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Abstract

A* is often described as being ‘optimal’, in that it expands
the minimum number of unique nodes. But, A* may gen-
erate many extra nodes which are never expanded. This is
a performance loss, especially when the branching factor is
large. Partial Expansion A* (PEA*) (Yoshizumi, Miura, and
Ishida 2000) addresses this problem when expanding a node,
n, by generating all the children of n but only storing chil-
dren with the same f -cost as n. n is re-inserted into the
OPEN list, but with the f -cost of the next best child. This
paper introduces an enhanced version of PEA* (EPEA*).
Given a priori domain knowledge, EPEA* generates only
the children with the same f -cost as the parent. EPEA*
is generalized to its iterative-deepening variant, EPE-IDA*.
For some domains, these algorithms yield substantial perfor-
mance improvements. State-of-the-art results were obtained
for the pancake puzzle and for some multi-agent pathfinding
instances. Drawbacks of EPEA* are also discussed.

Introduction
The A* algorithm and its derivatives such as IDA* (Korf
1985) and RBFS (Korf 1993) are general heuristic search
solvers guided by the cost function of f(n) = g(n) + h(n).
A* is often described as being ‘optimal’, in that it expands
the minimum number of unique nodes. If h(n) is admissible
(never overestimates the real cost to the goal) then the set
of nodes expanded by A* is both necessary and sufficient to
find the optimal path to the goal (Dechter and Pearl 1985).1

But A* also generates many nodes that it doesn’t expand.
Let X be the number of nodes that A* expands and let b be
the average branching factor. Every time a node is expanded,
b children are inserted into the OPEN list. Therefore, a to-
tal of b × X nodes are generated. However, once a solu-
tion of cost C is found, the algorithm only needs to verify
that no solution with cost < C exists. Therefore, when the
minimal-cost node in OPEN has f = C, the algorithm halts
and all other nodes in OPEN (mostly those with f > C)
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1A* has similar guarantees on the set of nodes expanded with
an inconsistent heuristic, but may perform many unnecessary re-
expansions (Felner et al. 2011). Throughout this paper we assume
a consistent heuristic.

are discarded.2 Nodes with f > C are designated as being
surplus. The number of surplus nodes in OPEN can grow
exponentially in the size of the domain, resulting in signifi-
cant costs. An extreme example is multi-agent pathfinding,
where b itself is exponential in the number of agents.

Partial Expansion A* (PEA*) (Yoshizumi, Miura, and
Ishida 2000) addresses this problem. When PEA* expands
a node n, b children are generated but only those with
f = f(n) are inserted into OPEN. The rest of the gener-
ated children are discarded. n is re-inserted into OPEN, but
with the f -cost of its best child that was not placed in OPEN.

This paper takes the idea of PEA* farther. Whereas PEA*
generates all children, our new approach, called Enhanced
PEA* (EPEA*), generates only those children with the de-
sired f -cost. Given a priori domain knowledge, it is often
possible to predict the f -cost of the children of a node with-
out actually generating them. With this information, only
the children that have the desired f -cost need be generated.
We discuss methods for creating an operator selection func-
tion (OSF) to identify operators that will produce the de-
sired f -value for a given state. Only these operators should
be applied. We show such OSFs for a number of popular
heuristics, including pattern databases. A time and memory
analysis gives insights into when the use of an OSF will be
effective. The OSF is shown to be also effective in IDA*,
yielding Enhanced Partial Expansion IDA* (EPE-IDA*).

Experiments on puzzle and pathfinding domains show
significant speedup, in some cases producing state-of-the art
results. The limitations of PEA* and EPEA* are discussed,
including an example where EPEA* is slower than A*.

A* with partial expansion
The key idea of PEA* is to never add surplus nodes (with
f > C) to OPEN (Yoshizumi, Miura, and Ishida 2000).
When expanding node n, PEA* first generates a list of all
the children of n, CH(n). Only nodes c from CH(n) with
f(c) = f(n) are added to OPEN. The remaining children
are discarded but n is added back to OPEN with the smallest
f -value greater than f(n) among the remaining children.3

2Usually, if OPEN breaks ties in favor of small h-values, the
goal node with f = C will be expanded as soon as it is generated.

