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Part 1: Introduction

Part 2: Detalils

Part 3: Pattern Database Enhancements
— Taking the maximum of two or more PDBs
— Compression and Dovetailing of PDBs
— Additive PDBs
— Customized PDBs
— Multiple Lookups in One PDB

Bonus! — Related Algorithm (CFPD)
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Max’ing Multiple Heuristics

» Given heuristics hl and h2 define
h(s) = max ( h1(s), h2(s) )

* Preserves key properties:
— lower bound
— consistency
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Question
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» Given a fixed amount of memory, M,
which gives the best heuristic ?

— 1 pattern database (PDB) of size M
— max’ing 2 PDBs of size M/2

— max’ing 3 PDBs of size M/3

— etc.
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1 large pattern database

h(s)
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2 half-size pattern databases

hy(s) hy(s)
1\ J

max
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Many small pattern databases

Rubik’s Cube*

h, e h,
© )

max
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PDB Size n | Nodes Generated
13,305,600 | 8 2,654,689
17,740,800 | 6 2,639,969
26,611,200 | 4 3,096,919
53,222,400 | 2 5,329,829
106,444,800 | 1 61,465,541
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Summary
State Space Best n Ratio
(3x3)-puzzle 10 3.85
9-pancake 10 8.59
(8,4)-Topspin (3 ops) 9 3.76
(8,4)-Topspin (8 ops) 9 20.89
(3x4)-puzzle 21+ 185.5
Rubik’'s Cube 6 23.28
15-puzzle (additive) 5 2.38
24-puzzle (additive) 8 1.6 to 25.1

#nodes generated using one PDB of size M
RATIO =

#nodes generated using n PDBs of size M/n

A
. ~ O\ ALBERT, GENUITY
| Heuristics/Holte Part 3, Slide 9 || ///;/ \AL e

Rubik’s Cube CPU Time

#PDBs | Nodes Ratio Time Ratio
8 23.15 12.09
6 23.28 14.31
4 19.85 13.43
2 11.53 9.87
1 1.00 1.00

time/node is 1.67x higher using six PDBs

A
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Early Stopping

Techniques for
Reducing the Overhead of
Multiple PDB lookups

A
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IDA* depth bound =7

g(s) =3
= Stop doing PDB lookups as
soon as h > 4 is found.

Might result in extra IDA* iterations

PDB,(s) =5 = nextbound is 8
PDB,(s) =7 = nextboundis 10
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Consistency-based Bounding

PDB,(A) = 1
PDB,(A) = 7

Experimental Results

Because of consistency:
PDB,(B) <2
PDB,(B) =26

= No need to consult PDB,

e Al AN ALBERTA INGENUITY
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» 15-puzzle, five additive PDBs (7-7-1)
— Naive: 0.15 secs
— Early Stopping: 0.10 secs

* Rubik’s Cube, six non-additive PDBs
— Naive: 27.125 secs
— Early Stopping: 8.955 secs
— Early Stopping and Bounding: 8.836 secs
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Why Does Max’ing
Speed Up Search ?
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Static Distribution
of Heuristic Values

le+07

Lt max of 5 small PDBs.

8e+06 [-

15-puzzle,
100M states.

1 large PDB. j
2.38x nodes generated [




Runtime Distribution
of Heuristic Value
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Example of Max Failing

Depth Bound hl h2 max(h1,h2)

8 19 17 10
9 36 16
10 59 78 43
11 110 53
12 142 188 96
13 269 124
14 440 530 314
15 801 400
16 1,045 1,348 816
17 1,994 949
18 2,679 3,622 2,056
19 5,480 2,435
20 1,197 1,839 820

TOTAL 5,581 16,312 8,132

ALBERTA INGENUITY
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Approaches

Squeezing More into Memory

o\
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» Compress an individual Pattern Database
— Lossless compression
— Lossy compression must maintain admissibility

— Allows you to
 use a PDB bigger than will fit in memory
» use multiple PDBs instead of just one

* Merge two PDBs into one the same size
— Culberson & Schaeffer’s dovetailing
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Compression Results

» 16-disk 4-peg TOH, PDB based on 14 disks
— No compression: 256Megs memory, 14.3 secs
— lossless compression: 256k memory, 23.8 secs
— Lossy compression: 96Megs, 15.9 secs

» 15-puzzle, additive PDB triple (7-7-1)
— No compression: 537Megs memory, 0.069 secs
— Lossy compression, two PDB triples
537Megs memory, 0.021 secs
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Dovetailing

» Given 2 PDBs for a state space construct
a hybrid containing some entries from
each of them, so that the total number of
entries is the same as in one of the
originals.

» The hope: almost as good as max, but
only half the memory.

ALBERTA INGENUITY

|| Heuristics/Holte Part 3, Slide 22 || /\\L

Dovetailing based on the blank
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Any “colouring” is possible
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Dovetailing — selection rule

Dovetailing requires a rule that maps each
state, s, to one of the PDBs. Use that PDB
to compute h(s).

