
Heuristics/Holte Part 3, Slide 1

Where Do Heuristics Come From ?
Part 3

Robert C. Holte
Computing Science Department

University of Alberta

© 2005, Robert Holte

Heuristics/Holte Part 3, Slide 2

Outline

Part 1: Introduction
Part 2: Details
Part 3: Pattern Database Enhancements

– Taking the maximum of two or more PDBs
– Compression and Dovetailing of PDBs
– Additive PDBs
– Customized PDBs
– Multiple Lookups in One PDB

Bonus! – Related Algorithm (CFPD)

Heuristics/Holte Part 3, Slide 3

Max’ing Multiple Heuristics

• Given heuristics h1 and h2 define
h(s) = max (h1(s), h2(s))

• Preserves key properties:
– lower bound

– consistency

Heuristics/Holte Part 3, Slide 4

Question

• Given a fixed amount of memory, M,
which gives the best heuristic ?

– 1 pattern database (PDB) of size M
– max’ing 2 PDBs of size M/2

– max’ing 3 PDBs of size M/3
– etc.

Heuristics/Holte Part 3, Slide 5

1 large pattern database

s
ϕϕϕϕ

h(s)

Heuristics/Holte Part 3, Slide 6

2 half-size pattern databases

s
ϕϕϕϕ2

ϕϕϕϕ1

h2(s)h1(s)

max

Heuristics/Holte Part 3, Slide 7

Many small pattern databases

s
ϕϕϕϕn

ϕϕϕϕ1

max

…

hn(s)h1(s) …

Heuristics/Holte Part 3, Slide 8

Rubik’s Cube*

5,329,829253,222,400

Nodes Generated

61,465,5411106,444,800

3,096,919426,611,200

2,639,969617,740,800

2,654,689813,305,600

nPDB Size

* “easy” problems

Heuristics/Holte Part 3, Slide 9

Summary

23.286Rubik’s Cube

2.38515-puzzle (additive)

8

21+

9

9

10

10

Best n

8.599-pancake

3.76(8,4)-Topspin (3 ops)

20.89(8,4)-Topspin (8 ops)

185.5(3x4)-puzzle

1.6 to 25.124-puzzle (additive)

3.85(3x3)-puzzle

RatioState Space

RATIO =
#nodes generated using one PDB of size M

#nodes generated using n PDBs of size M/n

Heuristics/Holte Part 3, Slide 10

Rubik’s Cube CPU Time

1.00

9.87

13.43

14.31

12.09

Time Ratio

1.00

11.53

19.85

23.28

23.15

Nodes Ratio

6

4

2

1

8

#PDBs

time/node is 1.67x higher using six PDBs

Heuristics/Holte Part 3, Slide 11

Techniques for
Reducing the Overhead of

Multiple PDB lookups

Heuristics/Holte Part 3, Slide 12

Early Stopping

IDA* depth bound = 7
g(s) = 3
� Stop doing PDB lookups as

soon as h > 4 is found.

Might result in extra IDA* iterations

PDB1(s) = 5 � next bound is 8
PDB2(s) = 7 � next bound is 10

Heuristics/Holte Part 3, Slide 13

Consistency-based Bounding

PDB1(A) = 1
PDB2(A) = 7

�

�
Because of consistency:

PDB1(B) ≤ 2
PDB2(B) ≥ 6

� No need to consult PDB1

Heuristics/Holte Part 3, Slide 14

Experimental Results

• 15-puzzle, five additive PDBs (7-7-1)
– Naïve: 0.15 secs

– Early Stopping: 0.10 secs

• Rubik’s Cube, six non-additive PDBs
– Naïve: 27.125 secs

– Early Stopping: 8.955 secs
– Early Stopping and Bounding: 8.836 secs

Heuristics/Holte Part 3, Slide 15

Why Does Max’ing
Speed Up Search ?

Heuristics/Holte Part 3, Slide 16

Static Distribution
of Heuristic Values

max of 5 small PDBs.

1 large PDB.
2.38x nodes generated

15-puzzle,
100M states.