3Collapsing frontier nodes into one of their ancestors a and only
keeping a in OPEN has been used by different search algorithms
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Figure 1: Example of PEA*

We borrow the terminology first used in RBFS. Denote
the regular f -value (g + h) of node n as its static value,
which we denote by f(n) (small f ). The value stored in
OPEN for n is called the stored value of n, which we denote
by F (n) (capital F ). Initially F (n) = f(n). After it is
expanded for the first time, F (n) might be set to v > f(n)
when its minimal remaining child has a static f -value of v.

The PEA* idea is shown in Figure 1 where node a is be-
ing expanded. All of its children (x, y, z, w) are generated.
Then, its children with f -value of 3 (x and y) are inserted
into OPEN.4 Node a is re-inserted to OPEN, but this time
with a stored value F (a) = 4, the lowest cost of the remain-
ing children (node z). There are now two cases.
Case 1: Re-expansion of a: When a is later chosen for
expansion with F = 4, all its children are generated. Those
with f < 4 are discarded. Those with f = 4 are placed in
OPEN (node z). If a has other children with f > 4, then a
is added back to OPEN with the lowest cost among them (5
in our example).
Case 2: No re-expansion: Assume that one of the descen-
dants of node x with f = 3 is the goal. In this case, children
of a with costs larger than 3 will never be added to OPEN.

We refer to this algorithm as Basic PEA* (BPEA*). The
memory benefit of Case 2 is straightforward. Assume the
goal node has f = C. All nodes with f > C that were
generated (as children of expanded nodes with f ≤ C) will
not be added to OPEN. While Case 2 will only occur for f =
C, domains with a large branching factor will have a large
reduction in the size of OPEN. Indeed, reducing the memory
usage of A* was the motivation for creating BPEA* so as to
be able to solve larger instances of the multiple sequence
alignment problem. (Yoshizumi, Miura, and Ishida 2000)
did not analyze the time needs of PEA* (BPEA*) nor did
they provide timing results. However, it is easy to see that
BPEA* has time tradeoffs, as discussed below.

in several contexts. For example, in SMA* (Russell 1992) once
OPEN is too large, areas with the highest f -values in OPEN are
collapsed. In IDA*, the end of an iteration can be seen as collapsing
the entire tree into the start node with the f -value of the minimal
frontier node. In RBFS (Korf 1993) only one branch of the tree
(plus the children of nodes of that branch) are kept in memory; any
frontier below these nodes is collapsed.

4Applicable here is the general method of immediate expan-
sion (Stern et al. 2010; Sun et al. 2009): when a generated node
has exactly the same f -value as its parent, it bypasses OPEN and
is expanded immediately. If this idea is applied, nodes x and y will
be immediately expanded and will never be in OPEN with f -values
of 3. This method is orthogonal to the ideas of this paper but has
been used in all our experiments.

1 

G 

4 3 

3 

5 

5 

∆f ∆h Operators vnext
0 -1 North, West 1
1 0 Wait 2
2 1 South, East nil

Figure 2: MD-based OSF table for the shaded cell

Enhanced PEA*
Assume that we are now expanding node n where F (n) =
K. BPEA* generates all children of n but only those with
f = K are inserted into OPEN. Other children (values
f < K or f > K) are discarded. In contrast, Enhanced
PEA* (EPEA*) uses a mechanism which only generates the
children with f = K, without generating and discarding the
children with values f < K or f > K. Thus, each node
is generated only once throughout the search process and no
child is regenerated when its parent is re-expanded.

This is achieved with the following idea. In many do-
mains, one can classify the operators applicable to a node
n based on the change to the f -value (denoted ∆f ) of the
children of n that they generate. The idea is to use this clas-
sification and only apply the operators of the relevant class.

For example, consider a 4-connected grid with 4 cardi-
nal moves and a wait move (where the agent stands still).
Assume that all moves cost 1 and the heuristic function is
Manhattan Distance (MD). Without loss of generality, as-
sume that the goal node is located northwest of the current
location. It is easy to see that MD decreases by 1 when go-
ing north or west, remains the same for the wait action, and
increases by 1 when going south or east. This is shown in
Figure 2 (left). Numbers inside cells are their h-values and
the current node is the shaded cell with h = 4.

