
AUTHOR  C
OPY

AI Communications 27 (2014) 363–383 363
DOI 10.3233/AIC-140605
IOS Press

Automatic move pruning for single-agent
search

Robert C. Holte ∗ and Neil Burch
Computing Science Department, University of Alberta, Edmonton, AB, Canada
E-mails: {holte, nburch}@cs.ualberta.ca

Abstract. Move pruning is a low-overhead technique for reducing search cost in single-agent search problems by avoiding the
generation of duplicate states. Redundant sequences of moves, where the effect of one sequence is provably identical to some
other sequence of moves, are suppressed during search. We present an algorithm for automatically identifying redundant move
sequences in a general class of single-agent search problems, and a method for selecting redundant move sequences to prune
during search. We demonstrate that the redundant move sequences which are to be pruned must be chosen carefully, and give
experimental results using our move pruning method which show a speedup of multiple orders of magnitude in a variety of
domains. Finally, we give theoretical results on conditions where move pruning does, and does not, affect the correctness of
different search algorithms.

Keywords: Heuristic search, singe-agent search problem, move pruning

1. Introduction

In a single-agent search problem (SASP), the aim
is to find a least-cost sequence of moves that trans-
forms a given state (the “start state”) into a state that
satisfies the given goal conditions, where a move con-
sists of applying an operator to the current state. Most
general-purpose algorithms for solving SASPs fall into
one of two broad categories: linear-memory search al-
gorithms, such as depth-first search and IDA∗ [21], and
full-memory search algorithms, such as A∗ [14]. Full-
memory search algorithms store all the states they gen-
erate, whereas linear-memory search algorithms store
only the states on the path currently being explored.

Linear-memory algorithms, in their pure form, can
detect cycles (sequences of moves that lead from a
state back to itself) but not arbitrary “transpositions”
(different paths leading to the same state). This means
these algorithms may generate the same state numer-
ous times and may even repeat the search beyond the
state numerous times. This can cause these algorithms
to require exponential time to explore a polynomial-
sized space such as an m×m grid.

Eliminating the unnecessary work caused by trans-
positions is the aim of the research reported in this

*Corresponding author: Robert C. Holte, Computing Science De-
partment, University of Alberta, Edmonton, AB T6G 2E8, Canada.
E-mail: holte@cs.ualberta.ca.

paper. Our approach builds on the work of Taylor
and Korf [30,31]. They introduced a method for auto-
matically analyzing an SASP to identify operator se-
quences that are guaranteed to be transpositions. The
redundant sequences identified in this way were en-
coded in a finite state machine (FSM) which was used,
during search, to avoid generating the redundant se-
quences. In particular, it disallowed (“pruned”) the use
of an operator after a specific sequence of operators
had been executed. They used the technique in IDA∗

on Rubik’s Cube and on two sizes of the sliding-tile
puzzle (4×4 and 5×5), getting large reductions in the
number of generated states for a very modest cost per
state.

The combination of large savings and automated
analysis make Taylor and Korf’s method a compelling
tool for improving the performance of linear-memory
algorithms. There is, however, one shortcoming. The
method they used to identify redundant operator se-
quences only applies to SASPs in which the operators
have no preconditions (every operator can be applied
to every state), such as Rubik’s Cube. In order to apply
their method to the sliding-tile puzzle, where operators
have a precondition that tests the location of the blank,
they devised a workaround that is entirely specific to
the sliding-tile puzzle [30].

The main contribution of the present paper is to
fully overcome this shortcoming. We present an algo-

0921-7126/14/$27.50 © 2014 – IOS Press and the authors. All rights reserved



AUTHOR  C
OPY

364 R.C. Holte and N. Burch / Automatic move pruning for single-agent search

rithm for automatically identifying redundant opera-
tor sequences in a general class of SASPs. Given an
SASP description in the PSVN language (described in
the Appendix), our method builds and analyzes a tree
of “macro-rules”, where each macro-rule describes the
collective preconditions and net effects of an entire
operator sequence. Using this tree, we generate a list
of redundant operator sequences which can be en-
coded and used in exactly the same manner as Tay-
lor and Korf’s FSM. The effectiveness and general-
ity of our method for speeding up depth-first search is
demonstrated experimentally on a variety of domains
whose encoding in PSVN, in most cases, requires op-
erators with preconditions. The preprocessing required
to identify redundant operator sequences is, in almost
all cases, very rapid, and the use of move pruning often
results in search being faster by orders of magnitude.

Pruning moves based on redundant operator se-
quences can be “unsafe” in some circumstances: if
done incorrectly, or in combination with certain other
pruning methods, it can eliminate all the least-cost
paths between some pairs of states. We provide a proof
that our method of choosing move sequences to prune
is safe, so that for any pair of states, it is guaranteed
to leave unpruned at least one least-cost path between
them. We also show that our move pruning method is
safe in conjunction with cycle detection and heuristic
cutoff pruning.

Full-memory search algorithms have a simple mech-
anism for detecting that a state has been reached for
a second time. For each state that is generated they
record its distance from the start state. If the state
is generated again by a path that is cheaper than the
recorded distance, the distance is updated and the state
is “re-opened” with a priority based on the new dis-
tance. Otherwise the new path to the state is ignored.
We refer to this as “duplicate detection”. It might seem
that move-pruning has nothing to offer to systems that
do duplicate detection, but, in fact, there are poten-
tial advantages for doing so. These are given in Sec-
tion 6.1. Unfortunately, we will show that move prun-
ing is, in general, not safe to use in conjunction with
duplicate detection. In Section 6.3 we prove two con-
ditions that must hold whenever move pruning is not
safe to use with duplicate detection and discuss cir-
cumstances in which each of these conditions might
not hold, i.e. circumstances in which it would be safe
to use move pruning in conjunction with duplicate de-
tection.

This paper combines three previously published pa-
pers. Our move pruning method was first described in
2011 [4]. After the publication of that paper we dis-
covered that the method, as we had implemented it,

was not safe: it would sometimes eliminate all least-
cost paths from start to goal. This led to the second pa-
per [5], which pointed out this error, formally proved
the correctness of our new implementation, and pro-
vided experimental results for the revised system. The
most recent paper investigated move pruning in the
context of full-memory algorithms [18].

2. State and rule representation

A state is a vector 〈v1, v2, . . . , vN 〉 of N values,
where vi is drawn from a finite set of possible val-
ues Di (the domain for vector position i). A move
is described by a rule (operator) that maps a state
〈v1, . . . , vN 〉 to another state 〈v′1, . . . , v′N 〉, with an as-
sociated cost. The cost of a rule is a non-negative num-
ber that does not depend on the state to which the rule
is applied.

Our running example of an SASP is the n-Arrow
puzzle [20]. A state consists of n “arrows”, each of
which is either pointing up or down. This is represented
by a vector of N = n values all drawn from a single
binary domain (we shall use 1 to represent “up” and
0 to represent “down”). Conceptually, there are n − 1
different operators that can all be applied to any state:
operator i flips the arrows in positions i and i + 1 (for
i ∈ {1, . . . ,n− 1}).

We deal with state spaces where the rules have pre-
conditions of the form vi = d ∈ Di or vi = vj , and
the resulting state can be described with a set of effects
where v′i = d ∈ Di or v′i = vj . All commonly used
planning and search testbed domains can be expressed
in rules of this form, although doing so often means
that several rules will be required to express what is
conceptually one operator. In the n-Arrow puzzle, for
example, we described operator 1 as flipping arrows 1
and 2. In our notation, the four rules shown in Table 1
would be required to implement this operator. The dis-
tinction made here between a conceptual operator and
rules in a formal problem description is important, but
we will henceforth only consider the formal descrip-
tion in our notation, and will use the terms “rule” and
“operator” interchangeably.

A rule of this type can be represented as a cost and
two vectors of length N : �p = 〈p1, . . . , pN 〉 for the pre-
conditions and �a = 〈a1, . . . , aN 〉 for the effects, where
each pi and ai is either a constant d ∈ Di or a variable
symbol drawn from the set X = {x1, . . . ,xN}. Vari-
able symbol xj is associated with domain Dj , there-
fore we only permit pi or ai to be xj if Dj = Di. In
this notation, the precondition vi = d is represented
by pi = d, precondition vi = vj is represented by



AUTHOR  C
OPY

R.C. Holte and N. Burch / Automatic move pruning for single-agent search 365

Table 1

4-Arrow puzzle, rules representing conceptual operator 1

Rule Preconditions Effects

R1-00 v1 = 0, v2 = 0 v′1 = 1, v′2 = 1

R1-01 v1 = 0, v2 = 1 v′1 = 1, v′2 = 0

R1-10 v1 = 1, v2 = 0 v′1 = 0, v′2 = 1

R1-11 v1 = 1, v2 = 1 v′1 = 0, v′2 = 0

Table 2

Rules for the 4-Arrow puzzle in vector notation

Rule Preconditions → Effects Cost

R1-00 〈0, 0,x3,x4〉 → 〈1, 1,x3,x4〉 c100

R1-01 〈0, 1,x3,x4〉 → 〈1, 0,x3,x4〉 c101

R1-10 〈1, 0,x3,x4〉 → 〈0, 1,x3,x4〉 c110

R1-11 〈1, 1,x3,x4〉 → 〈0, 0,x3,x4〉 c111

R2-00 〈x1, 0, 0,x4〉 → 〈x1, 1, 1,x4〉 c200

R2-01 〈x1, 0, 1,x4〉 → 〈x1, 1, 0,x4〉 c201

R2-10 〈x1, 1, 0,x4〉 → 〈x1, 0, 1,x4〉 c210

R2-11 〈x1, 1, 1,x4〉 → 〈x1, 0, 0,x4〉 c211

R3-00 〈x1,x2, 0, 0〉 → 〈x1,x2, 1, 1〉 c300

R3-01 〈x1,x2, 0, 1〉 → 〈x1,x2, 1, 0〉 c301

R3-10 〈x1,x2, 1, 0〉 → 〈x1,x2, 0, 1〉 c310

R3-11 〈x1,x2, 1, 1〉 → 〈x1,x2, 0, 0〉 c311

pi = xj , and the effects v′i = d and v′i = vj are rep-
resented by ai = d and ai = xj , respectively. Ta-
ble 2 shows the full set of rules for the 4-Arrow puz-
zle in this notation. We think of �p and �a as “augmented
states”, since they are precisely states over domains
that have been augmented with the appropriate variable
symbols: xj is added to Di if Dj = Di.

To summarize the notation used in the rest of this
paper: vi refers to the value in position i of the state to
which a rule is being applied, pi refers to the symbol
(either a constant from Di or a variable symbol from
X) in position i of a rule’s preconditions, ai refers to
the symbol (either a constant from Di or a variable
symbol from X) in position i of a rule’s effects, and xi
is a variable symbol from X that takes on the value vi
when the rule is applied.

In this notation, there can be several different, but
equivalent, representations of a rule. For example, con-
sider rule R1-01 in Table 2. Because its precondi-
tion requires v1 = 0, its effects could be written as
〈1,x1,x3,x4〉, and because its precondition also re-
quires v2 = 1, there are two additional ways its effects
could be written: 〈x2, 0,x3,x4〉 and 〈x2,x1,x3,x4〉.
We wish to have a unique canonical representation for
a rule, so whenever we have a choice between writing
an effect with a variable or writing it with a constant,

we always choose the latter. The version of rule R1-01
shown in Table 2 is therefore the canonical represen-
tation. If we don’t have a choice of writing an effect
with a constant, but do have a choice of writing it with
one of several variable symbols, we choose the variable
symbol with the smallest index. By imposing these two
constraints, there is a unique canonical representation
for each rule’s effects.

