
A Comparison of h2 and MMM for Mutex Pair
Detection Applied to Pattern Databases

Mehdi Sadeqi1, Robert C. Holte2, and Sandra Zilles1

1 Department of Computer Science, University of Regina
Regina, SK, Canada S4S 0A2, {sadeqi2m|zilles}@cs.uregina.ca

2 Department of Computing Science, University of Alberta
Edmonton, AB, Canada T6G 2E8, holte@cs.ualberta.ca

Abstract. In state space search or planning, a pair of variable-value
assignments that does not occur in any reachable state is considered a
mutually exclusive (mutex) pair. To improve the efficiency of planners,
the problem of detecting such pairs has been addressed frequently in
the planning literature. No known efficient method for detecting mutex
pairs is able to find all such pairs. Hence, the number and type of mutex
constraints detected by various algorithms are different from one another.
The purpose of this paper is to study the effects on search performance
when errors are made by the mutex detection method that is informing
the construction of a pattern database (PDB). PDBs are deployed for cre-
ating heuristic functions that are then used to guide search. We consider
two mutex detection methods, h2, which can fail to recognize a mutex
pair but never regards a reachable pair as mutex, and the sampling-based
method MMM, which makes the opposite type of error. Both methods
are very often perfect, i.e. they exactly identify which pairs are mutex
and which are reachable. In the cases that they err that we examine in
this paper, h2’s errors cause search to be moderately slower (7%−24%)
whereas MMM’s errors have very little effect on search speed or subop-
timality, even when its sample size is quite small.

1 Introduction

In heuristic state space search and planning, the goal is to find a (preferably op-
timal, i.e., least-cost) path from a start state to a goal. The state space is usually
determined implicitly using a set of operators defining the problem domain. The
states in this state space are specified using a set of variables with every variable
having a set of possible values. A pair of variable-value assignments that do not
co-occur in any reachable state is considered to be a “mutually exclusive pair” or
mutex pair for short. For example, consider a representation of the well-known
8-puzzle (3×3-sliding-tile puzzle) where each position of the puzzle corresponds
to one variable representing the tile in that location (e.g. variable UL might cor-
respond to the upper-left corner position representing the numbered tile or “no
tile” in that position). An example of mutex pair here would be (UL=“no tile”
and BR=“no tile”), where BR is the variable refers to the bottom-right position

indicating what is in that position. Since there is only one empty position in this
puzzle, these two variables cannot simultaneously have the value “no tile”.

Mutex pair detection can be used for improving the performance of planning
systems as was first shown in Graphplan [2]. In this planner, if there is no valid
plan that allows two actions or two facts at the same level of reasoning, the
latter are considered mutex. This motivated the adoption or development of
mutex detection methods in other planners [3, 4, 6–10, 13, 14, 17–20, 23, 24].

h2 is a state-of-the-art method for mutex pair detection in planning [12]. It is
a conservative approach to mutex detection, i.e., it might consider mutex pairs
as reachable but it will never consider a reachable pair mutex. h2 is very effective
for a large number of domains, for example, it perfectly detects all mutex pairs
for Scanalyzer, the Blocks World with Table Positions, and almost all sizes of
the Sliding-Tile Puzzle [22]. Despite its effectiveness, this method may fail to
detect all mutex pairs. This happens, for example, for a special kind of mutex
pair in the 2× 2-Sliding-Tile Puzzle and in the so-called stack representation of
the Blocks World with n blocks and p table positions. In the 2× 2-Sliding-Tile
Puzzle, some of the mutex pairs that state that two specific distinct tiles reside
in two specific distinct locations are missed by h2. This only happens in this very
small version of the puzzle since such pairs are never mutex in larger versions of
the puzzle [22]. In the stack representation of the n-Blocks World with p table
positions, h2 fails to detect all mutex pairs that state, for some i < n and some
j > i, that n− i blocks are stacked on table position a while a specific block is
at height j on table position b 6= a. This kind of variable-value assignment pairs
is mutex since it entails the existence of more than n blocks [21].

A recently introduced mutex detection method is MMM [21]. Unlike all other
approaches, MMM is not conservative, it errs “on the other side.” It never con-
siders a mutex pair reachable, but might consider a reachable pair mutex.