EPEA* creates a domain-dependent Operator Selection
Function (OSF) which receives a state p and a value v. The
OSF has two outputs: (1) a list of operators that, when ap-
plied to state p, will have ∆f = v. (2) vnext — the value of
the next ∆f in the set of applicable operators.

The OSF for our example is shown in Figure 2 (right) in
the form of a table. This table orders the operators accord-
ing to their ∆f when applied to the shaded cell. The first
column gives ∆f and the third column gives the list of the
operators that achieve ∆f . The second column, provided
for completeness, shows the change in the h-value (∆h).
Finally, the last column gives vnext, i.e., the next ∆f value.

Assume node n is expanded with a stored value F (n)
and static value f(n). We only want to generate a child
c if f(c) = F (n). Since the static value of n is f(n),
we only need the operators which will increase f(n) by
∆f = F (n) − f(n). Therefore, OSF (n,∆f) is used
to identify the list of relevant operators. Node n is re-
inserted into OPEN with the next possible value for this
node, f(n) + vnext(n,∆f). If the vnext entry is nil, mean-
ing no larger value is possible, then node n is moved to the
CLOSED list.

Consider Figure 2 with the shaded cell (with h = 4) as
the start node n. When it is expanded for the first time,



# Operation A* BPEA* EPEA* IDA* EPE-IDA*
1 Remove from OPEN (expand) X < αX = αX X = X
2 Check one operator in OSFO 0 = 0 < bαX 0 < bX
3 Check one operator in OSFD 0 = 0 < βαX 0 < X
4 Generate one child bX < bα X > βαX bX > X
5 Insert one child into OPEN bX > βαX = βαX N/A
6 Re-insert n into OPEN 0 < (α− 1)X = (α− 1)X N/A

Table 1: Time overhead of the different operations

F (n) = f(n) = 4 and thus ∆f = 0. Therefore OSF (n, 0)
is examined and only the operators in the ∆f = 0 row
(North and West) are considered. OSFnext(n, 0) says that
the next ∆f value is 1. n is re-inserted into OPEN with
F (n) = 4 + 1 = 5. Later on, when n gets expanded for the
second time, ∆f = 5 − 4 = 1 and only the wait operator
is applicable. n is re-inserted into OPEN with F (n) = 6.
Finally, if n gets visited for a third time, only the operators
for ∆f = 2 are applied (South and East). There are no rows
for ∆f > 2 (the next value is nil) and n is now closed.
Of course, if the goal node is found before n is moved to
CLOSED, EPEA* never generates any of the nodes with an
f -value larger than the f -value of the goal.

Enhanced partial expansion IDA* (EPE-IDA*)
Partial expansion and OSF work naturally in IDA*. In fact,
regular IDA* can be viewed as using basic partial expansion.
Assume that the IDA* threshold is T . Once a node n is ex-
panded, all the children are generated. Children with f ≤ T
are expanded, while children with f > T are generated and
discarded. This satisfies the basic partial expansion crite-
ria. However, augmenting IDA* with an OSF (enhanced
partial expansion) may significantly reduce the number of
node generations. This is done with EPE-IDA*.

EPE-IDA* is simpler than EPEA*. EPE-IDA* associates
each node only with its static value. There is only one
“stored” value for the entire tree — the value for the next
iteration. Given an expanded node n, let d = T −f(n). The
OSF will identify the applicable operators with ∆f ≤ d.
These operators will be applied. Operators with ∆f > d
need not be applied as the children they produce will have
f -value > T . Thus, for every iteration, EPE-IDA* gener-
ates exactly the nodes that will be expanded. The next IDA*
threshold is set to the minimal OSFnext() value among the
expanded nodes that exceeds the current threshold.

Classes of OSFs
The use of enhanced partial expansion for a particular do-
main requires that, for each node being expanded, the oper-
ators applicable to this node can be classified based on their
∆f value without having to apply the operators. In general,
this will be possible if the g-cost of the operators is known a
priori and their ∆h value can be predicted.

OSFs can be classified into two main types:
Type 1: Ordered by Operators (OSFO): A general and
simple way would be to iterate through all the applicable
operators in a state and decide whether it will produce the

desired ∆f . The cost is linear in the number of applicable
operators (O(b)). This approach is faster than the traditional
approach of applying the different operators, generating the
children states, and invoking the heuristic function for each.
Type 2: Direct Function (OSFD): If applicable, the OSF
can be a function which when applied to a state returns ex-
actly the set of operators with the desired ∆f value. The
cost would be o(β) where β ≤ b is the number of operators
with the desired ∆f .