Similarly, there can be multiple ways to represent a
rule’s preconditions. Consider rule R1-00 in Table 2.
Its preconditions require both v1 and v2 to be 0. Instead
of representing this as p1 = 0 and p2 = 0, as in Ta-
ble 2, it could instead have been written as p1 = 0 and
p2 = x1 or as p1 = x2 and p2 = 0. To get a canonical
representation for a rule’s preconditions we impose the
same constraints as for effects: if it is possible to use a
constant, do so, and if that is not possible but there is a
choice of variable symbols that could be used, use the
variable symbol with the smallest index.

3. Rule composition

Restricting rules to have the types of preconditions
and effects that we are using has the useful property
that the preconditions required to execute an entire se-
quence of rules can be described in exactly the same
notation as the preconditions for a single rule, and,
likewise, the net effects of applying a sequence of rules
can be described in exactly the same notation as the ef-
fects of a single rule. Hence, the collective precondi-
tions and net effects of a sequence of rules can be rep-
resented by one rule (called a “macro-rule”1). In this
section, we describe how to compute the collective pre-
conditions and net effects for a sequence of rules.

The computation is an iterative one, starting with
the macro-rule representing the empty rule sequence,
namely, a rule with cost 0, preconditions 〈x1, . . . ,xN 〉
and effects 〈x1, . . . ,xN 〉. Now assume that, for k � 0,
the first k rules in the sequence can be represented as
a single macro-rule with cost c1, preconditions �p 1, and
effects�a 1 and consider how to compute the macro-rule
for the extension of this sequence by one additional
rule (the (k + 1)st rule in the sequence) , with cost c2,
preconditions �p 2 and effects �a 2.

The cost of the extended sequence is simply c1 +
c2. The preconditions and effects of the extended se-

1Our usage of this term is the same as in the literature on learning
macro-rules [11], but in this paper, macro-rules are used only for
analysis, not as new move options that are available at run time.



AUTHOR  C
OPY

366 R.C. Holte and N. Burch / Automatic move pruning for single-agent search

quence, �p ∗ and�a ∗, are constructed as follows. We start
by setting �p ∗ = �p 1 and �a ∗ = �a 1. The next step is to
update �p ∗ and �a ∗ to take into account the precondi-
tions of the (k + 1)st rule. We consider the precondi-
tions one at a time. For each precondition, p2

i , there are
two main cases, depending on whether the net effect
of the first k rules on position i (a1

i ) is a constant or a
variable symbol; each case has several subcases.

(1) a1
i is a constant.

(a) p2
i is a constant. If the two constants (a1

i
and p2

i ) are not the same, the extended se-
quence is not valid: the ith precondition of
the (k + 1)st rule is guaranteed not to be sat-
isfied after executing the first k rules. If the
two constants are the same, the ith precondi-
tion of the (k + 1)st rule is guaranteed to be
satisfied after executing the first k rules so no
update to �p ∗ or �a ∗ is required.

(b) p2
i = xj and a1

j is a constant. p2
i = xj means

the ith and jth positions must be the same,
i.e., the two constants (a1

i and a1
j) must be

the same. This case is therefore the same as
the previous case: if the two constants are not
the same it is invalid to apply the (k + 1)st
rule after executing the first k rules, and if
they are the same no update to �p ∗ or �a ∗ is
required.

(c) p2
i = xj and a1

j = xk. Again, p2
i = xj means

the ith and jth positions must be the same, so
for the sequence to be valid, xk must equal
the constant in a1

i . All occurrences of xk in
�p ∗ and �a ∗ are replaced with this constant.

(2) a1
i = xj .

(a) p2
i is a constant. All occurrences of xj in �p ∗

and �a ∗ are replaced with the constant (p2
i ).

(b) p2
i = xj . In this case the ith precondition of

the (k+ 1)st rule is guaranteed to be satisfied
after executing the first k rules, so no update
to �p ∗ or �a ∗ is required.

(c) p2
i = xk for some k �= j and a1

k is a con-
stant. All occurrences of xj in �p ∗ and �a ∗ are
replaced with the constant (a1

k).
(d) p2

i = xk for some k �= j and a1
k = xt. Let

y = min(j, t), and z = max(j, t). All oc-
currences of xz in �p ∗ and �a ∗ are replaced
with xy .

At this point, the validity of adding the (k+1)st rule
has been determined and �p ∗ represents the precondi-

tions necessary to apply the entire sequence of k + 1
rules, but �a ∗ only describes the net effects of the first
k rules. We must modify �a ∗ by applying �a 2 to it. This
requires a temporary copy, �a copy, of �a ∗. If a2

i is a con-
stant d, we set a∗i = d. Otherwise, a2

i = xj for some j
and we set a∗i = a

copy
j .

�p ∗, �a ∗, and cost c1 + c2 are now a rule with the pre-
conditions and effects of the entire length k + 1 move
sequence. This process is repeated until all the rules
in the original sequence have been taken into account.
The end result will either be a proof that the given rule
sequence is invalid or a single macro-rule representing
the collective preconditions and net effects of the given
rule sequence.

To illustrate this process, consider computing a
macro-rule for the 4-Arrow puzzle to represent the
sequence in which rule R1-00 is followed by rule
R2-11. �p ∗ and �a ∗ for this macro-rule are initialized
to be the precondition vector and effect vector for
R1-00, respectively, i.e., �p ∗ = 〈0, 0,x3,x4〉 and �a ∗ =
〈1, 1,x3,x4〉. Next, we go through the precondition
vector for R2-11 (〈x1, 1, 1,x4〉) one position at a time
and update �p ∗ and �a ∗ according to which of the seven
subcases above applies. For the first position, i = 1,
case 1(b) applies, because position 1 of R1-00’s effect
vector is a constant (1) but position 1 of R2-11’s pre-
condition vector is a variable symbol (x1). The con-
ditions for validity are satisfied and no updates to �p ∗

and �a ∗ are made. For the next position (i = 2), case
1(a) applies because position 2 of R1-00’s effect vec-
tor and R2-11’s precondition vector are both constants.
They are the same constant (1) so the conditions for
validity are satisfied and again no updates to �p ∗ and
�a ∗ are made. For i = 3 case 2(a) applies because po-
sition 3 of R1-00’s effect vector is a variable symbol
(x3) but position 1 of R2-11’s precondition vector is a
constant (1). All occurrences of x3 in �p ∗ and �a ∗ are
changed to the constant 1 making �p ∗ = 〈0, 0, 1,x4〉
and �a ∗ = 〈1, 1, 1,x4〉. Finally, for i = 4 case 2(b) ap-
plies, leaving �p ∗ and �a ∗ unchanged. �p ∗ = 〈0, 0, 1,x4〉
is the precondition for the sequence but there is one
last step to derive the final �a ∗ – it must be reconciled
against the effect vector for R2-11.

The final step in calculating �a ∗ is shown in Table 3.
As described above, all the constants in R2-11’s effect
vector (positions 2 and 3) are directly copied into the
same positions in �a ∗, and, if position i of R2-11’s ef-
fect vector is the variable symbol xj , position i in �a ∗

is set to be whatever was in position j of �a ∗ before this
last round of alterations began (this sets position 1 to
be the constant 1 and position 4 to be the variable sym-



AUTHOR  C
OPY

R.C. Holte and N. Burch / Automatic move pruning for single-agent search 367

Table 3

Applying rule R2-11 after rule R1-00

�a ∗ (before) = 〈 1, 1, 1, x4〉
R2-11 effects = 〈x1, 0, 0, x4〉

↓ ↓
�a ∗ (after) = 〈1, 0, 0, x4〉

bol x4). The final macro-rule in this example is thus
〈0, 0, 1,x4〉 → 〈1, 0, 0,x4〉.

4. Move pruning

Rule composition, described above, lets us build a
tree of valid rule sequences, with a compact macro-rule
representation of the preconditions and effects of each
sequence. The root of the tree is the empty sequence,
and each child extends the rule sequence of the parent
with one additional rule. This tree gives us the set of
potential rule sequences to prune. We chose to build a
tree containing all rule sequences of up to L rules, but
there are other ways to select a set of rule sequences of
interest.

We can ignore rule sequence B if we can always use
rule sequence A instead to reach the same state at no
additional cost. More formally, following Taylor and
Korf [31] we say rule sequence B is redundant with
rule sequence A if (i) the cost of A is no greater than
the cost of B, and, for any state s that satisfies the pre-
conditions of B, both of the following hold: (ii) s sat-
isfies the preconditions of A, and (iii) applying A and
B to s leads to the same end state.

Condition (i) is trivial to check since the cost of each
sequence is calculated by the rule composition process.

Because we have a unique macro-rule representa-
tion for each sequence, checking condition (ii) is a
straightforward comparison of �pA and �pB , the precon-
dition vectors for sequences A and B, on a position-by-
position basis. If pAi = d ∈ Di, we require pBi = d. If
pAi = xj �=i, we require pBi = pBj . Finally, if pAi = xi,

then pBi can have any value. Condition (ii) is satisfied
if we pass these tests for all i ∈ {1, . . . ,N}.

Because we can treat precondition and effect vectors
as augmented states, checking condition (iii) is also
straightforward: we can simply apply the effects �aA to
the preconditions �pB . Condition (iii) holds if and only
if the resulting augmented state is identical to �aB .

These conditions are asymmetric: rule sequences A
and B might be exactly equivalent so that either could
be pruned, or it can be the case that A lets us prune
B, but B does not let us prune A. For example, rule

sequences A and B might both swap two variables and
have the same cost, but A has no preconditions while
B requires that the first variable be 1. Only B can be
pruned.

As another example, consider another pair of rule
sequences with the same cost. A swaps the first two
variables. B turns 〈1, 2, 1, . . .〉 into 〈2, 1, 1, . . .〉. A does
not, in general, always produce 〈2, 1, 1, . . .〉, but it will
do so for any state that matches the preconditions of
B, so we can again prune B. A is more general, and
cannot be pruned. Note that if A happened to cost more
than B, we could not prune either A or B, even though
we know that A will generate duplicate children if the
parent happens to match the preconditions of B.

For rule sequences A and B we write B � A,
B > A, and B ≡ A to denote that B is redundant
with A, strictly redundant with A, or equivalent to A,
respectively.

There are a number of implementation details to
consider. We must check each sequence against all
other sequences, which is O(n2) for n sequences.
A quadratic algorithm is not unreasonable, but because
n here grows exponentially in the depth of the tree, and
the branching factor of the tree can be large (over 100
in many state spaces), we are limited to fairly shallow
trees (two or three rules).

Even with small trees, in the interest of efficiency,
it is best to prune rule sequences as soon as possible.
As Taylor and Korf [31] noted, sequences should be
checked as the tree is built, rather than waiting to gen-
erate all sequences, and it is worthwhile building the
tree in a breadth-first fashion.2 That way, if we find any
short rule sequences that can be pruned, we can use
this information to immediately prune any longer rule
sequences that include the shorter sequences we have
previously pruned.