Mutex detection has several applications, most notably search space pruning.
As an example, consider the search space of regression planning where nodes are
partial assignments of state variables and edges are actions. Backward search
starts from the goal and stops when we reach an assignment of state variables
consistent with the start state. One way to reduce search effort is to remove nodes
that contain mutex pairs. Another application of mutex detection is explicating
some of the implicit constraints of propositional planning tasks. This is done
by translating propositional planning domains into representations with multi-
valued state variables and revealing dependencies between variables.

Mutex detection can also be used for improving abstraction-derived heuristic
functions. These are functions that estimate the distance-to-goal for any state
and can be used for directing search. Abstraction is a popular method for deriving
admissible heuristics, i.e., heuristics that never overestimate the true distances
and that guarantee A* and IDA* to find optimal solutions. One creates an
abstract version of the original state space and uses the true distances in the
abstract state space as heuristic values, which are then stored in an efficient
data structure called a pattern database (PDB) [5]. The PDB is essentially a
table listing abstract states along with the corresponding heuristic values, and is

built by moving backwards starting from the abstract goal applying the abstract
versions of the operators in a breadth-first manner. Unfortunately, PDBs may
include abstract states to which no reachable original state is mapped by the
abstraction. Such abstract states are called spurious; they may create short-cuts
in the abstract space and thus lower heuristic values [25]. In many cases, spurious
states contain mutex pairs. Hence, by removing some of the shortcuts created
by spurious abstract states, mutex detection can help to improve the quality of
heuristics, and thus to speed up search.

The purpose of this paper is to study the effects on search performance when
errors are made by the mutex detection method (h2 or MMM) that is informing
the construction of a PDB. We will see that both methods are often perfect, i.e.
they exactly identify which pairs are mutex and which are reachable. We show
several cases in which one or the other is not perfect. When h2 errs (fails to
identify some of the mutexes), a moderately negative effect on search speed is
observed, but the heuristics remain admissible. MMM’s errors may introduce in-
admissibility, but in our experiments, suboptimal solutions were rarely produced
and, when they did occur, the suboptimality was always very small.

2 Background

In this section we introduce the methods behind h2 and MMM. We further
explain how PDB creation is modified when taking mutex pairs into account.

2.1 Mutex Detection Methods

Most existing mutex detection methods use invariant synthesis in the process
of mutex detection. The state-of-the-art mutex detection method h2 discovers
mutex pairs as a special case of “at-most-one” invariants consisting of only two
atoms.3 The h2 invariant synthesis process can be summarized as follows:

– The (pairs of) atoms of the initial state are reachable.
– An operator is considered applicable if all single atoms and pairs of atoms

in its preconditions are reachable.
– An applicable operator turns reachable all its single add effects and all pairs

made in one of the following ways:

• from the add effects of the operators,
• any add effect combined with any previous reachable atom which is not

deleted by the operator and is not mutex with one of its preconditions.

MMM is a sampling-based method that can be summarized as follows [21]:

1. Fix a number N of (not necessarily distinct) pairs of variable-value assign-
ments to be sampled.

3 For more background on invariants the reader is referred to [12].

2. To sample at least N pairs of variable-value assignments, sample Ns states,
where Ns is the smallest integer such that Ns ·

(
m
2

)
≥ N . All pairs of variable-

value assignments are extracted from the Ns sampled reachable states.
3. If a pair of variable-value assignments is not seen in this process, it is con-

sidered to be a mutex pair.

The number N of pairs to be sampled is determined by Berend and Kon-
torovich’s [1] upper bound on the expected probability mass of the elements
not seen after taking N i.i.d. samples from any fixed distribution. A good sam-
pling method of reachable states is also an essential part for the success of this
approach. For details of the MMM approach see [21].

A property distinguishing MMM from existing mutex detection methods is
that it errs “on the other side.” While existing methods never consider a reach-
able pair mutex, MMM never considers a mutex pair reachable, but might con-
sider a reachable pair mutex. To minimize the risk of missing reachable pairs, it
is desirable to use a near-uniform sampling process, so that no pairs of variable-
value assignments have too small a probability of being sampled. Unfortunately,
there is no known method for sampling states in a way that creates a near-
uniform sample of the contained pairs of variable-value assignments, and further
one does in general not sample pairs i.i.d. when sampling states. Furthermore,
even with uniform sampling there would be no guarantee that MMM finds all
reachable pairs; however, we would have a guaranteed minimum probability of
finding all reachable pairs. The potential for MMM to miss some reachable pairs
must be taken into consideration when building PDBs.

