
Detecting Mutex Pairs in State Spaces by
Sampling

Mehdi Sadeqi1, Robert C. Holte2, and Sandra Zilles1

1 Department of Computer Science, University of Regina
Regina, SK, Canada S4S 0A2, {sadeqi2m|zilles}@cs.uregina.ca

2 Department of Computing Science, University of Alberta
Edmonton, AB, Canada T6G 2E8, holte@cs.ualberta.ca

Abstract. In the context of state space planning, a mutex pair is a pair
of variable-value assignments that does not occur in any reachable state.
Detecting mutex pairs is a problem that has been addressed frequently
in the planning literature. In this paper, we present the Missing Mass
Method (MMM)—a new efficient and domain-independent method for
mutex pair detection, based on sampling reachable states. We exploit a
recent result from statistical theory, proven by Berend and Kontorovich
in [1], that bounds the probability mass of missing events in a sample of a
given size. We tested MMM empirically on various sizes of four standard
benchmark domains from the planning and heuristic search literature.
In many cases, MMM works perfectly, i.e., finds all and only the mutex
pairs. In the other cases, it is near-perfect: it correctly labels all mutex
pairs and more than 99.99% of all non-mutex pairs.

1 Introduction

The aim of heuristic search and planning systems is to find a path (sometimes
a least-cost path) from a given start state to a given goal using a given set of
operators. The set of possible states is defined by specifying a set of variables
and the possible values for each variable, and a particular state is specified by
assigning a specific value to each variable. For example, in the familiar 8-puzzle
(3 × 3-sliding-tile puzzle), there might be 9 variables, one for each position of
the puzzle (e.g. variable UL might refer to the upper-left corner position), and
the value of each variable indicates which tile (or “no tile”) is in that position.
We use the phrase “variable-value assignment” to refer to the assignment of a
specific value to a specific variable, for example, UL=“no tile” is a variable-value
assignment. Some planning systems use propositional variables which we treat
as variables that can take on one of two values (true and false).

The term “mutually exclusive pair” (of facts), or mutex pair for short, refers
to a pair of variable-value assignments that do not co-occur in any valid state.
By “valid state” one typically means a state that is reachable from a given
start state. For instance, in the 8-puzzle, an example of a mutex pair would be
(UL=“no tile” and BR=“no tile”), where BR is the variable saying what is in



the bottom-right position. In the 8-puzzle, there is only one empty position, so
there cannot simultaneously be two variables that have the value “no tile”.

Mutex pair detection was first addressed by Dawson and Siklóssy [6], and
has been in use for improving the performance of planning systems since the
development of Graphplan [2]. In Graphplan, two actions or two facts at the same
level of reasoning are mutex if there is no valid plan allowing both actions or both
facts at the same time. The original success of mutex detection in Graphplan
[2] led to the development of many efficient planners using mutex detection,
such as temporal planners, different SAT-based planners and planners based on
constraint programming. State-of-the-art techniques for detecting mutexes in
binary domain representation often use invariants, i.e., properties that hold true
in all reachable states of a state space. Using an invariant synthesis algorithm,
HSP [3] is tailored to detect a certain type of mutex that Graphplan misses.
Constrained abstraction [8] uses particular types of invariants to detect some
mutexes in the description of an abstract state. For more background on domain
analysis and examples of constrained abstractions using invariants the reader is
referred to [7], where mutex pairs are discussed as a special case of “at-most-one”
invariants consisting of only two atoms. In this work, Haslum also introduces the
h2 heuristic, which is a state-of-the-art method for finding mutex pairs.

One use of mutex detection is to translate propositionally encoded planning
domains into representations with multi-valued state variables; e.g., FD [9] can
thus reveal intuitive dependencies between variables which helps to explicate
some of the implicit constraints of propositional planning tasks.

Another application of mutex detection is search space pruning. In regression
planning, nodes in the search space are partial assignments of state variables,
and edges are actions. Search proceeds backward from the goal until reaching a
node consistent with the start state. To reduce search effort, one prunes nodes
that contain the assignment of some previously encountered node. Further, one
often prunes nodes that are “impossible” because they contain mutex pairs.