The way we use the redundancy information gen-
erated by this analysis we call “move pruning”. If se-
quence B, of length k, is redundant with sequence
A and state t was reached by applying rules B1, . . . ,
Bk−1 to some state s, then we do not allow rule Bk
to be applied to t because the resulting state will be
reached by applying A to state s.

Taylor and Korf [31] encode the list of redundant
rule sequences in a compact FSM, with transitions be-
tween states based on the last rule applied. The same
algorithm could be used to generate a compact FSM
for the move pruning information we generate, but

2A technical reason for generating the sequences in increasing or-
der of length is given in Section 4.2.



AUTHOR  C
OPY

368 R.C. Holte and N. Burch / Automatic move pruning for single-agent search

because our trees are generally not as large, our im-
plementation used a simple table-based method which
generates a larger FSM. We start by assigning a unique
integer tag to each non-redundant rule sequence in the
interior of our tree. In our implementation, where we
consider all sequences up to length L, this is all valid
rule sequences of length L−1 that were not discovered
to be redundant. This tag corresponds to the FSM state.
If there are M rules defined in the SASP, and we used
T tags, we construct a table with M entries for each of
the T tags. The entry for a rule sequence P and subse-
quent rule r is set to −1 if the new rule sequence P +r
is redundant. Otherwise, the entry is the tag of the last
L− 1 rules in P + r. This encodes the transition rules
between FSM states.

4.1. Interactions between multiple applications of
move pruning

If we remove all the redundant sequences discov-
ered in the manner described in the previous section, it
can eliminate all the least-cost paths from one state to
another. To see this, consider the following example.
Suppose that abd and acd are the only least-cost paths
from state s to state t. If ab > ac then the principle
above says we need not execute ab, which means abd
will not be executed. That is fine because acd will be
executed. But if we also have cd > bd, then the prin-
ciple above says we need not execute cd, which means
acd will not be executed. So if we apply the principle
twice (once for each redundancy) neither abd nor acd
will be executed and all least-cost paths from s to t will
be pruned away.

To see that it is possible for a, b, c and d to exist such
that ab > ac and cd > bd, here is a very simple exam-
ple. In this example a state is described by three state
variables, all having the same domain ({0, 1, 2, 3}), and
is written as a vector of length three. A set of operators
for which ab > ac and cd > bd is the following (all
operators have a cost of 1).

a: 〈0,x2,x2〉 → 〈1, 0,x2〉,
b: 〈1,x2, 0〉 → 〈2, 0, 0〉,
c: 〈1,x2,x3〉 → 〈2,x3,x2〉,
d: 〈2, 0, 0〉 → 〈3, 1, 1〉.

The preconditions and net effects for ab and ac are:

ab: 〈0, 0, 0〉 → 〈2, 0, 0〉,
ac: 〈0,x2,x2〉 → 〈2,x2, 0〉.

Clearly, the preconditions of ab are more restrictive
than those of ac and the effects and costs of the se-
quences are the same when the preconditions of ab are
satisfied. Hence, ab > ac.

The preconditions and net effects for bd and cd are:

bd: 〈1,x2, 0〉 → 〈3, 1, 1〉,
cd: 〈1, 0, 0〉 → 〈3, 1, 1〉.

The preconditions of cd are more restrictive than those
of bd and the effects and costs of the sequences are the
same when the preconditions of cd are satisfied. Hence,
cd > bd. If the start state is 〈0, 0, 0〉 and the goal state
is 〈3, 1, 1〉 the only least-cost paths from start to goal
are abd and acd, both of which will be pruned away.

This is an artificial example created to be as sim-
ple as possible. Something very much like it arises in
sliding-tile puzzles having more than one blank.3 For
example, consider the two states of a 3 × 3 sliding-
tile puzzle with 3 blanks shown in Fig. 1. The shortest
path transforming the state on the left to the state on
the right has four moves. There are eight such paths. If
move pruning is applied to all sequences of length 3 or
less, all of these four-move paths are pruned.

Table 4 shows three of the 2- and 3-move opera-
tor sequences our method identified as redundant and
the sequence with which each was redundant. In Ta-
ble 4 operator names indicate the row and column of
the tile to be moved with digits and the direction of
movement with a letter. For example 12R is the oper-

Fig. 1. Two states of the 3 × 3 sliding-tile puzzle with 3 blanks. The
black squares are tiles that are not moved in any of the shortest paths
that transform the state on the left to the state on the right. In the
circles are the row and column numbers.

Table 4

Pruning rules involved in Fig. 2

Pruning Redundant Because of

rule # sequence

1 12R-11D ≡ 11D-12R

2 11D-12R-21R > 12R-11R-12D

3 11R-12D-31U > 11D-21R-31U

3This example actually occurred in our experiments with the
“Work or Golf” SASP.



AUTHOR  C
OPY

R.C. Holte and N. Burch / Automatic move pruning for single-agent search 369

Fig. 2. Each oval represents a least-cost sequence transforming the
state on the left of Fig. 1 to the state on the right. (Colors are vis-
ible in the online version of the article; http://dx.doi.org/10.3233/
AIC-140605.)

ator that moves the tile in Row 1 (top row), Column 2
(middle column) to the right (R). The first row of the
table (Pruning Rule 1) indicates that the 2-move se-
quence 12R-11D is equivalent (“≡”) to 11D-12R. Be-
cause they are equivalent, either one could be elim-
inated in favour of the other; our method eliminated
12R-11D because it is lexically “larger than” 11D-12R.
The other two rows in Table 4 show operator sequences
that are not equivalent (“>”): the sequence in the “Re-
dundant” column has the same effects but more restric-
tive preconditions than the sequence in the “Because
of” column. In such cases there is no choice about
which sequence to eliminate.

The three pruning rules in Table 4 interact in a way
that is exactly analogous to how ab > ac and cd > bd
interacted to prune both abd and acd in our simple ex-
ample above. Each oval in Fig. 2 represents a least-cost
(4-move) sequence to transform the left state in Fig. 1
to the right state. Each one of these sequences contains
one of the 2- or 3-move sequences identified as redun-
dant in Table 4 – the redundant subsequence is under-
lined. The arrows between ovals indicate the operator
sequence that is produced when the redundant subse-
quence is replaced by the corresponding “Because of”
sequence in Table 4. For example, the sequence in the
upper left oval (12R-11D-21R-31U) contains 12R-11D
as its first two operators. Table 4 indicates that this
is redundant with 11D-12R. Applying this substitution
to the sequence in the upper left oval produces the
sequence in the bottom oval. This sequence contains
the subsequence identified as redundant in the second
row (Pruning Rule 2) of Table 4, and if that subse-
quence is replaced by the corresponding “Because of”
sequence, the operator sequence in the upper right oval
is produced. The last three operators in this sequence
have been found redundant (Pruning Rule 3); replacing
them with the alternative brings us literally full circle,
back to the operator sequence in the upper left oval.
Put another way, since all of these operator sequences
contain a subsequence declared redundant by our move
pruning system, all of them will be pruned. The other

five least-cost (4-move) sequences for transforming the
left state in Fig. 1 to the right state also all contain a
subsequence declared redundant by our move pruning
system, so all of them will be pruned too.

The important lesson from these examples is that
even if the redundancy of each operator sequence is
correctly assessed, a set of redundancies can interact
to produce incorrect behaviour. We therefore need to
develop a theory of when a set of redundancies does
not prune all least-cost paths. In the next section we
present one such theory.

4.2. Theory

The empty sequence is denoted ε. If A is a finite op-
erator sequence then |A| denotes the length of A (the
number of operators in A, |ε| = 0), cost(A) is the
sum of the costs of the operators in A (cost(ε) = 0),
pre(A) is the set of states to which A can be applied,
and A(s) is the state resulting from applying A to state
s ∈ pre(A). We assume the cost of each operator is
non-negative. A prefix of A is a nonempty initial seg-
ment of A (A1, . . . ,Ak for 1 � k � |A|) and a suf-
fix is a nonempty final segment of A (Ak, . . . ,A|A| for
1 � k � |A|).

Recall that operator sequence B is redundant with
operator sequence A if (i) the cost of A is no greater
than the cost of B, and, for any state s that satisfies
the preconditions of B, both of the following hold:
(ii) s satisfies the preconditions of A, and (iii) applying
A and B to s leads to the same end state. Formally, we
have the following definition.

Definition 1. Operator sequence B is “redundant”
with operator sequence A iff the following conditions
hold:

(1) cost(B) � cost(A),
(2) pre(B) ⊆ pre(A),
(3) s ∈ pre(B) ⇒ B(s) = A(s).

As before, we write B � A, B > A and B ≡ A to
denote that B is redundant with A, strictly redundant
with A, or equivalent to A, respectively.

Lemma 1. Let B � A according to Definition 1 and
let XBY be any least-cost path from any state s to
state t = XBY (s). Then XAY is also a least-cost
path from s to t.

Proof. There are three things to prove.



AUTHOR  C
OPY

370 R.C. Holte and N. Burch / Automatic move pruning for single-agent search

(1) s ∈ pre(XAY ).

Proof. X can be applied to s because XBY can
be applied to s. A can be applied to X(s) be-
cause B can be applied to X(s) and pre(B) ⊆
pre(A) (because B � A). Y can be applied to
A(X(s)) because Y can be applied to B(X(s))
and A(X(s)) = B(X(s)). Therefore s ∈
pre(XAY ). �

(2) XAY (s) = t.

Proof. Since t = Y (B(X(s))) and B(X(s)) =
A(X(s)) (see the Proof of (1)), we get t =
Y (A(X(s))) = XAY (s). �

(3) cost(XBY ) = cost(XAY ).

Proof. cost(XBY ) � cost(XAY ) follows from
the cost of a sequence being additive
(cost(XBY ) = cost(X) + cost(B) + cost(Y ))
and cost(B) � cost(A) (because B � A).
Since XBY is a least-cost path from s to t and
XAY is also a path from s to t, cost(XBY ) =
cost(XAY ). �

Let O be a total ordering on operator sequences.
B >O A indicates that B is greater than A according
to O. O has no intrinsic connection to redundancy so
it can easily happen that B � A according to Defini-
tion 1 but B <O A.

Definition 2. A total ordering on operator sequences
O is “nested” if ε <O Z for all Z �= ε, and B >O A
implies XBY >O XAY for all A,B,X , and Y .

Example 1. The most common nested ordering is
“length-lexicographic order”, which is based on a total
order of the operators o1 <O o2 <O .... For arbitrary
operator sequences A and B, B >O A iff |B| > |A|
or |B| = |A| and ob >O oa where ob and oa are the
leftmost operators where B and A differ (ob is in B
and oa is in the corresponding position in A).

Definition 3. Given a nested ordering O, for any pair
of states s, t define min(s, t) to be the least-cost path
from s to t that is smallest according to O (min(s, t) is
undefined if there is no path from s to t).

Theorem 2. Let O be any nested ordering on operator
sequences and B any operator sequence. If there exists
an operator sequence A such that B � A according to
Definition 1 and B >O A, then B does not occur as a
consecutive subsequence in min(s, t) for any states s, t.