2.2 Pattern Databases

A well-known approach for directing search is by using heuristic functions. These
are functions that estimate the distance from any given state s to a goal state.
A heuristic function is admissible if it never overestimate the actual distances.
An admissible heuristic function guarantees that heuristic search algorithms like
A* and IDA* find optimal solutions when using this function. By creating an
abstract version of the original state space and using the true distances in this
abstract state space, one can generate an admissible heuristic function. The
speed up in search achieved by A* and IDA* depends on the quality of the
heuristic function: the closer the heuristic values are to the actual distances, the
more efficient A* and IDA* will be.

Creating the h2-modified PDB is quite straightforward. The only difference
to the original PDB creation is that while moving backwards from the abstract
goal, an abstract state containing a mutex pair is not added to the open list.

Because MMM errs on the other side, the MMM-modified PDB creation
needs more work. The corresponding steps can be summarized as follows:

1. The PDB is built as usual.
2. MMM is used forward from the start state in the original state space to find

mutex pairs.

3. An auxiliary PDB is built finding paths to abstract states that do not pass
through abstract states containing pairs that are considered mutex by MMM.
This means that, in the process of creating this PDB, abstract states con-
taining a mutex pair are not added to the open list.

4. Distances in the original PDB will be replaced by those from the auxiliary
PDB as long as the latter are not infinite.

The above explanation is given this way for the ease of understanding the
MMM-modified PDB creation process. The actual implementation of the de-
scribed method is more efficient in the sense that instead of building a separate
PDB, the states considered spurious are flagged in the original PDB. As usual,
the final PDB will be used for guiding the search. Since MMM might flag some
reachable pairs as mutex, the resulting heuristic might be inadmissible. Though
this can cause A* or IDA* to find suboptimal solutions, the suboptimality is
bounded (additively) by the maximum amount that MMM increases a value in
the original PDB (p.219, [11]). It should be noted that a suboptimal path will
be found only if all the optimal paths are blocked by an MMM mistake.

3 Experimental Setup

The purpose of our experiment is to evaluate the effects on search of h2 failing
to find all mutex pairs and MMM failing to find all reachable pairs. The choice
of domains, representations, and abstractions were driven by this goal, and the
results reported below are only for those combinations in which one or both of
h2 and MMM are “imperfect” in the sense just described. Such combinations are
rather rare; for the majority of the combinations we considered both methods
were perfect (this is consistent with the findings described in [21]). All domains
were represented using PSVN [16]. The representations used for the domains
were intentionally chosen so that many mutex pairs exist, and we deliberately
chose versions of each domain that were small enough that (1) problem instances
could be solved reasonably quickly with a single PDB; and (2) if we were not
able to analytically compute the exact number of reachable pairs, the state space
was small enough that we could determine the exact number of reachable pairs
by enumerating all reachable states.

3.1 Domains and Representations

The experimented domains and representations are as follows:
Towers of Hanoi. In the n-Disks Towers of Hanoi with p Pegs, a state

describes the constellation of n disks stacked on p named pegs. In every move,
a disk can be transferred from one peg to another provided that all disks on the
destination peg are larger than the moving disk. The goal is to stack up all disks
in decreasing order, from bottom to top, on the goal peg from a given start state
using the legal moves.

We encode a state of the n-Disk Towers of Hanoi with p pegs as a vector of
length pn, where for every peg n binary variables encode whether a disk is on

this peg or not. h2 is perfect on the size of this domain that we tested (14 disks,
4 pegs), but MMM is not. This is different than the encoding used in [21].

Blocks World with Table Positions. In the n-Blocks World with p Table
Positions, a state describes the constellation of n blocks stacked on a table with
p named positions, where at most one block can be located in a “hand.” In every
move, either the empty hand picks up the top block off one of the stacks on the
table, or the hand holding a block places that block onto an empty table position
or on top of a stack of blocks. The goal is to stack up all numbered blocks in
increasing order, from bottom to top, on the goal position from a given start
state using the legal moves.

We consider two PSVN representations of the n-Blocks World with p distinct
table positions. In the first one, called the top representation [21], a state vector
has 1 + p + n components, each containing either the value 0 or one of n block
names: (i) the first component is the name of the block in the hand, (ii) the
next p components are the names of the blocks immediately on table positions 1
through p, (iii) the last n components are the names of the blocks immediately
on top of blocks a, b, c, In each case, the value 0 means “no block.” In the
versions of the Blocks World we considered (3 table positions, 9 and 12 blocks),
h2 and MMM are both perfect with this representation.