Mutex detection can also be applied for improving the quality of heuristic
functions derived from abstractions. Heuristic functions estimate, for any state
s, the distance from s to a goal state. Heuristic search algorithms like A* and
IDA* are guaranteed to find optimal solutions when using admissible heuristics,
i.e., heuristic functions that never overestimate the true distances. One popular
method for obtaining admissible heuristics is to create an abstract version of the
original state space and to use the true distances in the abstract state space as
heuristic values. The key to the efficiency of A* and IDA* is the quality of the
heuristic values: the closer the heuristic values are to the true distances, the more
effective they will be in speeding up search. Unfortunately, standard efficient
methods known for enumerating abstract state spaces, most notably pattern
databases (PDBs) [5], may include abstract states to which no reachable original
state is mapped by the abstraction. Such abstract states are called spurious; they
may create short-cuts in the abstract space and thus lower heuristic values [15].
In many cases, spurious states contain mutex pairs. Hence, by removing some of



the shortcuts created by spurious abstract states, mutex detection can help to
improve the quality of heuristics, and thus to speed up search.

Unfortunately, there are no known efficient methods for detecting all mutex
pairs. Existing algorithms usually make a compromise in the number of detected
mutex constraints for the computational complexity of the algorithm. Various
methods differ in the number and type of mutex constraints they detect.

In this paper, we propose the Missing Mass Method (MMM)—a new algo-
rithm for detecting mutex pairs, based on sampling reachable states. We exploit
a recent result from statistical theory, proven by Berend and Kontorovich in [1],
that would allow us to bound the probability of missing a reachable pair (i.e.,
a non-mutex pair) in an i.i.d. sample of a given size. The main advantages of
MMM over existing methods are the following.

– It is very simple to describe and to implement.
– As opposed to many state-of-the-art mutex detection techniques, MMM does

not systematically restrict itself to detecting only a subclass of the mutex
pairs.

– For several standard benchmark domains, MMM is perfect on reasonable
domain sizes, i.e., it detects mutex pairs with 100% accuracy. For the same
domains, it scales very well, mostly yielding perfect accuracy even for very
large domain sizes, e.g., for Scanalyzer with 100 batches, Blocks World with
26 blocks, or the 10× 10-Sliding-Tile Puzzle.

– While most of our experiments on MMM were on detecting mutex pairs,
exactly the same method can be used to detect higher order mutexes. For
instance, a mutex of order 3 in the Blocks World would be a triple of variable-
value assignments that represents the facts Block a is on top of Block b, Block
b is on top of Block c, and Block c is on top of Block a.

– MMM does not require backward reasoning, depending on the application
for which it is used. Technically, MMM can be used with any kind of sam-
pling method. (Theoretical guarantees only hold though for special sampling
methods that will typically not be available in practice.)

All existing mutex detection methods err on one side: they might consider
mutex pairs as reachable but they will never flag a reachable pair as mutex. As
opposed to that, our method errs on the other side. It never considers a mutex
pair as reachable, but it may consider reachable pairs as mutex. Depending on
the application, this might be an advantage or disadvantage— we will discuss
that below. Our experimental results will illustrate that MMM is very reliable
in a large variety of state spaces, suggesting that it can be safely applied even
in cases when it is crucial not to consider reachable pairs as mutex. In some
such cases, we will demonstrate empirically that MMM can clearly outperform
state-of-the-art mutex detection methods.

2 The Missing Mass Method for Mutex Detection

Assume that states are represented as variable-value pairs in m variables. We
denote the variables with x1, . . . , xm, so that the state vector (a1, . . . , am) cor-



responds to the assignment vector (x1 = a1, . . . , xm = am). Propositional logic
variables, such as those commonly used in planning, are treated as variables that
can take on one of two values (true and false). With this convention, we define
the notions of reachable state and mutex pair formally.