Proof. By contradiction. Suppose there exist s, t such
that min(s, t) = XBY for some such B and some
X and Y . Then by Lemma 1 XAY is also a least-
cost path from s to t. But XBY >O XAY (because
O is a nested ordering and B >O A), contradicting
XBY being the smallest (according to O) least-cost
path from s to t. �

From this theorem it immediately follows that a
move pruning system that restricts itself to pruning
only operator sequences B that are redundant with
some operator sequence A and greater than A accord-
ing to a fixed nested ordering will be “safe”, i.e. it
will not eliminate all the least-cost paths from the start
state (s) to any other state (t). The choice of O might
well affect the amount of pruning that is done, but
any choice of O will guarantee safety. In our imple-
mentation of move pruning all operator sequences of
length L or less are generated in the order defined by
the fixed nested ordering described in Example 1, and
each newly generated sequence is tested for redun-
dancy against all the non-redundant sequences gener-
ated before it.

Theorem 2 also proves that Taylor and Korf’s results
on Rubik’s Cube are correct. They used the nested or-
dering described in Example 1 and tested the equality
of the net effects of two operator sequences, the only
part of Definition 1 that needs to be tested when oper-
ators have no preconditions.

4.3. Interaction with cycle detection

Checking for redundancy among operator sequences
up to length L does not guarantee that there will be
no cycles. There may be cycles longer than L, which
the redundancy analysis will necessarily be unable to
detect. There may also be cycles of length L or less
which are not considered redundant because they only
occur in certain circumstances. For example, consider
a rule that swaps two variables (i.e., 〈x1,x2〉 becomes
〈x2,x1〉). There are some states, such as 〈1, 1〉, for
which this rule is an identity operator (1-cycle). For ar-
bitrary states, of course, this rule is not an identity op-
erator, so we cannot prune away all occurrences of it.
It is possible, using a slight variant of our Rule Com-



AUTHOR  C
OPY

R.C. Holte and N. Burch / Automatic move pruning for single-agent search 371

position algorithm, to derive the special conditions un-
der which a rule sequence is a cycle or is equivalent
to another sequence, but doing so might generate an
impracticably large number of special conditions. We
therefore only consider a rule sequence redundant if
it is universally redundant with another rule sequence,
as defined by Definition 1. We refer to rule sequences
that create cycles, or are redundant with other rule se-
quences, under special circumstances, but not univer-
sally, as serendipitous cycles and redundancies.

If one expected there to be many long and/or
serendipitous cycles, they might wish to use run-time
cycle detection in addition to move pruning, to elim-
inate those cycles.4 In general, combining different
search reduction techniques is unsafe, even if one of
them is as seemingly innocuous as cycle detection [1].
We now prove that it is safe to use move pruning in
conjunction with cycle detection. In the following O is
any fixed nested ordering on operator sequences used
for move pruning.

Our proof will apply to any search algorithm that im-
plements the pseudocode in Algorithm 1. Typical im-
plementations will use a fixed enumeration order for
operator sequences, rather than accept the order as an
input parameter. Familiar examples implementing this
pseudocode are breadth-first search,5 Dijkstra’s algo-
rithm, A∗, IDA∗, and depth-first branch and bound.
A “filter” in this algorithm is a rule for eliminating a
path from consideration. In this section we are exam-
ining two filters: one based on move pruning (MP),
and one based on cycle detection (CD). Filters based
on heuristic cutoffs (HC) and duplicate detection (DD)
will be discussed in Sections 4.4 and 6, respectively.

Practical systems usually cannot ascertain that the
stopping condition (line 19) holds the instant that the
first least-cost solution path is enumerated. They typi-
cally continue to enumerate paths until they are certain
that no paths remain in the enumeration sequence that
would improve the best known solution path, popt. Note
that the stopping condition is testing for the existence
of a path with certain properties in the original, unfil-
tered enumeration sequence. It is therefore unaffected
by the use of filters.

We will refer to the basic search algorithm, without
any of the filters, as Alg.

4Another option in this situation is for the person to “split” (refor-
mulate) the general rules in which cycles sometimes occur into more
specialized rules so that the exact conditions under which the cycles
occur are preconditions of sequences involving the specialized rules.

5Breadth-first search is only guaranteed to return a least-cost path
if all operators have the same cost.

Algorithm 1. Algorithm Alg uses none of the optional filters.
The filters are based on move pruning (MP), cycle detection
(CD), heuristic cutoff (HC), and duplicate detection (DD), as
described in the text. “skip pi” means to skip the rest of the
body of the for loop.

1: Given: a start state s, a goal predicate goal, an enu-
meration sequence {p1, p2, . . .} of all paths start-
ing at s (including the empty path ε), and a path-
cost function cost(p). For the HC filter, also given
are an admissible heuristic function h and a cost
bound b.

2: Return: a least-cost path popt in the enumeration
sequence such that goal(popt(s)) is true.

3: popt = undefined
4: bestCost = ∞
5: for i = 1 to ∞ do
6: // Apply optional filters.
7: MP: skip pi if move pruning deems it redundant

(defined in the text).
8: CD: skip pi if it contains a cycle.
9: HC: skip pi if it contains a prefix p (possibly pi

itself) such that cost(p) + h(p(s)) > b.
10: DD: skip pi if it contains a prefix p (possibly pi

itself) such that p(s) has previously been gener-
ated by a path q and cost(q) � cost(p).

11:

12: Generate state si = pi(s).
13: // check if pi is the best solution so far
14: if (cost(pi) < bestCost) and goal(si) then
15: bestCost = cost(pi)
16: popt = pi
17: end if
18: // check stopping condition
19: if there does not exist j > i such that

(cost(pj) < bestCost) and goal(pj(s)) then
20: return popt
21: end if
22: end for

When Alg is used in conjunction with move prun-
ing, the resulting system is called AlgMP. Move prun-
ing based on operator sequences of length L or less
eliminates path pi if and only if pi contains a consecu-
tive subsequence p′ of length L or less and there exists
an operator sequence q of length L or less such that
p′ � q and p′ >O q. This is the “MP” filter in Algo-
rithm 1. Note that, for all t reachable from start state s,
min(s, t) is not eliminated by the MP filter.

When Alg is used in conjunction with cycle detec-
tion, the resulting system is called AlgCD. For a given



AUTHOR  C
OPY

372 R.C. Holte and N. Burch / Automatic move pruning for single-agent search

start state s, cycle detection eliminates path pi if and
only if pi contains a non-empty operator sequence C
such that pi = XCY and XC(s) = X(s). This is
the “CD” filter in Algorithm 1. Note that the CD fil-
ter eliminates paths containing serendipitous cycles as
well as those containing universal cycles.

When Alg is used in conjunction with both move
pruning and duplicate detection, the resulting system is
called AlgMP

CD.

Definition 4. For a given start state s, we say a goal
predicate is “reachable” if there exists a goal state that
is reachable from s, and we say a goal state t is “nearest
to s” if cost(min(s, t)) � cost(min(s,u)) for every goal
state u.

Definition 5. We say move pruning is “safe” to use in
conjunction with filter X (where X is one of CD, HC
or DD) if, for any start state s and any reachable goal
predicate, AlgMP

X returns a least-cost path from s to a
goal state that is nearest to s.

In other words, move pruning is unsafe to use in
conjunction with cycle detection only if, for some start
state s and reachable goal, AlgMP

CD fails to return a least-
cost path to a goal state that is nearest to s. We will now
show that move pruning is safe to use in conjunction
with cycle detection. The proof has two steps:

(1) For all t reachable from s, min(s, t) is not elimi-
nated by the combination of MP and CD filters.

(2) In particular, for each goal state t nearest to s, at
least one least-cost path from s to t remains after
the MP and CD filters have been applied. AlgMP

CD
will return the first such path in its enumeration
sequence.

Theorem 3. Move pruning is safe to use in conjunc-
tion with cycle detection.

Proof. Let s be any start state and goal any reach-
able goal predicate. First, we show that, for any state
t reachable from s, min(s, t) is not eliminated by
the combination of MP and CD filters. We show this
by contradiction. min(s, t) is not eliminated by move
pruning, so if it is eliminated it must be eliminated
by the CD filter. This will only happen if min(s, t) =
XCY and XC(s) = X(s) for a non-empty C. If such
a C existed, then XY would be a path from s to t
such that cost(XY ) � cost(min(s, t)) and XY <O
min(s, t), which contradicts the definition of min(s, t).

Therefore no such C exists, so cycle detection does not
eliminate min(s, t) from Alg’s enumeration sequence.

For each goal state t nearest to s define it to be the
smallest index of a path in Alg’s enumeration sequence
such that pit is not eliminated by the MP and CD fil-
ters, pit (s) = t, and cost(pit ) = cost(min(s, t)). We
know such an index exists because, as we have just
seen, min(s, t) is not eliminated by the MP and CD fil-
ters. Define m to be the minimum it.

We will now show that AlgMP
CD returns pm. AlgMP

CD
cannot terminate before enumerating pm because, by
the way pm was defined, all paths with smaller indices
in Alg’s enumeration sequence that reach the stopping
condition (line 19 in Algorithm 1) are not least-cost
paths to a nearest goal state, and therefore the stop-
ping condition is not satisfied. Therefore pm will be
enumerated by AlgMP

CD, it will pass the MP and CD fil-
ters, and popt will be set equal to pm in line 16 of Al-
gorithm 1. Because cost(pm) is the least cost of any
path that leads to a goal state, subsequently enumer-
ated paths will fail the test in line 14 of Algorithm 1,
so popt will never be changed, it will remain equal to
pm until termination. �

4.4. Interaction with heuristic cutoff

Many search algorithms use a bound b and eliminate
all paths, p, for which cost(p) + h(p(s)) > b, where s
is the start state and h is an admissible heuristic func-
tion (a lower bound on the cost to reach a goal state
nearest to s from state p(s)). We call this method for
eliminating paths heuristic cutoff.

When Alg (see Algorithm 1) is used in conjunc-
tion with heuristic cutoff, the resulting system is called
AlgHC . Note that the HC filter in Algorithm 1 elimi-
nates all paths that have a prefix p such that cost(p) +
h(p(s)) > b; this means that if a path (p) is eliminated
by HC then so are all extensions of it. When Alg is used
in conjunction with both move pruning and heuristic
cutoff, the resulting system is called AlgMP

HC .
Of course, heuristic cutoff eliminates all paths from

s to goal if b < f∗, the cost of a least-cost path from
s to goal, so we are only interested in its interaction
with move pruning when b � f∗, as in the last itera-
tion of IDA∗, depth-first branch and bound, or imple-
mentations of A∗ that do “trimming” and/or “screen-
ing” [22]. We now show that move pruning is safe to
use in conjunction with heuristic cutoff when b � f∗

and the heuristic being used is admissible. The proof
has the same structure as the proof for Theorem 3.



AUTHOR  C
OPY

R.C. Holte and N. Burch / Automatic move pruning for single-agent search 373

Theorem 4. Move pruning is safe to use in conjunc-
tion with heuristic cutoff for any cost bound b � f∗,
and any admissible heuristic h.

Proof. Let s be any start state and goal any reachable
goal predicate. First, we show that, for any goal state
t nearest to s, min(s, t) is not eliminated by the com-
bination of MP and HC filters. min(s, t) is not elimi-
nated by move pruning, so it could only be eliminated
by heuristic cutoff. Let p be any prefix of min(s, t)
(including min(s, t) itself). Then cost(p) + h(p(s)) �
cost(min(s, t)) = f∗ � b and therefore p will not be
eliminated by heuristic cutoff. Hence, min(s, t) will not
be eliminated by the combination of MP and CD fil-
ters.