Both OSF types may be implemented as a lookup table.
Type 2 tables may be faster but the data structures involved
are more complicated and need larger amount of memory.

Time Overhead Analysis
Table 1 shows how often the algorithms perform each oper-
ation. X is the number of nodes expanded by A* (or IDA*),
and b is the branching factor. The right part of the table
deals with IDA* and EPE-IDA*. Here, the numbers refer to
a given IDA* iteration with threshold T . Summation over
all iterations will give the exact numbers for the entire run
of IDA*. For IDA*, X nodes are expanded and bX nodes
are generated. As explained above EPE-IDA* generates ex-
actly X nodes. As long as the constant time cost per node
of EPE-IDA (including operation #2 or #3) is not larger by
more than a factor b over the constant node cost of IDA*,
EPE-IDA* will run faster.

The A* versions are more complex. Let α be the average
number of times BPEA* (and EPEA*) expands the same
node to generate some of its children, and β be the average
number of children that BPEA* (and EPEA*) adds to OPEN
when it expands a node. The inequalities shown are not nec-
essarily strict; it could happen that α = 1 and β = b. Note
that if BPEA* and EPEA* eventually add all of the children
to OPEN of every node expanded by A* then βα = b.

The only operation that is executed fewer times by
BPEA* than by A* is inserting a child into OPEN (#5). By
contrast, it expands (#1) and generates (#4) nodes a factor
of α times more than A* and re-inserts nodes (α−1)X more
nodes (#6). BPEA* will run faster than A* only if 1) βα
is sufficiently smaller than b, and 2) the insertion operation
(#5) is sufficiently costly compared to the operations that
are executed more times by BPEA*.5

There is one operation that BPEA* performs more fre-
quently than EPEA* (#4) and one that EPEA* performs

5Operation #6 might be implemented as a change-priority ac-
tion on OPEN. This includes (α− 1)X of the operations listed for
operator #1. Such an implementation has speedup potential.



IDA* EPE-IDA* Ratio
Gen Nodes 363,028,079 184,336,705 1.97
Time (ms) 17,537 14,020 1.25

Table 2: Experimental results: 15-puzzle

more frequently than BPEA* (#2 or #3). The relative cost
and relative frequencies of these operations will determine
how much faster (or slower) EPEA* will be than BPEA*
(and similarly, for EPE-IDA* versus IDA*).

Thus, depending on the branching factor and how effi-
ciently an OSF can be implemented for a given domain, any
of these algorithms could be the fastest, the slowest, or in
between the other two. Note however, that in many cases,
especially in exponential domains with a large b, the num-
ber of surplus nodes with f > C is up to b times more than
X . Most of their parents (which are included in X) will
have small values of α and β. On average, in such cases
βα << b, and EPEA* will run faster than A*. This is the
case for many of the domains we experimented with.

Experiments: 15-Puzzle (MD heuristic)
Optimal solutions to random instances of the 15-puzzle were
first found by (Korf 1985) using IDA* and Manhattan Dis-
tance. Korf graciously made his code available to the pub-
lic. This piece of code is known to be highly optimized and
runs extremely fast. While reading the code, we realized that
Korf actually implemented an OSF function in the form of a
lookup table ordered by operators (OSFO). For each neigh-
boring tile of the blank and its location, Korf’s OSF table re-
turns the ∆f value for each operator. However, Korf did not
implement EPE-IDA* to its full extent. He first generates a
node and then consults the OSF to calculate the heuristic.

EPE-IDA* required only a small change to the code. First,
consult the OSF. Then, only apply those operators that will
produce children with f ≤ T Unlike Korf’s original code,
nodes with f > T are not generated.

Table 2 presents the results of running Korf’s IDA* code
and EPE-IDA* on his 100 random instances. A factor of
2 reduction in nodes is seen. This translates to a 1.25-fold
improvement in run-time. Improving the run-time of this
highly efficient code is a nice achievement. All our experi-
ments (except the last section) were conducted on a 3.0GHz
Intel dual-core processor under Windows 7.