Definition 1. Let s∗ be any fixed state.
Since s∗ is fixed, we will simply call a state reachable if it is reachable from

s∗. For any i, j with 1 ≤ i < j ≤ m and any ai, aj, the partial original state
(xi = ai, xj = aj) is a reachable pair if there are ak, for k ∈ {1, . . . ,m} \ {i, j}
such that (a1, . . . , am) is a reachable state; otherwise (xi = ai, xj = aj) is a
mutex pair.

Our approach to detecting mutex pairs in large problem domains is based
on sampling. The general scheme of our method, which we will call the Missing
Mass Method (MMM) for reasons detailed below, is quite simple:

1. Determine a number N of pairs of variable-value assignments to be sampled.
2. Determine the smallest integer Ns such that Ns ·

(
m
2

)
≥ N . (Thus, sampling

Ns states results in sampling at least N pairs of variable-value assignments.)
3. Sample Ns reachable states and extract all pairs of variable-value assign-

ments from them.
4. Any pair of variable-value assignments not encountered this way is consid-

ered a mutex pair.

The two details that need to be defined are (i) how the sampling of reach-
able states is done, and (ii) how to fix the number N of pairs of variable-value
assignments to be sampled.

Concerning (i), let us first assume we have fixed a method for sampling
reachable states, which induces a probability distribution D over all possible
pairs of variable-value assignments. (We experiment with a variety of sampling
methods, as described in the following section.)

Statistical theory provides us with tools for addressing question (ii) under
these circumstances. Berend and Kontorovich [1] give an upper bound on the
expected probability mass of the elements not seen after taking N i.i.d. sam-
ples from any fixed distribution. This bound depends on the total number z of
elements in the (finite) universe and is given by the following inequality.

ED[MN ] ≤ z

eN
for N > z . (1)

Here MN is the total probability mass of the elements not seen after sampling
N times from the distribution D that results from the sampling method (called
the sampling distribution), and ED[MN ] is its expected value with respect to D.

We deploy this bound by choosing a number N of samples that is large
enough for ED[MN ] to be below a fixed threshold. The required number z may
not be available, but an upper bound on z is obtained by computing the total
number of possible pairs of variable-value assignments in the given representation
of the state space. For example, if each of the m state variables can take one of



k possible values, then there are
(
m
2

)
many variable pairs, each with k2 many

possible value assignments, and thus a total of
(
m
2

)
k2 possible pairs of variable-

value assignments. We use this upper bound of
(
m
2

)
k2 in lieu of z, since this

never makes us sample less than when using the exact value of z.

Given this method for computing the sample size, we still need to fix a
method for choosing the samples. The sampling process itself may be of crucial
importance to the success of the scheme depicted above. Inequality (1) does not
provide us with a sample size that bounds the probability of missing a pair, but
with a sample size that bounds the probability mass of the non-seen pairs with
respect to the sampling distribution. If some pairs of variable-value assignments
have too small a probability of being sampled, then even with a sample resulting
from a very low threshold for ED[MN ] we might be missing these reachable
pairs, because their cumulative probability mass with respect to the sampling
distribution is too small. Consequently, if a poor sampling method is used, MMM
might flag reachable pairs as mutex.

Designating reachable pairs as mutex could have positive or negative effects,
depending on the problem that mutex detection is applied to. Hence, to min-
imize the risk of missing reachable pairs, it is desirable to use a near-uniform
sampling process, so that no pairs of variable-value assignments have too small
a probability of being sampled. Unfortunately, there is no known method for
sampling states in a way that creates a near-uniform sample of the contained
pairs of variable-value assignments, and further one does in general not sample
pairs i.i.d. when sampling states. Because of the latter problem, Berend and
Kontorovich’s bound does not even yield theoretical guarantees in our case. We
nevertheless use their bound to decide how many states to sample. Note that
even with uniform sampling there would be no guarantee that our method finds
all reachable pairs; however, we would have a guaranteed minimum probability of
finding all reachable pairs. Our experiments suggest that for typical benchmark
domains, even in large sizes, this probability is very high. In our experiments we
tested a variety of sampling methods, which we will describe in Section 3.1.

2.1 Does MMM err on the wrong side?

An important property distinguishing MMM from existing mutex detection
methods is that it errs “on the other side”. While existing methods never con-
sider a reachable pair mutex, MMM never considers a mutex pair reachable, but
might consider a reachable pair mutex.