The remainder of the proof is identical to the second
part of the proof of Theorem 3, so we do not repeat it
here (“For each goal state t nearest to s define it”. . .
define m. . . popt is set to pm and never changed). �

5. Experimental results for depth-first search

To test our move pruning in a linear-memory set-
ting, we implemented the move pruning algorithm in
the PSVN programming environment that we have de-
veloped. This toolkit takes an SASP description in the
PSVN language (described in the Appendix), and gen-
erates C code for state manipulation. We modified the
code generator to build a move sequence tree and print
out a table of pruning information (as described in Sec-
tion 4) and wrote depth-first search code that could use
this pruning information.

We used 9 different SASPs in our experiments: the
16-Arrow puzzle [20], the Blocks World [27] with
10 blocks, the 4-peg Towers of Hanoi [17] with 8
disks, the Pancake puzzle [7] with 9 pancakes, the
3 × 3 sliding-tile puzzle (8-puzzle) [28], 2 × 2 × 2
Rubik’s Cube [31], TopSpin [6] with 14 tiles and a
3-tile turnstile, the Work or Golf puzzle, which is a
sliding-tile puzzle variant with two irregular tiles de-
scribed in Fig. 3, and the Gripper domain with 10 balls.

Fig. 3. Goal state for the Work or Golf puzzle. It has eight 1× 1 tiles
with letters and 2 irregularly shaped tiles, shown in black. There are
4 empty locations.

In our PSVN SASP descriptions, the Arrow puzzle
had 60 rules, Blocks World had 200 rules, Towers of
Hanoi had 96 rules, the Pancake puzzle had 8 rules, the
8-puzzle had 24 rules, the 2 × 2 × 2 Rubik’s Cube had
18 rules, TopSpin had 14 rules, Work or Golf had 93
rules, and Gripper had 22 rules.

As written in PSVN, the Arrow puzzle, Blocks
World, Towers of Hanoi, 8-puzzle, Work or Golf, and
Gripper all had rules with preconditions, which pre-
cludes using the method of Taylor and Korf [31].

For each SASP, we compared the total number of
nodes generated, and total execution time, of three
variations of depth-first search (DFS) with a depth
bound:

(1) DFS with parent pruning (length 2 cycle detec-
tion) performed by comparing a generated state
to the parent of the state from which it was gen-
erated,

(2) DFS with our move pruning method applied to
sequences of length L = 2 or less, and

(3) DFS with our move pruning method applied to
sequences of length L = 3 or less.

The SASPs have different branching factors, so we
used a different depth bound for the DFS in each SASP.

The results are shown in Table 5. All experiments
were run on a 2.83 GHz Core2 Q9550 CPU with 8 GB
of RAM. Node counts (in thousands of nodes) and
computation times (in seconds) are totals (not aver-
ages) across 100 randomly generated start states. Less
than 6 s were required to do the move pruning analysis
for L = 2 and only three domains required more than
19 s for L = 3.

As was seen by Taylor and Korf [31], we see here
that using DFS with move pruning can generate many
fewer nodes than DFS with parent pruning. Even with
shallow move pruning (L = 2), we can do at least as
well parent pruning, and in those cases where move
pruning (L = 2) and DFS with parent pruning generate
exactly the same number of nodes, move pruning re-
quires less time than parent pruning. This holds across
a broad range of SASPs.

The n-Arrow puzzle has an interesting property.
Any move sequence i, j has the same result as j, i and
i, i has no effect. Our move pruning algorithm with
L = 2 will enforce an ordering on the moves. That is,
if we just made move i, all moves 1 to i− 1 are pruned
by our system. In this special case, we have removed
all duplicate states from the search tree. It is easy to
see this: consider an arbitrary path between two states.
Because the moves commute and a move is its own in-



AUTHOR  C
OPY

374 R.C. Holte and N. Burch / Automatic move pruning for single-agent search

Table 5

Experimental evaluation of move pruning

State d DFS + PP DFS + MP DFS + MP

space L = 2 L = 3

16-Arrow 15 ? 3,277 3,277

puzzle >3600 s 0.39 s 0.39 s

0.07 s 18.58 s

10 Blocks 11 352,028 352,028 352,028

world 25.02 s 12.23 s 12.53 s

5.97 s 8 m 27 s

8-puzzle 25 368,357 368,357 368,357

24.77 s 10.40 s 10.40 s

0.01 s 0.08 s

Pancake 9 5,380,481 5,380,481 5,288,231

puzzle 246.49 s 115.22 s 111.18 s

0.01 s 0.02 s

Towers 10 1,422,419 31,673 9,060

of 97.02 s 1.45 s 0.49 s

Hanoi 0.30 s 3 m 43 s

2 × 2 × 2 6 2,715,477 833,111 515,614

Rubik’s 132.74 s 20.00 s 13.35 s

Cube 0.02 s 1.10 s

TopSpin 9 ? 2,165,977 316,437

>3600 s 73.80 s 12.59 s

0.00 s 1.11 s

Work 13 ? 209,501 58,712

or >3600 s 16.44 s 5.14 s

Golf 2.98 s 15 m 4 s

Gripper 14 9,794,961 590,870 25,982

544.85 s 17.22 s 0.95 s

0.08 s 0.85 s

Notes: The first two columns indicate the state space and the depth
bound used. The other columns give results for each DFS variation.
In each results cell the top number is the total number of nodes gen-
erated, in thousands, to solve all the test problems. The number be-
low that is the total time, in seconds, to solve all the test problems.
In the DFS + MP columns the bottom number is the time (“m” for
minutes, “s” for seconds) needed for the move pruning analysis.

verse, we can sort the moves by index and remove pairs
of identical moves. The resulting path is unique, and is
not pruned by our system. Strictly ordering the moves
also means the depth 15 searches we used explore the
entire reachable space of the 16-Arrow puzzle.

We can see related behaviour with the Blocks World
and 8-puzzle: increasing L from 2 to 3 did not change
the number of nodes generated. In this case, there are
no transpositions using paths of length 3 which are
not found by looking at paths of length 2. Unlike the
n-Arrow puzzle, redundancy analysis with sufficiently
large values of L > 2 on these SASPs will find addi-
tional redundant sequences. In the 8-puzzle, for exam-

ple, we will see additional pruning if we consider rule
sequences of length 6.

In Blocks World, 8-puzzle, and Pancake puzzle, we
see that the number of generated nodes is the same
whether we use parent pruning or our move pruning
system with L = 2. In these SASPs, the only transpo-
sitions that occur within a sequence of two moves are
cycles of length 2. Looking at the total time, we see
that parent pruning is more expensive. Our move prun-
ing system only needs to look up a single integer in a
table. DFS with parent pruning is more than twice as
slow because in the general case it requires generating
the child states and then comparing them to the par-
ent state, which is much more expensive. For exactly
this reason, hand-implemented systems for a specific
SASP generally do parent pruning by skipping moves
that undo the previous move (a form of move pruning)
if the SASP supports this.

The Blocks World results have one final strange fea-
ture: the total time for L = 3 is larger than for L = 2.
Ideally, we would expect this to be the same. In this
case, because we did not implement the FSM of Taylor
and Korf [31], the move pruning table grows as L in-
creases. The Blocks World had 200 rules, so the L = 3
table was fairly large (around 30 MB) and we suspect
cache performance suffered when using this larger ta-
ble.

The last row in Table 5 is for the Gripper domain. In
this domain, there are two rooms (Room1 and Room2)
and B balls. In the canonical start and goal states the
balls start in Room1 and the goal is to move them all
to Room2. Movement is done by a robot that has two
hands. The operators are “pickup ballk with hand h”
(where h is either left or right), “change room” and
“put down the ball in hand h”. It is an interesting do-
main in which to study move pruning because of the
large number of alternative least-cost solutions: the
balls can be moved in any order, any pair of balls can
be carried together, and there are eight different oper-
ator sequences for moving a specific pair of balls be-
tween rooms. The results in Table 5 are for B = 10,
which has 68,608 reachable states, and are for only one
start state (all the balls and the robot in Room1), which
has a least-cost solution length of 29. As can be seen,
even just pruning short redundant sequences (L = 2
or 3) has a very large effect (over 500× speedup for
L = 3). For B = 10 it is possible to discover re-
dundant sequences up to length L = 6 in just under
nine hours using less than 40 MB of space to store
the results. If this is done, the number of nodes gener-
ated to depth 14 is 368 thousand and the time drops to



AUTHOR  C
OPY

R.C. Holte and N. Burch / Automatic move pruning for single-agent search 375

0.02 s, over 23,000 times faster than DFS with parent-
pruning. With L = 6 move pruning, depth-first search
can fully explore to depth 29 (the solution depth for
B = 10) in 46 s. The number of nodes generated is
157,568,860.

At the end of Section 4.2, we mentioned that the
restriction we imposed on move pruning to make it
safe – i.e. testing a newly generated sequence for re-
dundancy only against sequences that precede it in the
given nested ordering – might substantially reduce the
amount of pruning that was done. This can easily be
measured by comparing the results shown in Table 5
to analogous results using the unsafe version of move
pruning, which removes all redundant sequences. In
Gripper, the unsafe pruning method generates substan-
tially fewer nodes, but it also fails to visit many reach-
able states and the goal state becomes unreachable.
Using unsafe move pruning with L = 3 in Work or
Golf generates 56, 986 thousand nodes (in total) com-
pared to 58,712 thousand nodes with safe pruning, and
for both L = 2 and L = 3 there are pairs of states
for which all least-cost paths have been pruned (e.g.
see Fig. 1). For all the remaining SASPs, including
the relatively complicated Blocks World and Towers
of Hanoi, the safe pruning method produces identical
results to the unsafe pruning method.

6. Move pruning and duplicate detection

Full-memory search algorithms, such as A∗ and
breadth-first search, avoid re-expanding nodes unnec-
essarily by doing duplicate detection – testing if each
state they generate has previously been generated by a
path of equal or smaller cost. It was observed by Malte
Helmert (personal communication) that move pruning
is not, in general, safe to use in conjunction with du-
plicate detection. Figure 4 shows a simple situation in
which a problem arises. A and B are operators or op-
erator sequences that are not redundant with each other
in general, but happen to produce the same state, T ,
when applied to state S. AC and BC are the only two
paths from S to U , and move pruning determines that
AC is redundant with BC and decides to prohibit C
from being applied after A. However, the search gen-
erates T via path A first, and records this fact using
the usual backpointer method found in A∗ implemen-
tations. When the search later generates T via path B it
notices that T has already been generated by a path of
the same cost and therefore ignores B. Since the only
recorded path from S to T is A, move pruning pre-

Fig. 4. Characteristic situation in which duplicate detection and
move pruning interact to produce erroneous behaviour.

vents C from being applied to T and state U is never
reached.

To see that it is possible for such A, B and C to exist,
with AC and BC being redundant with each other but
A and B not being redundant with one another, here
is a very simple example (also due to Malte Helmert).
A state in this example is described by three state vari-
ables, all with the same domain ({0, 1, 2}), and is writ-
ten as a vector of length three. The following operators
behave like A, B, and C in Fig. 4 when applied to state
S = 〈0, 1, 1〉:

A: 〈0,x2,x3〉 → 〈1, 1,x3〉,
B: 〈0,x2,x3〉 → 〈1,x2, 1〉,
C: 〈1,x2,x3〉 → 〈2, 1, 1〉.

A and B are not redundant with one another, in gen-
eral, but both can be applied to state S = 〈0, 1, 1〉 and
doing so produces the same state, T = 〈1, 1, 1〉.