In the height representation, a state is a vector of length 1 + 3n + p, where
(i) the first component is the name of the block in the hand or 0 if the hand
is free, (ii) for every block, 3 components encode its table position, its height
relative to the table and whether there is any block on top of this block and (iii)
the last p components encode whether there is any block on a table position.
In the versions of the Blocks World we considered, MMM is perfect with this
representation but h2 is not.

Sliding-Tile Puzzle. In the n × m-Sliding-Tile Puzzle (n × m-puzzle for
short), representing an n×m grid, in which tiles numbered 1 through n ·m− 1
each fill one grid position and the remaining grid position is blank. A move
consists of swapping the blank with an adjacent tile. The goal is to have the
numbered tiles in increasing order from top left corner to bottom right corner
with the blank tile in the bottom right position.

In the standard representation of this puzzle, states are vectors of length n ·`,
where each component corresponds to a grid position and represents the number
of the tile in this position (B, if the position is blank). In the dual representation,
a vector component corresponds to either the blank or one of the tiles. The value
of a vector component represents the grid position at which the corresponding
tile is located. In the version of the Sliding-Tile puzzle we considered (3× 4), h2

and MMM are both perfect with both of these representations.

Scanalyzer. In the n-Belt Scanalyzer, a state describes the placement of
n plant batches on n conveyor belts along with information indicating which
batches have been “analyzed.” (For a detailed description of this domain, see
[15].) In a rotate move, a batch can be switched from one conveyor belt in the
upper half and vice versa. In a rotate-and-analyze move, a batch can simul-
taneously be transferred and analyzed from the topmost conveyor belt to the

bottommost one while the batch at the bottommost conveyor belt is moved to
the topmost one without any change to its “analyze” state. Once a batch is
analyzed, it will remain analyzed henceforward.

In the PSVN representation of the n-Belt Scanalyzer [15] (for even n), a
state is a vector of length 2n in which each belt corresponds to two components:
the name of the batch on that belt and a flag indicating whether that batch
is analyzed. h2 and MMM are both perfect on the size of this domain that
we considered (12 belts), although prior research [21] shows that MMM is not
perfect on sufficiently large sizes of this domain.

Barman. We use the multi-valued representation derived by Fast Down-
ward’s preprocessing algorithm from barman-opt11-strips prob01-003.pddl.
Neither h2 nor MMM is perfect on this domain.

Transport. We use the multi-valued representation derived by Fast Down-
ward’s preprocessing algorithm from transport-opt08-strips prob01.pddl.
MMM is perfect on this domain but h2 is not, although it is perfect on the
larger versions we tried.

3.2 Mutex Calculation

In our experiments, MMM and h2 each calculate their set of reachable pairs
once for each domain, not once for each start state used for testing. All the
domains except Barman and Transport have invertible operators. For these, the
calculation of reachable pairs began at the goal state. For Transport and Barman
this calculation began at the start state in the PDDL problem definition file.

3.3 MMM’s Sampling Method

The sampling method used for MMM is a simple random walk modified to cope
with non-invertible operators. While doing a random walk, when we generate
a child state, if there is no operator that generates its parent when applied to
the child, we add this child state, along with the parent, to a list of states that
do not return to their parents. When generating a node in the random walk
process, we check if a state belongs to this list. If it does, the parent of this state
is also considered as a child in generating the next state of the random walk.4

The length of the random walk was equal to the sample size Ns, as determined
by the method described in [21] with p = 0.00001.

4 Experimental Results

Our experiments involve building a PDB based on the mutexes discovered by one
of the methods (h2 or MMM) and then solving a set of problem instances with
IDA* using that PDB. For h2, optimal solutions will be found so we measure

4 Although this is not the most efficient approach for this purpose, it is enough for
the purpose of this study.

search performance in terms of the number of nodes expanded compared to the
number that would have been expanded if all mutex pairs had been known when
the PDB was built. These results are presented in the first subsection below. For
MMM, we measure the suboptimality of the solutions found in addition to the
search performance. These results are presented in the second subsection below.

The problem instances (start states) used for evaluation are generated as
follows. For Barman and Transport, the start states were chosen uniformly at
random from the set of states reachable from the start state in the PDDL problem
definition file (the state spaces were small enough that this set of reachable
states could be enumerated). For the other domains, we generated start states
uniformly at random using domain-specific knowledge.