In the case of state space pruning in regression planning, falsely considering
a reachable pair as mutex might lead to the elimination of reachable states and
thus to the elimination of paths from goal to start, in the worst case disconnecting
the goal from the start state. The effect could be devastating, but a closer look
at our experimental results will show that in many cases this would not be a
major concern when applying MMM.

Considering the problem of improving heuristic values when a PDB contains
spurious abstract states, the one-sided error of MMM may even have a positive



effect. To address this problem with MMM, one (i) builds a PDB as usual,
then (ii) uses MMM backwards from the goal in the original state space to find
mutex pairs, (iii) builds an auxiliary PDB in the usual way with the exception
that abstract states containing a mutex pair are not added to the open list, but
are considered deadends. (This means one will find paths to abstract states that
do not pass through abstract states suspected of being spurious.) Finally, (iv)
one replaces entries in the PDB with those from the auxiliary PDB as long as
the latter are not infinite. The resulting PDB would be used to guide the search.
Since our method can flag reachable pairs as mutex, the resulting heuristic might
be inadmissible and inconsistent, causing A* or IDA* to find only suboptimal
solutions, but it may potentially find them much faster than with an admissible
heuristic obtained before removing abstract states that contain mutexes.3 The
reader is referred to [14] for recent work on efficient suboptimal search with
inadmissible heuristics.

We claim that MMM will be a very useful method for mutex detection, mainly
because our experimental results demonstrate that for a large variety of state
spaces, MMM is 100% accurate (it does not flag any reachable states mutex). In
some cases, it outperforms all existing methods in terms of accuracy, while still
being very efficient. The trade-off between efficiency and accuracy seems to be
much less substantial for MMM than it is for existing mutex detection methods.
(For a comparison of MMM with h2 in terms of accuracy, see Section 4.)

3 Experimental Setup

Four planning and search benchmark problem domains, represented using pro-
duction system vector notation (PSVN) [11], were selected for this study. All
operators in all domain representations are invertible. While we describe the
representations of the domains below, we omit a general description of the do-
mains themselves, due to space constraints.

The particular representations were intentionally chosen so that many mutex
pairs exist; hence they are not necessarily the most natural or the most compact.

In our experiments, we fix the choice of the state s∗ with respect to which we
consider states reachable, instead of running MMM on a variety of choices for s∗.
In all the spaces we use for testing, operators are invertible, so that within any
connected component, every state is reachable from every other state. Hence, the
set of reachable pairs is the same no matter which s∗ in a connected component
we use. However, the distance from one choice of s∗ to all the reachable pairs
might be different than the distance from another s∗, and that could affect the
success rate of some of the sampling methods. We believe that the standard
goal state for each space is a good, representative choice for s∗, to measure the

3 We have initial empirical results supporting this claim for one representation of the
Towers-of-Hanoi domain. Further, the described method can be implemented by
flagging states considered spurious in the original PDB without actually building a
separate PDB.



success of a sampling method. Hence, for any domain, we always chose s∗ to be
the standard goal state.

Domain 1: Towers of Hanoi. We encode a state of the n-Disks Towers of Hanoi
with p pegs as a vector of length p(n + 1), where for every peg a sequence of
n + 1 components encodes the number of disks and the names of disks stacked
on this peg (starting from the bottom of the peg); for a stack of k disks, the last
n− k components for this peg contain a 0.

This domain illustrates why we choose seemingly “unnatural” domain repre-
sentations. A “natural” approach for representating the n-Disk Towers of Hanoi
with p pegs would be to encode every state as a vector of n components. Each
component corresponds to a disk; its value in {1, 2, ..., p} represents the peg on
which the disk is located. However, this representation does not yield any mutex
pairs, because every one of the possible pn vectors corresponds to a reachable
original state. Hence this domain representation is not useful for our studies.
(In addition, the number of operators in the “natural” representation described
above is also exponential in the number of disks when p > 3, making this repre-
sentation inconvenient for other reasons as well.)

