time (secs)

(100 problems)

State Space
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Implementation Issues
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Pattern Databases

• Ideally, use a perfect hashing function.

• If breadth-first search is used to create the 
PDB, memory for the Open and Closed lists 
reduces the memory available for the PDB.
– may need to use a disk-based implementation of 

breadth-first search (Korf’s DDD) and other 
space-saving measures such as Frontier search.

– or, use iterative-deepening to create the PDB.
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Perfect Hashing Function

• Every time a state, s, is generated need to 
lookup h(s) in the pattern database.

• PDB[ϕϕϕϕ(s)] really is
PDB[hash(ϕϕϕϕ(s))]

where hash(x) maps an abstract state, x, to an 
integer in the range 0…(PDBsize-1).

• Because it is used so often, hash(x) needs to be 
as efficient as possible.

• We also want it to be perfect so that PDBsize
can equal the number of abstract states with no 
collisions.
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Perfect Hashing of Permutations

• Often a state (base-level, not abstract) is a 
permutation, e.g. the 15-puzzle*.

• Myrvold & Ruskey (2001) give an algorithm 
for mapping a permutation on N values to an 
integer 0…(N!-1) and the inverse mapping.

• Both are O(N). (for the 15-puzzle, N=16).
• Their mapping does not give lexicographic 

order (see Korf 2005 if you want this).
Only half of the 16! states of the15-puzzle are reachable so for a truly perfect hash
function the last two constants have to be treated as just one.
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Myrvold & Ruskey Hash Function

given state S, an array indexed by 0…(N-1) containing the 
values 0…(N-1).

1. initialize array W*, W[S[i]]=i  for  0 i (N-1)
2. perfect hash index for S = HASH(N,S,W)

HASH(N,S,W):

1. IF (N == 1) RETURN(0)

2. D = S[N-1]

3. SWAP( S[N-1], S[W[N-1]] )

4. SWAP( W[N-1], W[D] )

5. RETURN( D + N*HASH(N-1,S,W) )

* W stands for “where”. W[v] is the location of v in S



Heuristics/Holte Part 2, Slide 49

Example

S  (permutation)         N   Value(N)=D+N*Value(N-1)

215403

D

6

512403 5

542103 4

543102 3

543201 2

543210 1 0

0     =  0 + 2*0

1     =  1 + 3*0

6     =  2 + 4*1

31   =  1 + 5*6

188 =  2 + 6*31

Heuristics/Holte Part 2, Slide 50

Hashing Abstract States

• An abstract state has the same number of 
locations (N) as a state but only K of them 
contain distinct values V1…VK, the rest of 
the locations contain “don’t care”.

• The array S, in this case, is indexed by 
0…(N-1), and S[N-a] contains the location 
of value Va when 1 a K. S[0]…S[N-K-1] 
contain the locations of the “don’t cares”.

• Use the Myrvold & Ruskey hash function 
but stop the recursion after K iterations. 
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Abstract State Example

State = 102534

1xx53x

215430

domain  = 0  1  2  3  4  5
abstract =  x  1  x  3  x  5

Abstract State =

Permutation to use in the algorithm:

Location of 1 Location of 3 Location of 5
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Execution of the Algorithm

S  (permutation)         N   Value(N)=D+N*Value(N-1)

215430

D

6

512430 5

542130 4

543120 3 0

2   =  2 + 4*0

11 =  1 + 5*2

68 =  2 + 6*11
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Hierarchical Heuristic Search

• To get high performance, the Hierarchical 
Search algorithm is more complex than 
the naïve version described earlier.
– “optimal path caching”
– “P-g caching” (better for IDA*:  “f backup”) 
– Various code & data structure optimizations

• Selecting abstractions and cache sizes is 
not automatic, and is non-trivial
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Optimal Path Caching

S1

X

G Cache[X] = exact distance 3

On subsequent searches … S2

g 3 + g
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P-g Caching

S

X

G

P = solution length
g = distance from S to X.
P-g never overestimates distance from X to G

cache[X] = max(cache[X], P-g)

P

g
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f-backup (for IDA*)

S

X

Due to (Reinefeld & Marsland, 1994):
First time we reach X, f(X)=g(X)+h(X).
If children of X all fail, f[X] = min(f[A],f[B])

A

B

g=5

f(B)= (5 + 1) + 4 = 10f(X)= 5 + 3 = 8

f(A)= (5 + 1) + 4 = 10

threshold = 8

f[X]= 10


