
Heuristics/Holte Part 2, Slide 1

Where Do Heuristics Come From ?
Part 2

Robert C. Holte
Computing Science Department

University of Alberta

© 2005, Robert Holte

Heuristics/Holte Part 2, Slide 2

Outline

Part 1: Introduction
Part 2: Details

– Defining Abstractions
– Choosing Good Abstractions

– Computing Abstract Distances
– Implementation Issues

Part 3: Enhancements

Heuristics/Holte Part 2, Slide 3

Defining Abstractions

Heuristics/Holte Part 2, Slide 4

Domain Abstraction

876

543

21

state abstract state

Abstract = blank
Domain = blank 1 2 3 4 5 6 7 8

Heuristics/Holte Part 2, Slide 5

Finer-grained Domain Abstraction

876

543

21

876

30,240 abstract statesDomain = blank 1 2 3 4 5 6 7 8
Abstract = blank 6 7 8

Heuristics/Holte Part 2, Slide 6

Possible Domain Abstractions

• Easy to enumerate all possible domain
abstractions

• They form a lattice, e.g.

is “more abstract” than the domain abstraction
above

Domain = blank 1 2 3 4 5 6 7 8
Abstract = blank

Domain = blank 1 2 3 4 5 6 7 8
Abstract = blank

Heuristics/Holte Part 2, Slide 7

The Arrow Puzzle

operator A: flip Arrow1, flip Arrow2
operator B: flip Arrow2, flip Arrow3
operator C: flip Arrow3, flip Arrow4
operator D: flip Arrow4, flip Arrow5

1 432 5

A B C D

Heuristics/Holte Part 2, Slide 8

Solve a Subproblem

Solve any 4-arrow subproblem, e.g.

For many problems this will reduce the
state space exponentially while only
reducing the solution lengths linearly,
so heuristics are accurate and quick to
calculate.

1 32

A B C

4

Heuristics/Holte Part 2, Slide 9

Projection

Remove all references to Arrow4

operator A: flip Arrow1, flip Arrow2
operator B: flip Arrow2, flip Arrow3
operator C: flip Arrow3
operator D: flip Arrow5

1 32 5

A B C D

Heuristics/Holte Part 2, Slide 10

Towers of Hanoi puzzle

Heuristics/Holte Part 2, Slide 11

3-disk TOH State Space

Heuristics/Holte Part 2, Slide 12

Abstract State = Group of States

This grouping
corresponds to solving
the subproblem with the
2 largest disks.

Heuristics/Holte Part 2, Slide 13

Spoiled for Choice

• Any way of doing any of these methods
produces an admissible and consistent
heuristic.

• And, the techniques can be used in
combination with one another.

• Moreover, domain abstraction and
projection produce different heuristics
when applied to different encodings of the
search space.

Heuristics/Holte Part 2, Slide 14

Problem: Non-surjectivity

Heuristics/Holte Part 2, Slide 15

1x3 sliding tile puzzle

21

21

21

OPERATORS

YX YX

YX YX

Heuristics/Holte Part 2, Slide 16

Non-surjective Abstraction

??

21

21

21

1

1

1

Domain = blank 1 2
Abstract = blank 1 blank

Heuristics/Holte Part 2, Slide 17

Why Does This Happen ?

Original space is actually
a set of isolated components.

21

21

21

12

12

12

… etc.

Heuristics/Holte Part 2, Slide 18

Why Does This Happen ?

Abstraction makes two states in
different components identical.

1

21

1

12

Domain = blank 1 2
Abstract = blank 1 blank

Heuristics/Holte Part 2, Slide 19

Choosing Good Abstractions

Heuristics/Holte Part 2, Slide 20

Size Matters

no

de
s

ex
pa

nd
ed

 (
A

*)

of abstract states

8-puzzle

Heuristics/Holte Part 2, Slide 21

Korf & Reid (1998)

• Total nodes expanded = ΣN(j)*P(j,d-j)
– N(j) = # nodes at level j in the brute-force tree
– P(j,x) = % of nodes, n, at level j with h(n) ≤ x

• N(j) ≈ bj

(b is the branching factor in the brute force tree)

• P(j,d-j) ≈ ???
– for a pattern database (defined in a few slides)

this can be computed exactly*
* assuming every entry in the PDB represents the same number of states

and that j can be ignored

Heuristics/Holte Part 2, Slide 22

Prediction of Search Time (A*)

actual # nodes expanded

K
or

f
&

 R
ei

d’
s

pr
ed

ic
tio

n

8-puzzle

Heuristics/Holte Part 2, Slide 23

Good, Easy-to-Compute Measures

• average value in a Pattern Database
• the value of h(start)

• When there are non-identical edge costs:
Aim to minimize the discrepancy of the
costs of edges that get merged.