Domain 2: Blocks World with Table Positions. We consider two PSVN repre-
sentations of the n-Blocks World with p named table positions. In the first one,
called the top representation, a state vector has 1 + p + n components, each
containing either the values 0 or one of n possible block names: (i) the value of
the first component is the name of the block in the hand or 0 if the hand is free,
(ii) the values of the next p components are the names of the blocks immediately
on table positions 1 through p, (iii) the values of the last n components are the
names of the blocks immediately on top of blocks a, b, c, . . ..

In the stack representation, a state is encoded as a vector of length p(n+1)+1,
where for every table position a sequence of n+1 components encodes the number
of blocks and the names of blocks stacked on this position (starting from the
bottom); for a stack of k blocks, the last n−k components for this block contain
a 0. The final component encodes the content of the hand. Note the similarity of
this domain in this representation to our representation of the Towers of Hanoi.

The state s∗ has all blocks stacked up in increasing lexicographical order,
starting with block a, on table position 1.

Domain 3: Sliding-Tile Puzzle. In the standard representation of n× `-Sliding-
Tile Puzzle, states are represented as vectors of length n·`, where each component
corresponds to a grid position and contains a value in {1, 2, . . . , n · ` − 1, B},
representing the number of the tile in this position (B, if the position is blank).
In the dual representation, a vector component corresponds to either the blank
or one of the tiles. The value of a vector component is an integer in {1, . . . , n ·`},
representing the grid position at which the corresponding tile is located.

The state s∗ contains the blank in the bottom right corner of the grid, while
the remaining grid positions contain tiles with increasing numbers, row by row
from top to bottom, each row being filled from left to right.



Domain 4: Scanalyzer. In the PSVN representation of the n-Belt Scanalyzer [10]
(for even n), a state is encoded as a vector of length 2n in which each belt
corresponds to two components: the name of the batch on that belt and a flag
indicating whether that batch is analyzed. The state s∗ corresponds to having
all plant batches analyzed and placed on their original conveyor belts.

3.1 Sampling

In our experiments, we used a fixed threshold of 0.00001 by which to bound the
estimated missing probability mass. For example, for the 4×5-puzzle in standard
representation, the resulting number of pairs to be sampled was 2, 795, 883, 753.
Since there are 190 pairs of variable-value assignments in every state, this cor-
responds to sampling 14, 715, 178 states (note again that the pairs are then not
sampled i.i.d., but our experiments will show that the missing mass bound is still
effective). Similar calculations for various sizes of the domains we experimented
with shows this approach to be scalable (e.g., the number of states to be sampled
for the 10 × 10-puzzle is 367, 879, 441). In other words, the sample size used in
our approach is small enough for our sampling method to be feasible.

We tested a variety of sampling processes, in particular we report our exper-
iments on single random walks (RW), and Frontier Sampling (FS) [12], always
beginning at s∗. Furthermore, we tested uniform sampling of reachable states
(USS). Note that USS does not necessarily mean uniform sampling of the reach-
able pairs of variable-value assignments. While USS is not a domain-independent
method, RW and FS are.

For RW we conducted basic random walks without parent pruning and with-
out restarts; thus the length of a random walk was the number of states we
wanted to sample. FS conducts r dependent random walks in a search tree by
keeping a list of r nodes [12]. Initially, some r nodes are sampled at random.
From the joint list of all children of these r nodes, one child c is chosen uniformly
at random as the next sampled node; c then replaces its parent in the list of r
nodes. In our experiments, we set r = 100; the initial r nodes are chosen by
100 independent random walks conducted from s∗. The lengths of these random
walks are chosen uniformly at random from {0, 1, . . . , 1000}.

4 Experimental Results

We first tried MMM on small sizes of the domains described above. Here we
enumerated the state space exhaustively and directly compared the true set of
reachable pairs to those found by MMM, which, using any of USS, FS, and
RW, found all reachable pairs and thus was perfect at mutex pair detection. For
larger domains, we calculated the actual number of reachable pairs for every
representation and compared it to the number of pairs MMM found.