Experiments: Rubik’s Cube (Delta PDBs)
A pattern database (PDB) is based on an abstraction φ of
the state space (Culberson and Schaeffer 1996). The PDB
contains the distance from an abstract state to the abstract
goal. When a heuristic value is required for state p one
simply looks up PDB[φ(p)]. An OSF for any PDB can
be built in a preprocessing step by applying each operator
σ to each abstract state a and recording the difference be-
tween PDB[σ(a)] and PDB[a]. This creates a data struc-
ture that is indexed by abstract states and operators. We call

# IDA* EPE-IDA ratio IDA* EIDA* ratio
Rubik’s Cube (Corner PDB)

Generated Nodes - Thousands Time (mm:ss)
13 434,671 32,610 13.32 0:53 0:15 3.53
14 3,170,960 237,343 13.37 5:31 1:32 3.68
15 100,813,966 7,579,073 13.30 175:25 47:16 3.71

Pancake Puzzle (GAP Heuristic)
Generated Nodes Time (ms)

20 18,592 1,042 17.84 1.5 0.1 11.23
30 241,947 8,655 27.95 24.9 1.2 20.00
40 1,928,771 50,777 37.98 247 8.5 30.75
50 13,671,072 284,838 47.99 2,058 57 36.15
60 92,816,534 1,600,315 57.99 16,268 359 45.32
70 754,845,658 11,101,091 67.99 155,037 2,821 54.90

Table 3: Rubik’s Cube and pancake puzzle results

this data structure the Delta PDB or ∆-PDB.6 The entry ∆-
PDB[a, σ] indicates how much the heuristic value h(p) will
change when σ is applied to any state p such that φ(p)=a. In
state spaces where all operators have a cost of one, only two
bits are needed for each entry since the difference between
distances to the abstract goal of an abstract state and one
of its children will be either -1, 0, or 1.7 Given an original
state (p) and desired change in f -value (v), scan through all
the operators (σ), look up ∆-PDB[φ(p), σ], and return those
operators for which ∆-PDB[φ(p), σ]−cost(σ) is equal to v.

This technique was applied to the Rubik’s Cube PDB
based on the corner cubies (Korf 1997). This abstraction has
88, 179, 840 abstract states. In the ∆-PDB, each of these
states further included an array of size 18, one index per op-
erator (each requiring 2 bits) for a total of 396,809,280 bytes
of memory (396 MB, compared to 42 MB for the original
PDB). Note that the ∆-PDB can be potentially compressed
to reduce its memory needs.

Results using the corner ∆-PDB are given in Table 3
(top). Each line is the average over 100 instances of depth
13-15. The reduction (ratio column) in the number of nodes
generated is a factor of 13.3 (the known effective branching
factor) and the time improvement is only 3.7-fold. The rea-
son for the discrepancy is that the constant time per node of
EPE-IDA* is larger than that of IDA* since it includes the
time to retrieve values from the ∆-PDB which was ordered
by operators (OSFO) (#2 in Table 1).

Experiments: Pancake Puzzle (GAP heuristic)
In the pancake puzzle (Dweighter 1975), a state is a per-
mutation of the values 1...N . Each state has N − 1 chil-
dren, with the kth successor formed by reversing the order
of the first k + 1 elements of the permutation (1 ≤ k < N ).
For example, if N = 4 the children of state {1, 2, 3, 4} are

6The idea of ∆-PDBs was independently discovered
by (Schreiber and Korf 2012) under the name Locality-Preserving
PDB. Their work focuses on the cost of cache-misses with
memory-based heuristics

7Note that (Breyer and Korf 2010) compressed ordinary PDBs
to use two bits by only storing the h-value modulo 3.



{2, 1, 3, 4}, {3, 2, 1, 4} and {4, 3, 2, 1}. A number of PDB
heuristics have been used for this puzzle (Zahavi et al. 2008;
Felner et al. 2011; Yang et al. 2008), but the recently
introduced GAP heuristic significantly outperforms them
all (Helmert 2010).

Two integers a and b are consecutive if |a− b| = 1. For a
given state, a match at location j occurs when the pancakes
at location j and j+1 are consecutive. Similarly, a mismatch
occurs when these pancakes are not consecutive. The goal
can be defined such that pancake 1 is at location 1 and there
are no mismatches. Note that in the case of a mismatch there
must be a unique reverse operation that will separate these
two pancakes and will not influence the relative positions
of any other adjacent pancakes. The GAP heuristic iterates
through the state and counts the number of mismatches. This
heuristic is admissible.