Heuristics/Holte Part 2, Slide 24

Computing Abstract Distances

Heuristics/Holte Part 2, Slide 25

Calculating h(s)

Given a state, s
276

53

418

2

Compute the corresponding
abstract state, (s)

h(s) = distance((s), (goal)) =

Heuristics/Holte Part 2, Slide 26

Two Main Approaches

• Pattern Databases
– all possible h(s) values calculated in advance,

in a preprocessing step
– Culberson & Schaeffer (1996)

• Hierarchical Heuristic Search
– h(s) values calculated on demand

– Holte et al. (1996), Hierarchical A*
– Holte et al. (2005), Hierarchical IDA*

Heuristics/Holte Part 2, Slide 27

Pattern Databases

• Enumerate the entire abstract space as a
preprocessing step (e.g. by breadth-first
search backwards from (goal)).

• Store distance-to-goal for every abstract
state in a lookup table (PDB).

• During search in the original state space,
h(s) is computed by a lookup in the PDB.

Heuristics/Holte Part 2, Slide 28

Abstract State Space

(goal)

Heuristics/Holte Part 2, Slide 29

Pattern Database

Pattern

Distance to goal 0 1 1 2 2 2

Pattern

Distance to goal 3 3 4

Heuristics/Holte Part 2, Slide 30

• No preprocessing.
• When h(s) is needed, it is calculated by

searching for a shortest path in the
abstract space from (s) to (goal).

• Need to cache all information about
abstract distance-to-goal and reuse,
otherwise this will be hopelessly inefficient.

Hierarchical Heuristic Search

Heuristics/Holte Part 2, Slide 31

Code Comparison

PDB has this line:
h(s) = PDB[(s)]

Hierarchical Heuristic Search has:
h(s) = search((s), (goal))

(recursive) call to a search algorithm to compute
the abstract distance to goal for state s

Heuristics/Holte Part 2, Slide 32

Hierarchical Heuristic Search

Original space, S

Abstract space, 1(S)

1

Abstract space, 2(1(S))

2

Heuristics/Holte Part 2, Slide 33

Comparison - Time

• Pattern Databases
– Large preprocessing time

• 15-puzzle: 2.5 hours*
• TopSpin: 40 minutes*

– Very fast h(s) computation during search
• 15-puzzle instance solved in 0.022 seconds (avg)

• Hierarchical Heuristic Search
– No preprocessing time
– Relatively slow h(s) computation

* Times are for the best-performing PDBs. Smaller PDBs take less time to build
but take correspondingly longer to solve problems.

Heuristics/Holte Part 2, Slide 34

Comparison - Memory

• Pattern Databases
– Perfect hash function

• No empty hash table entries
• Each entry stores only a distance (15-puzzle: 1 byte)

– Only a tiny fraction of entries are needed to solve an
individual search problem

• Hierarchical Heuristic Search
– Imperfect hash function (15-puzzle: 8 bytes)
– Multiple levels of abstraction, not just one
– Only store entries needed to solve the given problem

Heuristics/Holte Part 2, Slide 35

%PDB Entries Actually Needed

1.322917,29714-Pancake

5.93,42357,657(17,4)-TopSpin

0.027874,151,347Macro-15

0.062,6574,151,34715-puzzle

%#needed

(000s)

PDB size

(000s)

State Space

Heuristics/Holte Part 2, Slide 36

When to Use Each Approach ?

• If the same abstraction can be used to
solve many problems, use PDB.

• If there is only one problem to solve, or a
small batch of problems, use Hierarchical
Heuristic Search.

Heuristics/Holte Part 2, Slide 37

Macro-15 puzzle

15141312

111098

765

4321

15141312

111098

765

4321

• Choose tile in same row/column as the blank.
• Slide that tile and all tiles between it and the

blank one space towards the blank.
• Branching factor 6

Heuristics/Holte Part 2, Slide 38

(17,4)-TopSpin

• Ignore cyclic rotations, just count reversals
• One token is a fixed reference point
• Force order on independent reversals
• Branching factor 8, 16! states

Heuristics/Holte Part 2, Slide 39

14-Pancake puzzle

• Pick any index K > 1
• Reverse the order of positions 1…K
• Branching factor 13, 14! states

1413121110987654321

1413121110987612345

Heuristics/Holte Part 2, Slide 40

Customized Abstractions

• 15-puzzle and Macro-15
– Compute Manhattan Distance (MD) for each tile
– Abstract tiles in increasing order of MD, 7 at

first level, then 1 per level

• TopSpin
– Two possible abstractions
– Compute h(start) for each, use the better one

• Pancake
– Same for all problems: abstract tokens 1-7,

then 8, 9, …

Heuristics/Holte Part 2, Slide 41

Custom – Individual Problems

3891,539447TopSpin

(PDB: 2,981)

4272684Pancake

2942044Macro-15

122,3835315-puzzle

(PDB: 9,856)

MedianMaxAvg. Time

(seconds)

State Space

Heuristics/Holte Part 2, Slide 42

Multiple Abstractions

• 15-puzzle and Macro-15
– One abstraction abstracts 8 tiles at first level
– Three abstractions abstract 9 tiles
– (previous abstraction abstracted 7 tiles, not used now)

• TopSpin
– abstract tokens 1-9, then 10, 11,…
– Complementary abstraction (abstracts 9 different tokens

at the first level)

• Pancake
– abstract tokens 1-7, then 8, 9, …
– Complementary abstraction (abstracts 7 different tokens

at the first level)

Heuristics/Holte Part 2, Slide 43

Max’ing – Batch of Problems

428Pancake

3,956
(PDB = 75 problems)

TopSpin
(PDB: 2,981)

1,310Macro-15

1,662
(PDB = 551 problems)

15-puzzle

(PDB: 9,160)

Total Time (secs)

(100 problems)

State Space

Heuristics/Holte Part 2, Slide 44

Implementation Issues

Heuristics/Holte Part 2, Slide 45

Pattern Databases

• Ideally, use a perfect hashing function.