For illustration, we show how to compute the actual number of reachable
pairs for the 28-belt Scanalyzer, which is 331, 184. In the representation we use,
any batch can occur in any location independent of where any other batch is



located; any batch can be analyzed/not-analyzed independent of the status of
any other batch; and the location of any batch is independent of the anlayzed
status of any batch (including itself). Thus a pair of variables can take one of
three possible forms: (i) Both variables represent batches; there are 28 · 27/2
such pairs of variables, each with 28 · 27 possible value assignments, resulting
in 285, 768 = (28 · 27/2) · 28 · 27 reachable pairs. (ii) Both variables represent
an “analyzed” status; there are 28 · 27/2 such pairs of variables, each with 2 · 2
possible value assignments, resulting in 1, 512 reachable pairs. (iii) One variable
represents a batch, the other represents an “analyzed” status. This results in
43, 904 = (28·28)·28·2 pairs. These numbers sum up to 331, 184. We do not show
the calculations for the other domains, but report the resulting numbers below.
Note that we do not use these numbers to calculate the bound in Inequality (1);
instead in our experiments we assume that we only have the knowledge of how
to compute the total number of pairs of variable-value assignments that can be
expressed in the given domain representation language.

With any of the sampling methods USS, FS, and RW, MMM was perfect in
the following testbeds: Blocks World with 12, 15, 18, 21, and 26 blocks, for 3
table positions in the top representation; 5× 5-, 5× 6-, and 10× 10-Sliding-Tile
Puzzle in the standard and 5× 5-Sliding-Tile Puzzle in the dual representation;
Scanalyzer with 12, 16, and 20 belts. For Scanalyzer with 28 and 100 belts, FS
and USS were perfect, while RW missed a very small percentage of the reachable
pairs. For Towers of Hanoi with 12 disks on 4 pegs, USS and RW were perfect,
while FS missed a very small percentage of pairs. All methods missed a few pairs
for the 26-Blocks World with 3 table positions in the stack representation.

Table 1 gives a representative sample of our results on larger domain ver-
sions. For each domain (in a particular representation and size), it shows the
actual number of reachable pairs (“#Pairs”), the number of samples suggested
by Inequality (1) (“Bound”), the percentage of reachable pairs that remained
undetected after sampling as many states as suggested by the bound (“Missing
Pairs”), and the actual number of samples after which all reachable pairs were
found (“Minimum Sample Size”). The “Missing Pairs” number is averaged over
1000 repetitions of the whole sampling process. The “Minimum Sample Size”
was obtained by repeating the whole sampling process 1000 times and record-
ing the smallest multiple α of 100,000 such that all reachable pairs were always
found when sampling α many states. The domains are the 12-disk Towers of
Hanoi (ToH) with 4 pegs, the 26-Blocks World (BW) with 3 table positions,
both in top and in stack (stk) representation, the 5×5-Sliding-Tile Puzzle (SP),
both in standard (std) and in dual (du) representation, the 10×10-Sliding-Tile
Puzzle in standard representation, and Scanalyzer (SCN) with 28 and 100 belts.
Missing entries for RW on the Scanalyzer domain mean that even after sampling
100,000,000 (for 28 belts) and 1,000,000,000 (for 100 belts) reachable states, not
all reachable pairs had been found.

MMM is very efficient in terms of running time. On a standard modern
computer, MMM with FS for 1,000,000 sampled states takes on the order of one
second for the 5×5-Sliding-Tile Puzzle in standard representation, less than one



Missing Pairs Minimum Sample Size
Domain #Pairs Bound USS FS RW USS FS RW

ToH (12,4) 51,642 6,217,162 0 0.005% 0 4,000 10,000 6,000
BW top (26,3) 285,551 26,818,411 0 0 0 30 2,200 2,700
BW stk (26,3) 1,547,049 26,818,411 0.0001% 0.006% 0.005% 35,000 70,000 70,000
SP std (5×5) 180,000 22,992,465 0 0 0 14 800 800
SP du (5×5) 180,000 22,992,465 0 0 0 14 900 1,100