A reverse operator of j pancakes only affects the
match/mismatch situation of three pancakes. Assume the
mismatch is between locations j and j + 1. The affected
locations are 1 (named P ), j (named X), and j + 1 (named
Y ). Originally,X and Y were adjacent but now P and Y are
adjacent. There are three cases for ∆h in the GAP heuristic:
(Case 1) ∆h = −1. A mismatch is removed: X and Y were
not consecutive but P and Y are.
(Case 2) ∆h = 0. No change: X and Y are (are not) con-
secutive and P and Y are (are not).
(Case 3) ∆h = 1. A mismatch is introduced: X and Y were
consecutive, but P and Y are not.

Each of these cases can be recognized by looking only at
the three affected pancakes. Thus, a direct OSF was built.8

The experimental results for 100 random instances for
10 to 70 pancakes are given in Table 3 (bottom). For 70
pancakes, EPE-IDA* generated 68 times fewer nodes than
IDA*. Most of this is reflected in the running time (54-fold)
as here a direct OSF was used and the overhead was very
small (#3). To the best of our knowledge, these are the
state-of-the-art results for this puzzle.

Experiments: Multi-agent Pathfinding (SIC)
Experiments were performed in the multi-agent pathfinding
domain (MAPF) (Standley 2010) where we seek for opti-
mal solutions. In MAPF, we are given a graph G = (V,E)
and k agents. Each agent has a start position and goal posi-
tion. The task is to move all the agents to their goals with-
out colliding into other agents (i.e., two agents cannot be in
the same location at the same time) while minimizing a cu-
mulative cost function. The straightforward optimal solver
uses A* where the state space includes all possible permu-
tations of the k agents on the |V | vertices. A commonly-
used heuristic function is the sum of individual costs (SIC),

8In fact, it was purely direct only for ∆h = −1 (i.e., for ∆f =
0). In this case, all that is needed, is to check the two operators
where Y is either P + 1 or P − 1 and confirm that X is not P − 1
or P + 1, respectively. For the other cases, the OSF was not purely
direct and there were more technical details which we omit here.
Nevertheless, the number of times ∆f = 0 was called significantly
dominated all other cases of ∆f = 1 and ∆f = 2

the summation of the individual shortest paths ignoring the
presence of other agents.

If b is the number of moves of each individual agent, then
up to bk legal operators can be available and the number of
surplus nodes (with f > C) grows exponentially in the num-
ber of agents. (Standley 2010) introduced operator decom-
position (OD) which reduces the number of surplus nodes
generated for MAPF. OD introduces intermediate nodes be-
tween the regular states of the A* search as follows. Agents
are assigned an arbitrary (but fixed) order. When a regular
A* state is expanded, OD considers only the moves of the
first agent, which results in generating the so called interme-
diate nodes. At these nodes, only the moves of the second
agent are considered and more intermediate nodes are gener-
ated. When an operator is applied to the last agent, a regular
node is generated. Once the solution is found, intermediate
nodes in OPEN are not developed further into regular nodes,
so that the number of surplus nodes is significantly reduced.
This variant of A* is referred to as ODA*. ODA* can still
generate surplus nodes, both intermediate and regular. By
contrast, EPEA* never generates any surplus node.

(Sharon et al. 2011a; 2011b) introduced the increasing
cost tree search (ICTS) algorithm for MAPF. It is a two-
level algorithm where the high-level searches combinations
of individual agent costs, while the low-level checks whether
there is a valid solution for the given cost. ICTS was shown
to outperform A* and ODA* in a large class of instances.

EPEA* was implemented for MAPF with an OSF that
works in two stages. For each agent ai we pre-compute
and store a special OSF table (OSFi) while ignoring other
agents. For each vertex of the graph, OSFi stores the ∆f
value for each possible move that ai can take. OSFi is or-
dered by ∆f . Now, the first stage computes all possible
combinations of ∆f for the individual agents that sum up to
the desired cumulative ∆f . For example, assume two agents
a1 and a2 and that the desired cumulative ∆f = 3. Suppose
that OSF1 says that a1 has operators with individual ∆f of
0, 1 and 2, and that OSF2 says that a2 has operators with
∆f of 0, 2 and 3. Then, the following combinations of in-
dividual ∆f ’s are produced: (0,3) and (1,2). The second
stage expands these combinations of individual ∆f ’s into
combinations of concrete operators, while pruning away the
combinations that result in collisions between the agents.