6.1. Motivation

The motivation for adding move pruning to a system
that does duplicate detection is computational – move
pruning is faster than duplicate detection. This is be-
cause with duplicate detection a state must be gener-
ated and looked up in a data structure to determine if it
is a duplicate. Move pruning saves the time needed for
duplicate detection because it avoids generating states
when it knows (by analysis in a preprocessing step) the
resulting state is certain to be a duplicate. For example,
in the experiments in Section 5, in those SASPs where
move pruning (L = 2) achieved exactly the same ef-
fects as parent pruning (an elementary form of dupli-
cate detection), move pruning was more than twice
as fast as doing parent pruning by explicit duplicate
detection. In addition, if suboptimal paths to a state
are generated before optimal ones, duplicate detection
will involve updating the data structure that stores the
distance-from-start information. This can be relatively



AUTHOR  C
OPY

376 R.C. Holte and N. Burch / Automatic move pruning for single-agent search

expensive – updating the priority queue used by A∗, for
example. Move pruning will avoid some of these up-
dates by not generating some of the suboptimal paths
at all.

On the other hand, duplicate detection is useful to
add to a system that does move pruning because move
pruning, in general, is incomplete: it only detects short
sequences that are redundant (in the current implemen-
tation move pruning considers all and only sequences
of length L or less) and it only detects “universal” re-
dundancy, as opposed to “serendipitous” redundancy,
as illustrated in the example above, where sequences
A and B are redundant when applied to certain states
but are not redundant in general. Duplicate detection is
complete, unless there is not enough memory to store
all the generated states.

The final motivation for studying the interactions be-
tween move pruning and duplicate detection is that it
applies much more broadly than just to systems that
use our method for automatic move pruning. When
SASPs with many obvious redundancies, such as Top-
Spin and Rubik’s Cube, are coded by hand, the per-
son writing the code often manually does a simple ver-
sion of the move pruning that we have automated. For
example, here is a detailed description of the standard
move pruning done by hand for Rubik’s Cube [19]:

Since twisting the same face twice in a row is re-
dundant, ruling out such moves reduces the branch-
ing factor to 15 after the first move. Furthermore,
twists of opposite faces of the cube are independent
and commutative. For example, twisting the front
face, then twisting the back face, leads to the same
state as performing the same twists in the opposite
order. Thus, for each pair of opposite faces we arbi-
trarily chose an order, and forbid moves that twist
the two faces consecutively in the opposite order.

These are precisely the kinds of redundant operator
sequences that our method detects automatically. The
correctness of the move pruning done manually has
never been questioned, but the problem illustrated in
Fig. 4 applies regardless of whether the move pruning
was inferred by an automatic method or by hand. Thus
it brings into question the correctness of the standard
encodings of testbeds such as Rubik’s Cube and Top-
Spin if they are used in a system that does duplicate
detection. In fact, we have verified that the manually
encoded move pruning in the IDA∗ code written in our
research group for TopSpin results in non-optimal so-
lutions being produced if it is used in A∗.

6.2. Conditions precluding simple interactions

We call the situation depicted in Fig. 4 a “simple” in-
teraction between duplicate detection and move prun-
ing, by which we mean the interaction takes place be-
tween two least-cost paths, AC and BC, that have a
common suffix (C). In this section we derive com-
monly occurring conditions under which simple inter-
actions cannot possibly happen. Throughout the rest of
the section we assume there is a fixed nested ordering
on operator sequences, O, used for move pruning.

Because AC and/or BC can be longer than the se-
quences that move pruning considers, define A′ to be
the suffix of A, B′ to be the suffix of B, and C ′ to be
the prefix of C such that move pruning determines that
A′C ′ � B′C ′ and A′C ′ >O B′C ′. The latter implies
A′ >O B′. This, together with the fact that A′ is not
pruned by move pruning (A′ is fully executed) implies
that A′ �� B′.

Thus, a simple interaction requires an interesting sit-
uation: A′C ′ � B′C ′ but A′ �� B′ . There are natural
conditions in which this combination is impossible be-
cause (A′C ′ � B′C ′) ⇒ (A′ � B′) for all sequences
A′, B′ and C ′. To derive such conditions, recall that
the definition of X � Y has three requirements:

(R1) cost(X) � cost(Y ),
(R2) pre(X) ⊆ pre(Y ),
(R3) s ∈ pre(X) ⇒ X(s) = Y (s).

In order to derive conditions under which (A′C ′ �
B′C ′) ⇒ (A′ � B′) we need to consider each of these
in turn.

(R1) We require conditions under which
(cost(A′C ′) � cost(B′C ′)) ⇒ (cost(A′) �
cost(B′)). In fact, no special conditions are
needed, this is always true because the cost of a
sequence is the sum of the costs of the operators
in that sequence.

(R2) We require conditions under which (pre(A′C ′) ⊆
pre(B′C ′)) ⇒ (pre(A′) ⊆ pre(B′)). This is of-
ten not true, but it certainly holds if pre(XY ) =
pre(X) for all sequences X and Y (with X non-
empty). There are two commonly occurring con-
ditions in which this holds:

• operators have no preconditions (every opera-
tor is applicable to every state) as in Rubik’s
Cube;

• the precondition of any sequence is the pre-
condition of the first operator in the sequence
(because the preconditions of the next operator



AUTHOR  C
OPY

R.C. Holte and N. Burch / Automatic move pruning for single-agent search 377

Fig. 5. Example from (10, 4)-TopSpin of move pruning and duplicate detection interacting to prevent the goal (bottom node) from being reached
from the start (top node) by a least-cost path. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/AIC-140605.)

in the sequence are guaranteed by the effects
and unchanged preconditions of the operators
preceding it), as in the sliding-tile puzzles with
only one blank.

(R3) We require conditions under which (s ∈
pre(A′C ′) ⇒ A′C ′(s) = B′C ′(s)) ⇒ (t ∈
pre(A′) ⇒ A′(t) = B′(t)). This follows directly
if both of the following hold:

• pre(XY ) = pre(X) for all sequences X and Y
(with X non-empty), the same condition dis-
cussed in connection with (R2); and

• all operators are 1-to-1 (op(x) = op(y) ⇒ x =
y for all states x and y, and all operators op).

The two conditions listed under (R3) are thus suf-
ficient to prevent simple interactions from occurring.
These conditions hold in many commonly used state
spaces: the sliding-tile puzzle when there is just one
blank, Rubik’s Cube, Scanalyzer [15], and any permu-
tation state space such as TopSpin and the Pancake
puzzle. In all such spaces, there cannot be a simple in-
teraction between duplicate detection and move prun-
ing.

Unfortunately, simple interactions are not the only
way that move pruning and duplicate detection can in-
teract deleteriously, i.e., the situation in Fig. 4 is not
a necessary condition for move pruning to be unsafe
in conjunction with duplicate detection. Figure 5 gives
an example based on an actual run of A∗ on (10, 4)-

TopSpin6 when move pruning is applied to sequences
of length 4 or less. The start state is at the top of the fig-
ure, the goal state is at the bottom. Move pruning elim-
inates all but two of the least-cost paths from start to
goal; those two paths are labelled J (the leftmost path)
and M (the rightmost path) in the figure; the individual
operators in a path are indicated by a subscript (e.g. J2
is the second operator in path J).

Three additional paths (K, L and N ) are shown be-
cause they play a role in preventing J and M from be-
ing fully executed even though they themselves cannot
be fully executed because of move pruning. The move
pruning that eliminates K, L and N is shown in the fig-
ure by an X through operators K6, L5 and N6. The rea-
sons for these are as follows. Move pruning detects that
N5N6 � J5J6 and therefore prevents N6 from being
executed after N5. It also detects that K3, . . . ,K6 �
L3, . . . ,L6 and therefore prevents K6 from being
executed after K3, . . . ,K5. Similarly, it detects that
L2, . . . ,L5 � M2, . . . ,M5 and therefore prevents L5
from being executed after L2, . . . ,L4. These can all be
seen in the figure as paths of length 4 or less that branch
apart at some particular state and later rejoin.

The effects of duplicate detection are shown by
drawing the edges entering the two states just above

6In (10, 4)-TopSpin there are 10 tokens (numbers 0 to 9) in a cir-
cle and there are operators that reverse the order of any 4 adjacent
tokens. Because only the cyclic order matters and not the absolute
location within the circle, in the figure a state is written as a vector
with token 9 always placed at the end.



AUTHOR  C
OPY

378 R.C. Holte and N. Burch / Automatic move pruning for single-agent search

the goal as either solid or broken. A solid edge indi-
cates the path by which the state was first generated;
a broken edge indicates an alternative path to the state
that is generated later (or not at all in the case of L5).
For example, state 3456782109 is first generated by
path K (operator K5) and is later generated by path J
(operator J5). Since the path J1, . . . ,J5 is not cheaper
than the first path to generate the state (K1, . . . ,K5),
it is ignored. Similarly, M1, . . . ,M5 is not cheaper
than the first path to generate state 0123765489
(N1, . . . ,N5), so it too is ignored.

What makes this fundamentally different than Fig. 4
is that the path (K) that blocks J because of duplicate
detection is not itself blocked by J because of move
pruning, it is blocked by a different least-cost path (L,
which in turn is blocked by M because of move prun-
ing). Likewise, the path (N ) that blocks M because of
duplicate detection is not itself blocked by M because
of move pruning, it is blocked by a different least-cost
path (J). As we will show next, this represents the gen-
eral situation in which move pruning and duplicate de-
tection interact deleteriously.

6.3. Necessary conditions for move pruning to be
unsafe in conjunction with duplicate detection

In this section we state and prove conditions that
must hold if move pruning is unsafe to use in con-
junction with duplicate detection. The importance of
identifying these “necessary” conditions is that one can
then consider whether there are specific circumstances
in which one or more of the necessary conditions are
guaranteed not to hold. Move pruning is safe to use in
such circumstances.

As in Section 4.3 our discussion focuses on search
algorithms implementing Algorithm 1, Alg is Algo-
rithm 1 without any filters, and AlgMP refers to Alg
augmented with the move pruning filter (MP).

When Alg is used in conjunction with duplicate de-
tection, the resulting system is called AlgDD. For a
given start state s, duplicate detection eliminates path
pi if and only if there exists a prefix p of pi (possibly
pi itself), such that the state p(s) has been previously
generated (line 12 in Algorithm 1) via a path q �= p
and cost(q) � cost(p). This is the “DD” filter in Algo-
rithm 1. Note that the fact that p(s) was generated by
q means that q was not itself eliminated by duplicate
detection. A∗ and breadth-first search are examples of
AlgDD search algorithms.7

7Breadth-first search is only guaranteed to return a least-cost path
if all operators have the same cost.

When Alg is used in conjunction with both move
pruning and duplicate detection, the resulting system is
called AlgMP

DD.
We say that AlgMP

DD “generates” path p if it does not
terminate before p is enumerated and p is not elimi-
nated by the combination of MP and DD filters. We
use the notation p <Alg q to indicate that path p is be-
fore path q in Alg’s enumeration sequence. We write
p <AlgMP

DD
q if p is generated by AlgMP

DD and p <Alg q

(we do not require q to be generated by AlgMP
DD).

Specializing Definition 5 for duplicate detection, we
have the following definition.

Definition 6. We say move pruning is “safe” to use in
conjunction with duplicate detection if, for any start
state s and any reachable goal predicate, AlgMP

DD returns
a least-cost path from s to a goal state that is nearest
to s.