SP std (10×10) 49,005,000 367,879,441 0 0 0 300 12,000 12,000
SCN (28) 331,184 33,261,751 0 0 0.004% 16 200 -
SCN (100) 51,024,800 382,890,408 0 0 0.0007% 300 7,000 -

Table 1. MMM results for three different sampling methods, using a threshold of
0.00001 ≥ ED[MN ]. Minimum Sample Sizes are given as multiples of 1,000.

minute for the 10× 10-Sliding-Tile Puzzle in standard representation or for the
28-belt Scanalyzer, and a few minutes for the 100-belt Scanalyzer. When taking
as many samples as suggested by the bound, this would result in a time of less
than half a minute for the 5×5-Sliding-Tile Puzzle (std), about half an hour for
the 28-belt Scanalyzer, and a few hours for the 10×10-Sliding-Tile Puzzle (std).
For the 100-belt Scanalyzer, sampling the full number suggested by the bound
would take on the order of 1 day, but after less than half an hour actually all
reachable pairs would have been found.4 In general, the difference between the
bound and the minimum sample sizes suggest that, in practical applications, one
may set the threshold for ED[MN ] substantially higher than 0.00001 and still
obtain perfect results in many domains.

USS seems to be perfect whenever a feasible such sampling method exists,
with the exception of Blocks World in the stack representation, where it misses
on average 2 out of 1,547,049 reachable pairs. In many cases when a uniform
method of sampling reachable states is not available, we can still expect that FS
will work, though it probably needs to sample more before finding all reachable
pairs and thus might not scale as well as USS. The simplest sampling method
we tried, RW, works remarkably well. It is perfect on the top representation of
Blocks World and on the Sliding-Tile Puzzle, and misses on average only 82 out
of the 1,547,049 reachable pairs in the stack representation of Blocks World, 13
out of the 331,184 reachable pairs for the 28-belt Scanalyzer, and 350 out of the
51,024,800 reachable pairs for the 100-belt Scanalyzer.

When RW was missing a few pairs in the Scanalyzer domains, increasing
the number of samples well beyond the bound (100,000,000 for 28 belts and
1,000,000,000 for 100 belts) still did not make the sampling perfect. The latter
indicates that in these cases there were reachable pairs whose probability of being
sampled by RW is so low that their cumulative weight under the probability
distribution induced by the sampling procedure lies well below our threshold of
0.00001. Note that in some cases the percentages of missing pairs are slightly

4 The time used for mutex detection could be amortized when solving a large number
of search or planning problem instances in the same reachable component of the
state space. Further, to the best of our knowledge, there are no methods that can
solve an average instance of the 100-belt Scanalyzer in time on the order of a day.



higher than 0.00001 = 0.001%, but the cumulative probability of the pairs under
the distribution resulting from the sampling may still be lower than 0.00001.

4.1 Comparison with h2

h2 is a state-of-the-art method for mutex pair detection in planning [7] that
errs on the opposite side when compared to MMM, i.e., it will never consider
a reachable pair mutex. h2 is very effective for a large number of domains, for
example, it perfectly detects all mutex pairs for Scanalyzer, the Blocks World
with Table Positions, and for almost all sizes of the Sliding-Tile Puzzle, in the
representations we experimented with.

However, it systematically fails to detect mutexes of certain types in some
domains in which MMM is perfect or almost perfect. Firstly, in the 2×2-Sliding-
Tile Puzzle, h2 misses a special kind of mutex pair, namely some of the pairs
that state that two specific distinct tiles reside in two specific distinct locations.
This amounts to 20% (12 out of 60) of the existing mutex pairs being missed by
h2. Such pairs are never mutex in larger versions of the puzzle [13]. Secondly,
in the stack representation of the n-Blocks World with p table positions, h2 will
systematically miss all mutex pairs that state, for some i < n and some j > i,
that n−i blocks are on position a while a specific block is at height j on position
b 6= a. Such a pair of variable-value assignments is mutex as it would require the
existence of more than n blocks. For n = 26 and p = 3, h2 misses 81% (711,291
out of 873,960) of the existing mutex pairs. Similarly, in our representation of
the n-Disk Towers of Hanoi with p pegs, h2 will miss all mutex pairs stating that
there are n− i disks on peg a while a specific disk is at height j on peg b 6= a.