Following (Standley 2010; Sharon et al. 2011a), 3x3 and
8x8 grids with no obstacles were tested. Results are shown
in Table 4. Values are averaged over all random instances
(out of 100) that were solved under 5 minutes by all algo-
rithms (except those labeled by ”NA”). The number of such
instances solved is shown in the Ins column.9 Five algo-
rithms were compared: A*, ODA*, BPEA*10, EPEA* and
the highest performing variant of ICTS (Enhanced ICTS,
ICTSE) (Sharon et al. 2011b). Following (Sharon et al.

9(Standley 2010) introduced independent detection (ID) which
identifies independent groups of agents; each is treated as a sepa-
rate sub-problem. We followed (Sharon et al. 2011a) and used ID.
Results reported are for k agents which are all in the same group.

10BPEA* can be implemented on top of OD (BPEODA*). In
our experiments it was outperformed by EPEA* by a factor of 3.



Nodes Generated Run-Time (ms)
k Ins A* ODA* BPEA* EPEA* A* ODA* BPEA* ICTSE EPEA*

3x3 grid
5 100 780 255 3,433 16 100 7 95 7 4
6 100 2,767 1,134 14,126 48 660 40 494 90 25
7 100 6,634 5,425 42,205 144 3,593 777 2,190 2,761 176
8 100 9,003 16,029 39,344 235 5,187 3,475 4,371 71,612 583

8x8 grid
5 100 19,061 556 36,948 27 9,311 7 743 6 6
6 100 NA 1,468 353,479 54 NA 49 6,881 13 17
7 95 NA 2,401 1,676,093 71 NA 68 33,347 37 26
8 99 NA 8,035 NA 182 NA 593 NA 125 99
9 94 NA 30,707 NA 616 NA 6,612 NA 897 438

10 96 NA NA NA 2,448 NA NA NA 3,865 3,125
11 81 NA NA NA 2,739 NA NA NA 5,038 4,324
12 89 NA NA NA 11,343 NA NA NA 25,369 24,404

Table 4: Multi-agent pathfinding results

G 6 5 4 3
9 8 7 2
12 11 10 1
15 14 13 S

G 6 5 4 3
9 8 7 2
12 11 10 1
15 14 13 S

Figure 3: OPEN (checkerboard) and CLOSED (gray) states
after 16 node expansions for A* (left) and PEA* (right)

2011a) we report only time for ICTS, because ICTS has
components that are not based on ordinary search.

The following trends can be observed. First, as reported
by (Standley 2010) ODA* is faster than A*. Second, BPEA*
is faster than A*, but still suffers from generating the surplus
nodes (without putting them into OPEN). Third, EPEA*
generates significantly fewer nodes than BPEA* and ODA*,
since it does not generate any surplus node. Timing results
show that EPEA* outperforms ODA* by a factor of up to
a full order of magnitude. Furthermore, EPEA* was faster
than the enhanced version of ICTS. This trend held even for
the 8x8 grid, where ICTS was relatively strong in the exper-
iments of (Sharon et al. 2011a) .

Case Study: Single-agent Pathfinding (MD)
BPEA* and EPEA* have limitations and might perform
worse than A* in some cases. Single-agent path-finding on a
4-connected 2D grid with obstacles is used to illustrate this.
The OSF is a direct function, and stored in a pre-computed
table of incremental costs (similar to Figure 2 (right)). The
heuristic function is Manhattan Distance.

In this domain EPEA* will not necessarily outperform
A*. Consider Figure 3 (left) where the shortest path is
needed from cell S to cellG. Black cells are obstacles. Note
that the shortest path is of length 10 but the 16 gray cells all
have f -value of 8. Thus, A* starts expanding states with

f = 8. After 16 expansions all these states are in CLOSED,
and the 8 states around them (marked with a checkerboard)
are in OPEN, all with f = 10.