In other words, move pruning is unsafe to use in con-
junction with duplicate detection only if AlgMP

DD fails to
return a least-cost path from s to goal. In particular, if
move pruning is unsafe, AlgMP

DD will fail to generate ev-
ery least-cost path to every goal state nearest to s. From
this fact, we will now derive necessary conditions for
move pruning to be unsafe to use in conjunction with
duplicate detection.

Theorem 5. Let S be any start state, goal any goal
predicate reachable from S, U any goal state near-
est to S and P any least-cost path from S to U that
is not eliminated by move pruning (e.g. min(S,U )).
Then AlgMP

DD will fail to generate P only if there ex-
ist operator sequences B, C, Bn and Cn such that
P = BC = BnCn and both of the following condi-
tions hold:

REQ-1: There exists an alternative path A1 from S
to state T1 = B(S) such that cost(A1) =
cost(B) and T1 was generated by AlgMP

DD
via A1 prior to B being enumerated (i.e.
A1 <AlgMP

DD
B).

REQ-2: There exists an alternative path An from S
to state Tn = Bn(S), AnCn is a least-cost
path from S to U , and move pruning pro-
hibits Cn from being applied after An.

Proof of REQ-1. This is necessary because if no such
T1 and A1 existed duplicate detection would not elimi-
nate P , which contradicts the premise that AlgMP

DD fails
to generate P . A1 cannot be cheaper than B because
B is part of an least-cost path to U and is therefore a
least-cost path to T1. �



AUTHOR  C
OPY

R.C. Holte and N. Burch / Automatic move pruning for single-agent search 379

Fig. 6. Illustration of the Proof of REQ-2.

Proof of REQ-2. Figure 6 depicts the key ideas
needed to prove this. A1 here is as in REQ-1 and oper-
ator sequences B and C from above are renamed here
B1 and C1. As the proof proceeds, they are replaced
by Ai, Bi, and Ci for larger values of i, with Bi in-
creasing in length as i increases and Ci decreasing in
length. In all cases P = BiCi, Ai(S) = Bi(S) = Ti
and AiCi is a least-cost path from S to U . Di is the
operator subsequence in P that leads from Ti to Ti+1.
A1C1 is a least-cost path from S to U , why did

AlgMP
DD not generate it? Either because A1C1 was elimi-

nated by move pruning or because it was eliminated by
duplicate detection. If it was eliminated by move prun-
ing then we are done, with n = 1 (Tn = T1, An = A1,
and Cn = C1 = C). If it was eliminated by duplicate
detection then there must be a state T2 later in the P (S)
sequence and alternative path A2 from S to T2 such
that cost(A2) = cost(A1D1) and T2 was generated by
AlgMP

DD via A2 prior to being generated via A1D1. Let
C2 be the suffix of C such that C2(T2) = U and B2
be the prefix of P such that B2(S) = T2. Now repeat
this reasoning for the path A2C2, which is a least-cost
path from S to U . If it was eliminated because of move
pruning we are done with n = 2, and if it was elimi-
nated because of duplicate detection, there must exist
a T3, A3, B3, and C3 such that T3 is later in the P (S)
sequence than T2, etc. Repeating this reasoning defines
a sequence of states T1,T2, . . . , each later in the P (S)
sequence than the one before, and therefore there must
be a final state in this sequence, Tn, with a correspond-
ing An, Bn, and Cn, with AnCn being a least cost path
from S to U . This path was not generated and it cannot
have been eliminated by duplicate detection (because
if it had been there would be a Tn+1), therefore it must
have been eliminated because move pruning did not al-
low Cn to be executed after An. �

Because both of these requirements are necessary
for move pruning to be unsafe, if one of them does not

hold, move pruning is safe to use in conjunction with
duplicate detection. The remainder of this section con-
siders each of them in turn.

6.4. Discussion of REQ-1

REQ-1 states that there must be an alternative least-
cost path, A1, to T1 = B(S) that is generated before B
is enumerated. This could fail to hold in at least three
different ways. First, it would fail to hold if there was
only one path to each of the states on P (S) (namely, the
appropriate prefix of P ). This would happen, for exam-
ple, if move pruning eliminated all alternative paths, as
it does in the Arrow Puzzle [4]. In such cases, no du-
plicate is ever generated so duplicate detection is ob-
viously safe to use with move pruning. Secondly, it
would fail to hold if there were alternative paths to one
or more states T1 = B(S) generated prior to B, but all
of them were suboptimal. This is not impossible; for
example, it would happen if there was a unique shortest
path from S to each reachable state.

The third way that REQ-1 could fail to hold, and
perhaps the most interesting from a practical point of
view, is that there are indeed alternative least-cost paths
to a state T1 = B(S) but none of them is generated
before B. For example, consider the special case de-
picted in Fig. 4, where A1 = A is generated before B
(i.e. A <Alg B) but A >O B. In other words there is
a disagreement between how Alg orders the sequences
and how they are ordered by O. If the two orderings
>O and >Alg were chosen so that such a disagreement
did not occur then the special case depicted in Fig. 4
could not arise. Whether this can be done in practice,
and whether it solves the general problem and not just
the special case depicted in Fig. 4 are open problems
at present.

6.4.1. Discussion of REQ-2
REQ-2 says that there must exist least-cost paths

AnCn and BnCn such that move pruning prohibits
Cn from being executed after An but allows it after
Bn. This is very similar to the special case depicted in
Fig. 4, but with one important difference. In the special
case, C = Cn is prohibited after A = An because of
B = Bn, i.e., AC � BC. In the general case we are
now considering we do not require AC � BC, we just
require that AC is redundant with some path.

Let A′ be the suffix of An and C ′ be the prefix of
Cn such that A′C ′ is the sequence within AnCn that
move pruning determines to be redundant with some
other sequence D. There are two possibilities for D.



AUTHOR  C
OPY

380 R.C. Holte and N. Burch / Automatic move pruning for single-agent search

Fig. 7. General case for Requirement 2.

The first possibility, which is what we saw in Fig. 4,
is that D is part of BC, i.e., there exists a suffix B′

of Bn such that A′C ′ � B′C ′ and A′C ′ >O B′C ′.
Circumstances in which this cannot possibly happen
have been discussed in Sections 6.2 and 6.4 above.

The other possibility for D is shown in Fig. 7. Here
D is a sequence entirely distinct from BC. In this case,
we have another least-cost path from S to U – one that
follows An to state V , then executes D, which leads to
state W on the BC path from which the goal is reached
by sequence D′. This, in fact, is precisely what we saw
in the TopSpin example in Fig. 5. In that example least-
cost solution J was blocked by duplicate detection by
another sequence, K, which in turn was blocked by
move pruning by a sequence, L, that had nothing in
common with J .

There is, however, one special circumstance in
which REQ-2 cannot possibly occur and therefore
move pruning is safe to use in conjunction with dupli-
cate detection, and that is if move pruning is restricted
to considering only sequences of length 1, i.e. redun-
dancy among individual operators considered in a fixed
order. If this restriction is imposed, move pruning can-
not prohibit Cn from being executed after An but allow
it after Bn since no “history” is taken into account.

7. Related work

Wehrle and Helmert [32] have recently analyzed
techniques from computer-aided verification and plan-
ning that are closely related to move pruning. They di-
vide the techniques into two categories. State reduc-
tion techniques reduce the number of states that are
reachable while still guaranteeing the cost to reach the
goal from the start state remains unchanged. Transi-
tion reduction techniques reduce the number of state
transitions (“moves”) considered during search with-

out changing the set of reachable states or the cost to
reach a state from the start state. Move pruning is a
transition reduction technique.

The most powerful transition reduction technique
discussed by Wehrle and Helmert is the “sleep sets”
method [12]. Sleep sets exploit the commutativity of
operators.8 To illustrate the key idea, suppose move se-
quence A contains an operator c that commutes with
all the other operators in A. Then c can be placed any-
where in the sequence, with each different placement
creating a different sequence that is equivalent to A.
For example, if A is o1o2c and c commutes with o1 and
o2 then sequences o1co2 and co1o2 are both equivalent
to A. The sleep set of a node is the set of operators that
do not have to be applied at that node because of this
commutativity principle.

Sleep sets are less powerful than move pruning in
some ways and more powerful in others. They are less
powerful because they consider only one special kind
of redundancy – commutativity of individual opera-
tors. Move pruning with L = 2 will detect all such
commutative relations, but will also detect relations be-
tween sequences that do not involve the same opera-
tors, such as o1o2 ≡ o3o4, and strict redundancies such
as o1o2 > o2o1. In addition, move pruning can be ap-
plied with L > 2.

On the other hand, sleep sets can eliminate se-
quences that are not eliminated by move pruning, as
we have implemented it, because sleep sets can prune
arbitrarily long sequences even if not all the operators
in the sequence commute with one another. Continuing
the above example, if the ordering on operators used
by move pruning had o2 <O c <O o1 and move prun-
ing considered only sequences of length L = 2 or less,
then it would permit both o1o2c and co1o2 to be exe-
cuted whereas the sleep set method would only execute
one of them.9

A different, but related approach to avoiding redun-
dant move sequences is state space “factoring” [2,3,
9,13,23,24]. The ideal situation for factoring is when
the given state space is literally the product of two (or
more) smaller state spaces; a solution in the original
state space can then be constructed by independently
finding solutions in the smaller state spaces and inter-
leaving those solutions in any manner whatsoever. The
aim of a factoring system is to identify the smaller state
spaces given the definition of the original state space.
If the smaller spaces are “loosely coupled” (i.e., not

8Operators o1 and o2 are commutative if o1o2 ≡ o2o1.
9This is Wehrle and Helmert’s Example 1 adapted to our notation.



AUTHOR  C
OPY

R.C. Holte and N. Burch / Automatic move pruning for single-agent search 381

perfectly independent but nearly so) factoring can still
be useful, but requires techniques that take into the ac-
count the interactions between the spaces. Techniques
similar to state space factoring have been developed for
multiagent pathfinding [26,29] and additive abstrac-
tions (cf. the independent abstraction sets defined by
Edelkamp [8] and the Factor method by Prieditis [25]).

Transposition tables [1] represent an entirely dif-
ferent approach to eliminating redundant operator se-
quences: they store states that have been previously
generated and test each newly generated state to see
if it is one of the stored states. Like parent pruning,
transposition tables are slower at eliminating redun-
dant sequences than move pruning because they in-
volve generating a state and then processing it to de-
termine if it is a duplicate, whereas move pruning sim-
ply avoids generating duplicate states.10 Transposition
tables are not strictly more powerful than move prun-
ing because, with transpositions tables, a state might be
generated by a suboptimal path before being generated
by an optimal path. If the two paths are length L or less,
this will not happen with move pruning. More impor-
tantly, in large state spaces there is not enough memory
available to store all the distinct generated states. This
forces transposition tables to be incomplete, i.e., to de-
tect only a subset of the duplicate states. The mem-
ory required by move pruning, by contrast, is O(mL),
where m is the number of operators, which is usually
logarithmic in the number of states in a combinatorial
state space, and L is the maximum length of the se-
quences being considered. The memory required for
move pruning will therefore usually be small compared
to the number of distinct generated states. For exam-
ple, for the Arrow puzzle the move pruning table when
L = 2 is O(a2) in size, where a is the number of ar-
rows, whereas the number of reachable states is 2a−1

and for the (n×n)-sliding tile puzzle, the move pruning
table when L = 2 is O(n2) in size whereas the num-
ber of reachable states is (n2)!/2. This means move
pruning can be effective in situations where transposi-
tion tables would be too small to be of much use. For
example, in the Gripper domain (B = 10) the move
pruning table when L = 2 requires 7 kilobytes and al-
lows a complete depth-first search to depth 14 to finish
in 17.22 s (see Table 5). If our transposition table im-
plementation is restricted to use 7 kilobytes, depth-first

10The efficiency gained by avoiding generating unneeded nodes,
as opposed to generating and testing them, is the entire motivation
for Enhanced Partial Expansion A∗ [10], which uses a data structure
(the “OSF”) specifying when an operator should be applied that is
much like the move pruning table in our system.

search is unable to finish depth 13 in 6 min. In general,
the duplicates eliminated by move pruning and by in-
complete transposition tables will be different and one
would like to use both together. However, we have seen
that move pruning is not, in general, safe to use with
duplicate detection and transposition tables include du-
plicate detection among their functionality [4].