This demonstrates that in many domains MMM has an advantage due to
sampling at random as opposed to being constructed in a way that systematically
misses certain types of mutex pairs.

5 Conclusions

We presented MMM, a sampling-based approach for detecting mutually exclu-
sive pairs of variable-value assignments that is applicable to any kind of domain
representation. The method is easy to implement, very efficient, and, if a reason-
ably good sampling procedure is used, also very effective in detecting mutexes.
It does not systematically restrict itself to detecting only a subclass of the mutex
pairs, finds mutexes with perfect accuracy in almost all of the domains we tested,
and is very near perfect in all other domains tested, when using either of the
two domain-independent sampling method we tried (FS, RW). MMM scales very
well to large domain sizes. Initial empirical results (not reported here) suggest
that MMM may even be successful at detecting higher-order mutexes.

We have demonstrated that h2, a state-of-the-art mutex detection method,
systematically misses certain mutex pairs in some domains. In a small experiment
on binary domain representations (not reported here), we showed that the same is
true for LONDEX [4] , another state-of-the-art method. MMM outperforms both



methods in the domains we experimented with, thanks to not being restricted
to specific classes of mutex pairs a priori. In fact, all mutex detection methods
we know of suffer from systematically missing certain pairs, and we are aware
of only one method for which in some special kinds of domain completeness has
been proven to be guaranteed (the CA method, see [13]).

Overall, we believe that MMM can improve the performance of planning
systems and heuristic search without affecting runtime efficiency. MMM might
further be of use when combined with a method that errs on the opposite side.

Acknowledgements. This work was supported by the Natural Sciences and
Engineering Research Council of Canada (NSERC).

References

1. Berend, D., Kontorovich, A.: The missing mass problem. Stat. and Prob. Lett. 82
(2012) 1102–1110

2. Blum, A.L., Furst, M.L.: Fast planning through planning graph analysis. Artif.
Intell. 90(1) (1995) 1636–1642

3. Bonet, B., Geffner, H.: Planning as heuristic search. Artif. Intell. 129(1-2) (2001)
5–33

4. Chen, Y., Xing, Z., Zhang, W.: Long-distance mutual exclusion for propositional
planning. In: IJCAI. (2007) 1840–1845

5. Culberson, J., Schaeffer, J.: Pattern databases. Comput. Intell. 14(3) (1998) 318–
334

6. Dawson, C., Siklóssy, L.: The role of preprocessing in problem solving systems. In:
IJCAI. (1977) 465–471

7. Haslum, P.: Admissible Heuristics for Automated Planning. Linköping Studies in
Science and Technology: Dissertations. Dept. of Computer and Information Sci-
ence, Linköpings Univ. (2006)

8. Haslum, P., Bonet, B., Geffner, H.: New admissible heuristics for domain-
independent planning. In: AAAI. (2005) 1163–1168

9. Helmert, M.: The Fast Downward planning system. J. Artif. Intell. Res. 26 (2006)
191–246

10. Helmert, M., Lasinger, H.: The Scanalyzer domain: Greenhouse logistics as a
planning problem. In: ICAPS. (2010) 234–237

11. Hernádvölgyi, I., Holte, R.: PSVN: A vector representation for production systems.
Technical Report TR-99-04, Dept. of Computer Science, Univ. of Ottawa (1999)

12. Ribeiro, B.F., Towsley, D.F.: Estimating and sampling graphs with multidimen-
sional random walks. CoRR abs/1002.1751 (2010)

13. Sadeqi, M., Holte, R.C., Zilles, S.: Using coarse state space abstractions to detect
mutex pairs. In: SARA. (2013) 104–111

14. Thayer, J., Ruml, W.: Bounded suboptimal search: A direct approach using inad-
missible estimates. In: IJCAI 2011. (2011) 674–679

15. Zilles, S., Holte, R.C.: The computational complexity of avoiding spurious states
in state space abstraction. Artif. Intell. 174 (2010) 1072–1092