Now consider EPEA* (and BPEA*). When EPEA* ex-
pands the gray nodes it does not close them because each
has a child with f = 10. For example, when expanding
state 10 the OSF says that there are two operators (north
and west) with ∆f = 0 and one operator (east or south)
with ∆f = 2. The cell east of 10 is cell 1 which was al-
ready generated with a lower g-value and with f = 8 but
EPEA* cannot perform duplicate detection without actually
generating the successor. Thus, cell 10 is re-inserted into
OPEN with f = 10, received from cell 1. Consequently,
after expanding all the gray cells for the first time, EPEA*
has 16 nodes in OPEN as shown in Figure 3 (right) and none
in CLOSED. In terms of memory EPEA* has an advantage
as it only stores 16 states while A* stores 16+8=24 states.
However, if OPEN is implemented as a heap, there will be
log overhead for all heap operations, and so a larger OPEN
can greatly increase the running time. On a grid map where
there were previously O(r) states in OPEN at depth r, there
is now the potential for O(r2) states to be in OPEN at depth
r. That is, where A* will only store the perimeter of the
examined states in OPEN, EPEA* potentially can store all
states. In general, when there are many small cycles and a
small branching factor, EPEA* will likely have worse per-
formance than A*.

For grids, however, OPEN can be implemented using f -
cost buckets, which have amortized constant-time overhead.
We thus tested all algorithms with OPEN implemented both
as a heap (logarithmic) and with buckets (constant). The
problem set tested is all 3,803 problem instances from the
pathfinding repository (Sturtevant 2012) of optimal octile
length 508-512. The experiments were run on a 2.66GHz
Intel Core i7 processor running Mac OS X, and are summa-
rized in Table 5. The table shows the average time to solve
a problem in the set as well as the average number of states
in OPEN when the goal is found for the different algorithms
with the different OPEN implementations. A* is the fastest
and has the fewest number of states in OPEN. The constant-



Logarithmic Constant
Algorithm Time (ms) OPEN Time (ms) OPEN

A* 29.1 648 24.7 645
EPEA* 44.2 2371 31.5 2115
BPEA* 44.4 2349 34.0 2117

BPEA*dd 47.7 1908 36.2 1724
BPEA*dd−o 53.0 741 - -

Table 5: Comparison between different PEA* variants

time OPEN saves about 5ms per problem. EPEA* has the
next-best performance. It has over three times the number
of nodes on OPEN as A*. The constant-time OPEN is 13ms
faster than the log-time OPEN.

Three variants of BPEA* were implemented. The first
one completely ignores states with f -cost larger than the
current state. This has similar performance to EPEA*
with the log-time OPEN, but worse performance com-
pared to constant-time OPEN. The second implementation,
BPEA*dd, performs duplicate detection of all successors of
a state. In some cases this allows it to remove additional
states from OPEN, at the cost of looking up more states in
OPEN/CLOSED. There was a small reduction in the size of
OPEN, but it is still larger than that of A*. This is depen-
dent on the order that nodes are expanded. The third variant,
BPEA*dd−o, breaks ties in f -cost towards nodes with low
g-cost. This can significantly increase the number of nodes
expanded but it also reduces the size of OPEN and this is
reflected in the running time.

In summary, EPEA* is faster than BPEA* on 4-connected
grids. However with a small branching factor the potential
speedup is limited as the number of surplus nodes is mod-
est. Similarly, larger OPEN increased the time to perform
OPEN-based operations (#1, #5 and #6). Thus, EPEA* and
BPEA* were not able to outperform A* in such domains.

Conclusions
This paper presented the enhanced versions of PEA* and
IDA*, including showing a number of methods for produc-
ing OSFs. The success of enhanced partial expansion de-
pends on properties of the domain. In general, in exponen-
tial domains b is large and the potential savings are large, as
many states that would otherwise be generated are now by-
passed. Experimental results on such domains support this
trend and state-of-the-art results were obtained for the pan-
cake puzzle and MAPF. In contrast, in polynomial domains
with small b and many cycles, there is the danger of inflating
the OPEN list, thus reducing the potential for performance
gains despite fewer distinct nodes being generated.

Future work will further study different ways to build
OSFs. Similarly, deeper analysis on the characteristics of
these algorithms will further explain the circumstances for
potential performance improvements.
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