Any rule will work, but they won't all give
the same performance.

Intuitively, strict alternation between PDBs
expected to be almost as good as max.
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Dovetailing compared to Max’ing

DovetailSpeedup
w ES ]

4 max failures

17 dovetail failures

MaxSpeadup
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Experimental Results

Culberson & Schaeffer (1994):

— Dovetailing two PDBs reduced #nodes
generated by a factor of 1.5 compared to
using either PDB alone

Holte & Newton (unpublished):

— Dovetailing halved #nodes generated on
average

AAAAAAAAAAAAAAAAA
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How to generalize Dovetalling
to any abstractions of any space ?
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A Partial-Order on
Domain Abstractions

» Easy to enumerate all possible domain
abstractions
Domain=blank 1 23456 7 8
Abstract=blank C2 B 0 B E 0 B

» and to define a partial-order on them, e.g.

Domain=blank 1 23456 7 8
Abstract=blank 55 B & 8 B 8 &

IS “more abstract” than the domain abstraction
above.
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Lattice of domain abstractions
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The “LCA” of 2 Abstractions

Domain=blank 1 23456 7 8
Abstract=blank E & @ & B ® & &
A

Doman=blank 1 2 3456 7 8 blank 123456 7 8
Abstract=blank C® B 0 B @ [ H blaok com mom B @

LCA = least-abstract common abstraction
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General Dovetalling

« Given PDB, and PDB, defined by ¢, and ¢,
* Find a common abstraction ¢ of ¢, and ¢,

« Because it is a common abstraction there

exist ¢, and ¢, such that ¢, ¢, =9, d, =9

* For every pattern, p, defined by ¢, set
SELECT[p] = ¢, or ¢,

« Keep every entry (p,,h) from PDB; for which
SELECT[¢i(p)]=i.

 Given state s
1. §g=SELECT[(s)]
2. h(s) = PDB[Q ()]

A
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Additive Pattern Databases

AN ALBERTA INGENUITY
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Adding instead of Max’ing

» Under some circumstances it is possible to
add the values from two PDBs instead of
just max’ing them and still have an
admissible heuristic.

» This is advantageous because*
hy(s) + hy(s) 2 max(hy(s), hy(s))

| * but see slide “Compared to Max’ing” |
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Manhattan Distance Heuristic

For a sliding-tile puzzle, Manhattan Distance
looks at each tile individually, counts how
many moves it is away from its goal
position, and adds up these numbers.

1 3

MD(s)=2+1+2=5

2 3 1 2

goal state s

AN Aseria iNcENUITY
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M.D. as Additive PDBs (1)

’

(I) X if x=1
— <
1(X) | blank otherwise

1 PDB,[(.(s)] = 2

1

.(goal) 9.0 MD(s) = PDB,[{(s)]

+ PDB,[(,(s) ]
+ PDB;[((s) ]

A Atseria iNGeNUITY
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In General...

Korf & Felner's Method

Partition the tiles in groups, G,, G,, ... G,

blank otherwise

(I)i(X): { X if x0OG,;

L. .. =1 ANE ALBERTA INGENUITY
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Partition the tiles in groups, G,, G,, ... G,

X if xOG,
®.(x)= {blank if x=blank
B otherwise

Moves of cost zero

L. .. ~~ |l  ANEA ALBERTA INGENUITY
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What's the Difference ?

Compared to Max’ing

the blank cannot

reach this position
without disturbing
tile 1 or tile 2.

< ..~~~ AN ALBERTA INGENUITY
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* If the PDBs were going to be max’d
instead of added, we would count all the
moves in all the PDBs.

» Therefore the PDBs for adding have
smaller entries than the corresponding
PDBs for max’ing.

* In initial experiments on the 15-puzzle,
max’ing returns a higher value than adding
for about 12% of the states.

. .. A~  ANEA ALBERTA INGENUITY
|| Heuristics/Holte Part 3, Slide 40 || A AACHINE LEARNING




Max’ing After Adding
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G

F

8-7 Partition

(576 million entries)

11213

4567

+
891011

1213|1415

| 8 tiles retain their identity | | 7 tiles retain their identity

* movement of coloured tiles not counted |

. e . ALBERTA INGENUITY
|| Heuristics/Holte Part 3, Slide 42 || A MACHINE LEARNING

7-7-1 Partition

(115 million entries)

11213

41567

10

+

12

13

14

15

W ALBERTA INGENUITY
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Max'ing after Adding

* For a given 7-7-1 partition, look up the 3
values and add them.

* Do this for each of the five 7-7-1 partitions
and take the maximum®*.

Also compute Manhattan Distance, and use that if it is
largest of all. This was also done for 8-7.

. e . ALBERTA INGENUITY
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15-Puzzle Results

Partition n Nodes Generated
7-7-1 5 57,159
8-7 1 136,228

58% reduction in #nodes generated,
but only 10% reduction in CPU time.