8. Conclusions

In this paper, we introduced an algorithm for auto-
matically analyzing a general single-agent search prob-
lem (SASP) to identify redundant operator sequences.
We have shown that it is not generally safe to re-
move all redundant sequences identified, but if move
pruning is required to respect a fixed nested order-
ing on operator sequences then move pruning is al-
ways safe. Imposing this restriction did not notice-
ably reduce the amount of pruning done in our experi-
ments, but in principle an unlucky choice of the order-
ing could substantially reduce the amount of pruning
done – in the extreme case, the ordering could prevent
any move pruning from being done (this would happen
if B <O A for every pair of operator sequences A and
B such that B > A). There is, therefore, more research
to be done on how to maximize the amount of pruning
that can be done while remaining safe.

We applied our automatic move pruning analysis to
a variety of SASPs and experimentally demonstrated
that it could speed up depth-first search by orders of
magnitude.

We showed that move pruning is safe to use in con-
junction with cycle detection and heuristic cutoffs, but
that it is not safe, in general, to use in conjunction
with the duplicate detection method found in breadth-
first search, A∗, and, indeed, virtually all full-memory
search algorithms.

Acknowledgements

Thanks to Shahab Jabbari Arfaee for encoding the
Gripper domain in PSVN and running the initial ex-
periment that exposed the problem of unsafe pruning,
to Sandra Zilles for her thoughtful feedback on early
versions of the manuscript, and to Malte Helmert and
Martin Wehrle for discussions about the partial or-
der reduction methods they analyzed [32]. We grate-
fully acknowledge the funding sources whose support
has made this research possible: the Alberta Ingenuity



AUTHOR  C
OPY

382 R.C. Holte and N. Burch / Automatic move pruning for single-agent search

Centre for Machine Learning (AICML), Alberta’s In-
formatics Circle of Research Excellence (iCORE), and
the Natural Sciences and Engineering Research Coun-
cil of Canada (NSERC).

Appendix. The PSVN Language

Our PSVN is a slight extension of the language
with the same name introduced by Hernádvölgyi and
Holte [16]. It directly implements the state and rule
representations described in Section 2.

A state is a vector of fixed length, N . The entry in
position i is drawn from a finite set of possible values
called its domain, Di. In many state spaces every posi-
tion of the vector has the same domain, but in principle
they could all be different. Different domains in PSVN
are entirely distinct; the same symbols can appear in
different domains for user convenience, but our PSVN
compiler will internally treat them as distinct.

The transitions in the state space are specified by a
set of rules. Each rule has a left-hand side (LHS) spec-
ifying its preconditions and a right-hand side (RHS)
specifying its effects. The LHS and RHS are each a
vector of length N . In both the LHS and the RHS, posi-
tion i is either a constant from Di or a variable symbol.
Any number of positions in these vectors (LHS and
RHS) can contain the same variable symbol as long as
their domains are all the same.

State s = 〈s1, . . . , sN 〉 matches LHS = 〈L1, . . . ,
LN 〉 if and only if si = Li for every Li that is a con-
stant and si = sj for every i and j such that Li and Lj

are the same variable symbol.
A rule is “deterministic” if every variable symbol in

its RHS is also in its LHS. The effect of a determin-
istic rule when it is applied to state s = 〈s1, . . . , sN 〉
matching its LHS is to create a state s′ = 〈s′1, . . . , s′N 〉
such that: (i) if position j of the RHS is the constant
c ∈ Dj then s′j = c; (ii) if position j of the RHS is
the variable symbol that occurs in the position i of the
LHS then s′j = si.

A rule is “non-deterministic” if one or more of the
variable symbols in its RHS do not occur in its LHS.
We call such variable symbols “unbound”. The effect
of a non-deterministic rule when it is applied to state
s = 〈s1, . . . , sN 〉 matching its LHS is to create a set
of successor states. There is one successor for every
possible combination of values of the unbound vari-
ables (if the unbound variable is in position i, its val-
ues are drawn from Di). Each of the other positions
of these successors will be the same in all the suc-

cessors and are determined by the rules for calculat-
ing the effects of deterministic rules. For example, if
N = 4 and all positions have domain {1, 2} then the
rule 〈1,A,B,C〉 → 〈E, 1,D,E〉 would create four
successors when applied to state 〈1, 2, 1, 2〉, namely,
〈1, 1, 1, 1〉, 〈2, 1, 1, 2〉, 〈1, 1, 2, 1〉, and 〈2, 1, 2, 2〉.

As a concession to human readability PSVN allows
one additional symbol, the dash (“-”), to be used in any
position in the LHS or RHS. A dash in position i of
the LHS means there is no precondition on the value in
position i, and a dash in position i of the RHS means
that the value in position i does not change when the
operator is applied.

The final feature of PSVN is that the goal of a search
is not required to be a single state. Goal conditions are
specified by writing one or more special operators of
the form “GOAL Condition”, where Condition
takes the same form as the LHS of a normal operator.
If there are several such operators they are interpreted
disjunctively.

References

[1] Y. Akagi, A. Kishimoto and A. Fukunaga, On transposition ta-
bles for single-agent search and planning: Summary of results,
in: Proc. Third Annual Symposium on Combinatorial Search
(SOCS-10), 2010.

[2] E. Amir and B. Engelhardt, Factored planning, in: IJCAI, 2003,
pp. 929–935.

[3] R.I. Brafman and C. Domshlak, Factored planning: How, when
and when not, in: AAAI, 2006, pp. 809–814.

[4] N. Burch and R.C. Holte, Automatic move pruning in general
single-player games, in: Proceedings of the 4th Symposium on
Combinatorial Search (SoCS), 2011.

[5] N. Burch and R.C. Holte, Automatic move pruning revis-
ited, in: Proceedings of the 5th Symposium on Combinatorial
Search (SoCS), 2012.

[6] T. Chen and S.S. Skiena, Sorting with fixed-length reversals,
Discrete Applied Mathematics 71 (1996), 269–295.

[7] H. Dweighter, Problem E2569, American Mathematical
Monthly 82 (1975), 1010.

[8] S. Edelkamp, Planning with pattern databases, in: Proc. Euro-
pean Conference on Planning, 2001, pp. 13–24.

[9] E. Fabre, L. Jezequel, P. Haslum and S. Thiébaux, Cost-
optimal factored planning: Promises and pitfalls, in: Proc.
20th International Conference on Automated Planning and
Scheduling, 2010, pp. 65–72.

[10] A. Felner, M. Goldenberg, G. Sharon, R. Stern, N. Sturtevant,
J. Schaeffer and R.C. Holte, Partial-expansion A∗ with selec-
tive node generation, in: AAAI, 2012, pp. 471–477.

[11] L. Finkelstein and S. Markovitch, A selective macro-learning
algorithm and its application to the n × n sliding-tile puzzle,
Journal of Artificial Intelligence Research 8 (1998), 223–263.



AUTHOR  C
OPY

R.C. Holte and N. Burch / Automatic move pruning for single-agent search 383

[12] P. Godefroid, Partial-Order Methods for the Verification of
Concurrent Systems – An Approach to the State-Explosion
Problem, Lecture Notes in Computer Science, Vol. 1032,
Springer, 1996.

[13] M. Guenther, S. Schiffel and M. Thielscher, Factoring gen-
eral games, in: IJCAI Workshop on General Game Playing
(GIGA’09), 2009.

[14] P.E. Hart, N.J. Nilsson and B. Raphael, A formal basis for the
heuristic determination of minimum cost paths, IEEE Trans.
Systems Science and Cybernetics 4(2) (1968), 100–107.

[15] M. Helmert and H. Lasinger, The Scanalyzer domain: Green-
house logistics as a planning problem, in: ICAPS, 2010,
pp. 234–237.

[16] I. Hernádvölgyi and R. Holte, PSVN: A vector representation
for production systems, Technical Report TR-99-04, Depart-
ment of Computer Science, University of Ottawa, 1999.

[17] A.M. Hinz, The Tower of Hanoi, in: Algebras and Combina-
torics: Proceedings of ICAC’97, Hong Kong, Springer-Verlag,
1997, pp. 277–289.

[18] R.C. Holte, Move pruning and duplicate detection, in: Pro-
ceedings of the 26th Canadian Conference on Artificial Intelli-
gence, 2013, pp. 40–51.

[19] R. Korf, Finding optimal solutions to Rubik’s Cube using pat-
tern databases, in: Proceedings of the 14th AAAI Conference
on Artificial Intelligence, 1997, pp. 700–705.

[20] R.E. Korf, Towards a model of representation changes, Artifi-
cial Intelligence 14(1) (1980), 41–78.

[21] R.E. Korf, Depth-first iterative-deepening: An optimal admis-
sible tree search, Artificial Intelligence 27(1) (1985), 97–109.

[22] J.B.H. Kwa, BS*: An admissible bidirectional staged heuristic
search algorithm, Artificial Intelligence 38(1) (1989), 95–109.

[23] A.L. Lansky, Localized planning with diverse plan construc-
tion methods, Artificial Intelligence 98(1,2) (1998), 49–136.

[24] A.L. Lansky and L. Getoor, Scope and abstraction: Two criteria
for localized planning, in: IJCAI, 1995, pp. 1612–1619.

[25] A. Prieditis, Machine discovery of effective admissible heuris-
tics, Machine Learning 12 (1993), 117–141.

[26] G. Sharon, R. Stern, M. Goldenberg and A. Felner, The in-
creasing cost tree search for optimal multi-agent pathfinding,
in: IJCAI, 2011, pp. 662–667.

[27] J. Slaney and S. Thiébaux, Blocks world revisited, Artificial
Intelligence 125 (2001), 119–153.

[28] J. Slocum and D. Sonneveld, The 15 Puzzle, Slocum Puzzle
Foundation, 2006.

[29] T.S. Standley, Finding optimal solutions to cooperative
pathfinding problems, in: AAAI, 2010, pp. 173–178.

[30] L.A. Taylor, Pruning duplicate nodes in depth-first search,
Technical Report CSD-920049, UCLA Computer Science De-
partment, 1992.

[31] L.A. Taylor and R.E. Korf, Pruning duplicate nodes in depth-
first search, in: AAAI, 1993, pp. 756–761.

[32] M. Wehrle and M. Helmert, About partial order reduction in
planning and computer aided verification, in: Proceedings of
ICAPS, 2012.