Heuristics/Holte Part 3, Slide 17

Runtime Distribution
of Heuristic Values

Heuristics/Holte Part 3, Slide 18

Example of Max Failing

8,13216,3125,581TOTAL

8201,8391,19720

2,4355,48019

2,0563,6222,67918

9491,99417

8161,3481,04516

40080115

31453044014

12426913

9618814212

5311011

43785910

16369

1017198

max(h1,h2)h2h1Depth Bound

Heuristics/Holte Part 3, Slide 19

Squeezing More into Memory

Heuristics/Holte Part 3, Slide 20

Approaches

• Compress an individual Pattern Database
– Lossless compression

– Lossy compression must maintain admissibility
– Allows you to

• use a PDB bigger than will fit in memory
• use multiple PDBs instead of just one

• Merge two PDBs into one the same size
– Culberson & Schaeffer’s dovetailing

Heuristics/Holte Part 3, Slide 21

Compression Results

• 16-disk 4-peg TOH, PDB based on 14 disks
– No compression: 256Megs memory, 14.3 secs
– lossless compression: 256k memory, 23.8 secs
– Lossy compression: 96Megs, 15.9 secs

• 15-puzzle, additive PDB triple (7-7-1)
– No compression: 537Megs memory, 0.069 secs
– Lossy compression, two PDB triples

537Megs memory, 0.021 secs

Heuristics/Holte Part 3, Slide 22

• Given 2 PDBs for a state space construct
a hybrid containing some entries from
each of them, so that the total number of
entries is the same as in one of the
originals.

• The hope: almost as good as max, but
only half the memory.

Dovetailing

Heuristics/Holte Part 3, Slide 23

Dovetailing based on the blank
use

PDB
1

use
PDB

1

use
PDB

1

use
PDB

1

use
PDB

1

use
PDB

1

use
PDB

1

use
PDB

1

use
PDB

1

use
PDB

1

use
PDB

2

use
PDB

2

use
PDB

2

use
PDB

2

use
PDB

2

use
PDB

2

use
PDB

2

use
PDB

2

Heuristics/Holte Part 3, Slide 24

Any “colouring” is possible

use
?

use
?use

?

use
?

use
?

use
?

use
?

use
?

use
?

use
?

use
?

use
?

use
?

use
?

use
?

use
?

use
?

use
?

Heuristics/Holte Part 3, Slide 25

• Dovetailing requires a rule that maps each
state, s, to one of the PDBs. Use that PDB
to compute h(s).

• Any rule will work, but they won’t all give
the same performance.

• Intuitively, strict alternation between PDBs
expected to be almost as good as max.

Dovetailing – selection rule

Heuristics/Holte Part 3, Slide 26

Dovetailing compared to Max’ing

4 max failures
17 dovetail failures

Heuristics/Holte Part 3, Slide 27

Experimental Results

• Culberson & Schaeffer (1994):
– Dovetailing two PDBs reduced #nodes

generated by a factor of 1.5 compared to
using either PDB alone

• Holte & Newton (unpublished):
– Dovetailing halved #nodes generated on

average

Heuristics/Holte Part 3, Slide 28

How to generalize Dovetailing
to any abstractions of any space ?

Heuristics/Holte Part 3, Slide 29

A Partial-Order on
Domain Abstractions

• Easy to enumerate all possible domain
abstractions

• and to define a partial-order on them, e.g.

is “more abstract” than the domain abstraction
above.

Domain = blank 1 2 3 4 5 6 7 8
Abstract = blank

Domain = blank 1 2 3 4 5 6 7 8
Abstract = blank

Heuristics/Holte Part 3, Slide 30

Lattice of domain abstractions

Heuristics/Holte Part 3, Slide 31

The “LCA” of 2 Abstractions

LCA = least-abstract common abstraction

Domain = blank 1 2 3 4 5 6 7 8
Abstract = blank

blank 1 2 3 4 5 6 7 8
blank

Domain = blank 1 2 3 4 5 6 7 8
Abstract = blank

Heuristics/Holte Part 3, Slide 32

General Dovetailing

• Given PDB1 and PDB2 defined by ϕ1 and ϕ2
• Find a common abstraction ϕ of ϕ1 and ϕ2
• Because it is a common abstraction there

exist ϕ1 and ϕ2 such that ϕ1 ϕ1 = ϕ2 ϕ2 = ϕ
• For every pattern, p, defined by ϕ, set

SELECT[p] = ϕ1 or ϕ2
• Keep every entry (pk,h) from PDBi for which

SELECT[ϕi(pk)]=i.
• Given state s

1. ϕs = SELECT[ϕ(s)]

2. h(s) = PDB[ϕs (s)]

Heuristics/Holte Part 3, Slide 33

Additive Pattern Databases

Heuristics/Holte Part 3, Slide 34

Adding instead of Max’ing

• Under some circumstances it is possible to
add the values from two PDBs instead of
just max’ing them and still have an
admissible heuristic.