ALBERTA INGENUITY
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Customized PDBs

ALBERTA INGENUITY
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Space-Efficient PDBs

* Zhou & Hansen (AAAI, 2004)

— Do not generate PDB entries that are provably
not needed to solve the given problem.
— Prune abstract state A if f(A) > U,

where U is an upper bound on the solution cost
at the base level.

» To work well, needs a heuristic to guide the
abstract search and a fairly tight U.

» Even then requires significantly more
memory than Hierarchical IDA*.

ALBERTA INGENUITY

| Heuristics/Holte Part 3, Slide 47 ||

Reverse Resumable A*

» Silver, 2005

* Aims to minimize the number of PDB entries

— Backward search from abstract goal stops when
abstract start is reached

— If h(x) is needed and has not been computed,
resume the abstract search until you get it.

» Requires abstract Open and Closed lists.

ALBERTA INGENUITY
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Super-Customization

* If customizing an abstraction for a given start
state is a good idea, wouldn’t it be even
better to change abstractions in the middle of
the search space to exploit local properties ?

» This does pay off sometimes, even for PDBs:

— Felner, Korf & Hanan (2004)
— Hernadvolgyi (2003; also PhD thesis, chapter 5)

ALBERTA INGENUITY
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Multiple Lookups in One
Pattern Database

ALBERTA INGENUITY
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Use Symmetries

Example

c|d 112
cjal]e 3141]5
dje]b 6| 71]8
mirror positions goal

distance(Pos3,c’) = distance(mirror(Pos3),c)

ALBERTA INGENUITY
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Domain=blank 1 23456 7 8
Abstract =blank 1 2 0 0 0O OO0

2 3
1 8 1
4 1 5 1
state normal PDB lookup  mirror lookup

ALBERTA INGENUITY
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“Dual” PDB Lookups

215 11 2
6|1]s m 3la]s
31417 6| 71]8

state goal

Domain=blank 1 23456 7 8
Abstract =blank 1 &8 0 0 0O OO0
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Standard PDB lookup

abstract state

|
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abstract goal

AAAAAAAAAAAAAAAA

“Dual” lookup, same PDB

—)

abstract state abstract goal
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Relevance ?

Why is this lookup

1

—)

relevant to the original state ?

215
611]8
31417

[+ et . 56 |
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Tile 2

In a PDB for tile 2, this lookup
2 2

<=

IS relevant to the original state.
2

1\10001

611
314
e e

]
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Two Key Properties

(1) Distances are Symmetric
2

"

(2) Distances are tile-independent
1 1

’
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Third Key Property

(3) Can determine which tiles in the given
state correspond to the key tiles in the

goal state.  pomain=lblank 123456 7 8
Abstract s blank 1|0 0 0 0O OO0

2 5 1 2
6 1 8 3 4 5
state 3 4 7 6 7 8 goal

AAAAAAAAAAAAAAAAA
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Fourth Key Property

(3) The tiles that correspond to the key tiles
in the goal state occur in the goal state.

Domain=|blank 1/2 3456 7 8
Abstract s blank /2 0 0 0O OO0

9991 5 1] 2
6 111]8 3141]5
31417 61 71]8

state

AAAAAAAAAAAAAAAAA
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Experimental Results

» 16-disk, 4-peg TOH, PDB of 14 disks
— Normal: 72.61 secs
— Only the “dual” lookup: 3.31 secs
— Both lookups: 1.61 secs

» 15-puzzle, additive PDB (8-7)
— Normal: 0.034 secs
— Only the “dual” lookup: 0.076 secs
— Both lookups: 0.022 secs

A
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Dual Not Always Consistent

112134 |5]|6/|7]|goal(7-pancake puzzle)

|1234675| 11213

1123
abstract distance = 0
51716143 (2]|1 312|1
1, 3|2

Doman=1234567 _
Abstract= 12300 O O abstract distance = 3
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Bidirectional Pathmax

*

h(A) = 16+,

Q‘x
h(C) = 35

A
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Related Algorithm — CFPD

A
A
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CFDP

Coarse-to-Fine Dynamic Programming
Works on continuous or discrete spaces.

Most easily explained if space is a trellis (level
structure).

Abstraction = grouping states on the same level.
Multiple levels of abstraction.

Resembles refinement, but guaranteed to find
optimal solution.

Application: finding optimal convex region
boundaries in an image.

ALBERTA INGENUITY
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CFDP - Example

ALBERTA INGENUITY
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CFDP — Coarsest States

More, all > 30 at

coarsest level
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CFDP — Abstract Edges

Optimal solution N K@
/
10

More, all > 30 at
CoarSESt |eVe| - . ALBERTA INGENUITY
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CFDP — Refine Optimal Path

Optimal solution

10

More, all > 30 at
A
coarsest level ) : A\ ALserTA INGENUITY
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CFDP — Refine Optimal Path

More, all > 30 at
coarsest level A
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CFDP — Refine Again

More, all > 30 at
coarsest level A
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CFDP — Final Iteration

Final solution

More, all > 30 at Still at the coarsest level
coarsest level A
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