• If breadth-first search is used to create the
PDB, memory for the Open and Closed lists
reduces the memory available for the PDB.
– may need to use a disk-based implementation of

breadth-first search (Korf’s DDD) and other
space-saving measures such as Frontier search.

– or, use iterative-deepening to create the PDB.

Heuristics/Holte Part 2, Slide 46

Perfect Hashing Function

• Every time a state, s, is generated need to
lookup h(s) in the pattern database.

• PDB[ϕϕϕϕ(s)] really is
PDB[hash(ϕϕϕϕ(s))]

where hash(x) maps an abstract state, x, to an
integer in the range 0…(PDBsize-1).

• Because it is used so often, hash(x) needs to be
as efficient as possible.

• We also want it to be perfect so that PDBsize
can equal the number of abstract states with no
collisions.

Heuristics/Holte Part 2, Slide 47

Perfect Hashing of Permutations

• Often a state (base-level, not abstract) is a
permutation, e.g. the 15-puzzle*.

• Myrvold & Ruskey (2001) give an algorithm
for mapping a permutation on N values to an
integer 0…(N!-1) and the inverse mapping.

• Both are O(N). (for the 15-puzzle, N=16).
• Their mapping does not give lexicographic

order (see Korf 2005 if you want this).
Only half of the 16! states of the15-puzzle are reachable so for a truly perfect hash
function the last two constants have to be treated as just one.

Heuristics/Holte Part 2, Slide 48

Myrvold & Ruskey Hash Function

given state S, an array indexed by 0…(N-1) containing the
values 0…(N-1).

1. initialize array W*, W[S[i]]=i for 0 i (N-1)
2. perfect hash index for S = HASH(N,S,W)

HASH(N,S,W):

1. IF (N == 1) RETURN(0)

2. D = S[N-1]

3. SWAP(S[N-1], S[W[N-1]])

4. SWAP(W[N-1], W[D])

5. RETURN(D + N*HASH(N-1,S,W))

* W stands for “where”. W[v] is the location of v in S

Heuristics/Holte Part 2, Slide 49

Example

S (permutation) N Value(N)=D+N*Value(N-1)

215403

D

6

512403 5

542103 4

543102 3

543201 2

543210 1 0

0 = 0 + 2*0

1 = 1 + 3*0

6 = 2 + 4*1

31 = 1 + 5*6

188 = 2 + 6*31

Heuristics/Holte Part 2, Slide 50

Hashing Abstract States

• An abstract state has the same number of
locations (N) as a state but only K of them
contain distinct values V1…VK, the rest of
the locations contain “don’t care”.

• The array S, in this case, is indexed by
0…(N-1), and S[N-a] contains the location
of value Va when 1 a K. S[0]…S[N-K-1]
contain the locations of the “don’t cares”.

• Use the Myrvold & Ruskey hash function
but stop the recursion after K iterations.

Heuristics/Holte Part 2, Slide 51

Abstract State Example

State = 102534

1xx53x

215430

domain = 0 1 2 3 4 5
abstract = x 1 x 3 x 5

Abstract State =

Permutation to use in the algorithm:

Location of 1 Location of 3 Location of 5

Heuristics/Holte Part 2, Slide 52

Execution of the Algorithm

S (permutation) N Value(N)=D+N*Value(N-1)

215430

D

6

512430 5

542130 4

543120 3 0

2 = 2 + 4*0

11 = 1 + 5*2

68 = 2 + 6*11

Heuristics/Holte Part 2, Slide 53

Hierarchical Heuristic Search

• To get high performance, the Hierarchical
Search algorithm is more complex than
the naïve version described earlier.
– “optimal path caching”
– “P-g caching” (better for IDA*: “f backup”)
– Various code & data structure optimizations

• Selecting abstractions and cache sizes is
not automatic, and is non-trivial

Heuristics/Holte Part 2, Slide 54

Optimal Path Caching

S1

X

G Cache[X] = exact distance 3

On subsequent searches … S2

g 3 + g

Heuristics/Holte Part 2, Slide 55

P-g Caching

S

X

G

P = solution length
g = distance from S to X.
P-g never overestimates distance from X to G

cache[X] = max(cache[X], P-g)

P

g

Heuristics/Holte Part 2, Slide 56

f-backup (for IDA*)

S

X

Due to (Reinefeld & Marsland, 1994):
First time we reach X, f(X)=g(X)+h(X).
If children of X all fail, f[X] = min(f[A],f[B])

A

B

g=5

f(B)= (5 + 1) + 4 = 10f(X)= 5 + 3 = 8

f(A)= (5 + 1) + 4 = 10

threshold = 8

f[X]= 10