• This is advantageous because*
h1(s) + h2(s) ≥≥≥≥ max(h1(s), h2(s))

* but see slide “Compared to Max’ing”

Heuristics/Holte Part 3, Slide 35

Manhattan Distance Heuristic

For a sliding-tile puzzle, Manhattan Distance
looks at each tile individually, counts how
many moves it is away from its goal
position, and adds up these numbers.

32

1

21

3

goal state s

MD(s) = 2 + 1 + 2 = 5

Heuristics/Holte Part 3, Slide 36

M.D. as Additive PDBs (1)

1

1

ϕϕϕϕ1(s)

ϕϕϕϕ1(x)=
x if x = 1

blank otherwise

ϕϕϕϕ1(goal)
MD(s) = PDB1[ϕϕϕϕ1(s)]

+ PDB2[ϕϕϕϕ2(s)]

+ PDB3[ϕϕϕϕ3(s)]

PDB1[ϕϕϕϕ1(s)] = 2

Heuristics/Holte Part 3, Slide 37

In General…

Partition the tiles in groups, G1, G2, … Gk

x if x ∈∈∈∈ Gi

blank otherwise
ϕϕϕϕi(x)=

Heuristics/Holte Part 3, Slide 38

Korf & Felner’s Method

Partition the tiles in groups, G1, G2, … Gk

ϕϕϕϕi(x)=
x if x ∈∈∈∈ Gi

blank if x = blank

otherwise

Moves of cost zero

Heuristics/Holte Part 3, Slide 39

What’s the Difference ?

24

1

24

1

4

21

24

1

24

1
the blank cannot

reach this position
without disturbing

tile 1 or tile 2.

Heuristics/Holte Part 3, Slide 40

Compared to Max’ing

• If the PDBs were going to be max’d
instead of added, we would count all the
moves in all the PDBs.

• Therefore the PDBs for adding have
smaller entries than the corresponding
PDBs for max’ing.

• In initial experiments on the 15-puzzle,
max’ing returns a higher value than adding
for about 12% of the states.

Heuristics/Holte Part 3, Slide 41

Max’ing After Adding

Heuristics/Holte Part 3, Slide 42

8-7 Partition
(576 million entries)

8 9 10 11

12 13 14 15

1 2 3

4 5 6 7

* movement of coloured tiles not counted

+*

8 tiles retain their identity 7 tiles retain their identity

Heuristics/Holte Part 3, Slide 43

7-7-1 Partition
(115 million entries)

8 9 10

12 13 14 15

1 2 3

4 5 6 7+

11+
Heuristics/Holte Part 3, Slide 44

Max’ing after Adding

• For a given 7-7-1 partition, look up the 3
values and add them.

• Do this for each of the five 7-7-1 partitions
and take the maximum*.

Also compute Manhattan Distance, and use that if it is
largest of all. This was also done for 8-7.

Heuristics/Holte Part 3, Slide 45

136,22818-7

57,15957-7-1

Nodes GeneratednPartition

58% reduction in #nodes generated,
but only 10% reduction in CPU time.

15-Puzzle Results

Heuristics/Holte Part 3, Slide 46

Customized PDBs

Heuristics/Holte Part 3, Slide 47

Space-Efficient PDBs

• Zhou & Hansen (AAAI, 2004)
– Do not generate PDB entries that are provably

not needed to solve the given problem.
– Prune abstract state A if f(A) > U,

where U is an upper bound on the solution cost
at the base level.

• To work well, needs a heuristic to guide the
abstract search and a fairly tight U.

• Even then requires significantly more
memory than Hierarchical IDA*.

Heuristics/Holte Part 3, Slide 48

Reverse Resumable A*

• Silver, 2005
• Aims to minimize the number of PDB entries

– Backward search from abstract goal stops when
abstract start is reached

– If h(x) is needed and has not been computed,
resume the abstract search until you get it.

• Requires abstract Open and Closed lists.

Heuristics/Holte Part 3, Slide 49

Super-Customization

• If customizing an abstraction for a given start
state is a good idea, wouldn’t it be even
better to change abstractions in the middle of
the search space to exploit local properties ?

• This does pay off sometimes, even for PDBs:
– Felner, Korf & Hanan (2004)

– Hernadvolgyi (2003; also PhD thesis, chapter 5)

Heuristics/Holte Part 3, Slide 50

Multiple Lookups in One
Pattern Database

Heuristics/Holte Part 3, Slide 51

Use Symmetries

distance(Pos3,c’) = distance(mirror(Pos3),c)

be’d’

eac’

dc

goalmirror positions

876

543

21

Heuristics/Holte Part 3, Slide 52

Example

547

816

32

Domain = blank 1 2 3 4 5 6 7 8
Abstract = blank 1

1

normal PDB lookupstate mirror lookup

1

Heuristics/Holte Part 3, Slide 53

“Dual” PDB Lookups

743

816

52

Domain = blank 1 2 3 4 5 6 7 8
Abstract = blank 1

goalstate

876

543

21

distance ?

Heuristics/Holte Part 3, Slide 54

Standard PDB lookup

1

abstract goalabstract state

1

4

Heuristics/Holte Part 3, Slide 55

“Dual” lookup, same PDB

1

abstract goalabstract state

1

6

Heuristics/Holte Part 3, Slide 56

Relevance ?

1 1
6

Why is this lookup

relevant to the original state ?

743

816

52

Heuristics/Holte Part 3, Slide 57

Tile 2

2 2
6

In a PDB for tile 2, this lookup

is relevant to the original state.

743

816

52

Heuristics/Holte Part 3, Slide 58

Two Key Properties

2 2

6

(1) Distances are Symmetric

(2) Distances are tile-independent
1 1

6

6

Heuristics/Holte Part 3, Slide 59

Third Key Property

(3) Can determine which tiles in the given
state correspond to the key tiles in the
goal state.

743

816

52

Domain = blank 1 2 3 4 5 6 7 8
Abstract = blank 1

goalstate 876

543

21

Heuristics/Holte Part 3, Slide 60

Fourth Key Property

(3) The tiles that correspond to the key tiles
in the goal state occur in the goal state.

743

816

5999

Domain = blank 1 2 3 4 5 6 7 8
Abstract = blank 1

goalstate 876

543

21

???

Heuristics/Holte Part 3, Slide 61

Experimental Results

• 16-disk, 4-peg TOH, PDB of 14 disks
– Normal: 72.61 secs
– Only the “dual” lookup: 3.31 secs
– Both lookups: 1.61 secs

• 15-puzzle, additive PDB (8-7)
– Normal: 0.034 secs
– Only the “dual” lookup: 0.076 secs
– Both lookups: 0.022 secs

Heuristics/Holte Part 3, Slide 62

goal (7-pancake puzzle)7654321

5764321

abstract distance = 0

Domain = 1 2 3 4 5 6 7
Abstract = 1 2 3

321

1234675 123

231

321

abstract distance = 3

Dual Not Always Consistent

Heuristics/Holte Part 3, Slide 63

Bidirectional Pathmax

h(A) = 1

�

��

h(B) = 7 h(C) = 3

X

X

6

5

Heuristics/Holte Part 3, Slide 64

Related Algorithm – CFPD

Heuristics/Holte Part 3, Slide 65

CFDP

• Coarse-to-Fine Dynamic Programming
• Works on continuous or discrete spaces.
• Most easily explained if space is a trellis (level

structure).
• Abstraction = grouping states on the same level.
• Multiple levels of abstraction.
• Resembles refinement, but guaranteed to find

optimal solution.
• Application: finding optimal convex region

boundaries in an image.

Heuristics/Holte Part 3, Slide 66

S
G

A

E

H

C

1

5

1

10

20

10

20

B

F

I

D

10

5

50

50

1

20

More

10

CFDP - Example

Heuristics/Holte Part 3, Slide 67

S
G

A

E

H

C

1

5

1

10

20

10

20

B

F

I

D

10

5

50

50

1

20

More, all > 30 at
coarsest level

10

CFDP – Coarsest States

Heuristics/Holte Part 3, Slide 68

S
G

1
1

5

1

10

CFDP – Abstract Edges

Optimal solution

More, all > 30 at
coarsest level

Heuristics/Holte Part 3, Slide 69

S
G

A

C

1

5

1

10

10

10

5

1

10

CFDP – Refine Optimal Path

Optimal solution

More, all > 30 at
coarsest level

Heuristics/Holte Part 3, Slide 70

S
G

A

C

1

5

1

10

10

B

D

10

5

50

50

1

10

CFDP – Refine Optimal Path

Optimal solution

More, all > 30 at
coarsest level

Heuristics/Holte Part 3, Slide 71

S
G

A

C

1

5

1

10

20

10

B

F

I

D

10

5

50

50

1

20

10

CFDP – Refine Again

Optimal solution

More, all > 30 at
coarsest level

Heuristics/Holte Part 3, Slide 72

S
G

A

E

H

C

1

5

1

10

20

10

20

B

F

I

D

10

5

50

50

1

20

10

CFDP – Final Iteration

Final solution

Still at the coarsest levelMore, all > 30 at
coarsest level