4.1 Effect of Mutexes Missed by h2

The smallest size of the Transport domain (the only size we tried on which h2

is imperfect) has one state variable that can take on 5 values (0...4). We defined
a domain abstraction that maps two of these values (0 and 4) to the same value
(0). The average number of nodes expanded over 100 start states is 52 using
the h2-based PDB, compared to 46 for a PDB based on all mutex pairs. This
difference represents a 13% reduction in search speed.

In the Barman representation there are 62 state variables, of which we pro-
jected out all except for variables 1, 4, 7, 10, 11, 15, 18, 19, 23, 27, 32, 36, 40,
41, 42, 43, 47, 50, 54, 58, and 62. If IDA* is run with the PDB based on this
abstraction on our 100 start states, it expands 179, 963, 835 nodes on average.
The PDB based on the mutex pairs that h2 finds reduces this only slightly, to
179, 863, 552 nodes. When knowing all the mutex pairs, only 145, 221, 715 nodes
would be expanded, so the mutexes h2 misses cause IDA* to be 24% slower.

In the height representation of the Blocks World with 9 blocks and 3 table
positions we evaluate ten abstractions that project out 17-19 variables from the
state representation. Table 1 compares the number of nodes expanded using the
h2-derived PDB with the PDB based on all mutex pairs. The numbers shown
are an average over 1,000 problem instances with an average solution length of
37.073. The “Ratio” column shows that IDA* is between 7% and 17% slower
because of the mutex pairs missed by h2.

4.2 Effect of the Reachable Pairs Missed by MMM

In the Towers of Hanoi with 14 disks and 4 pegs there are 6, 188 reachable pairs
and MMM found 5, 783 of them with the sample size it computed (147, 151
states). The abstraction we used projected out 4 variables, the ones indicating
whether or not disks 3, 7, 10, and 12 are on the goal peg (peg 4). Using the PDB
based on this abstraction (which contained no spurious states) IDA* expanded
407, 939, 036 nodes on average over 100 problem instances with an average solu-
tion length of 84.93. Using the MMM-based PDB gives slightly better results—
always optimal solutions are found and 405, 102, 108 nodes are expanded.

Table 1. Comparison of the h2-based PDB with the PDB based on all mutex pairs for
the Blocks World with 9 blocks and 3 table positions, in terms of the average number
of nodes expanded by IDA*.

h2 mutexes all mutexes Ratio

1 49,713,497 46,330,261 1.07
2 46,383,586 43,370,655 1.07
3 24,517,691 22,781,118 1.08
4 45,702,201 41,787,185 1.09
5 41,955,106 39,756,764 1.10
6 32,572,769 29,487,744 1.10
7 17,508,997 15,725,339 1.11
8 53,238,425 48,043,270 1.11
9 16,599,782 14,641,797 1.13
10 28,087,835 24,006,009 1.17

Table 2. Results on MMM-based PDBs for the Sliding-Tile puzzle, over various sample
sizes used by MMM.

#Samples # Pairs Found Avg. Solution Length # Nodes Expanded

5,000 7,743 34.987 8,260,410
7,500 8,306 35.381 4,034,902
10,000 8,679 34.871 4,721,158
12,500 8,798 34.743 4,900,564
15,000 8,829 34.737 4,873,844
20,000 8,851 34.737 4,876,682

In the Barman domain there are 8, 546 reachable pairs of which MMM found
7, 834 with the sample size it computed (171, 566 states). The abstraction we
used is the same as that used for h2 (see above). Using the PDB based on
this abstraction, IDA* expanded 179, 963, 835 nodes on average over the same
problem instances used for h2. Using the MMM-based PDB gives exactly the
same results—all solutions found are optimal and the same number of nodes is
expanded. Using a PDB based on all mutex pairs only 145, 221, 715 nodes would
have been expanded.

To get additional data on the effect of MMM’s mistakes we severely reduced
the sample size it was given on two domains where the sample size it computed
was sufficient to find all reachable pairs. The first such experiment was with the
dual representation of the 3 × 4 Sliding-Tile Puzzle. The abstraction we used
projects out tiles 1, 2, 6, 7, 8, 10 and 11. The optimum average solution length
over 1,000 problem instances is 34.737. With the PDB for this abstraction IDA*
expands 12, 891, 609 nodes on average, and with the PDB based on all mutex
pairs it expands 4, 876, 682 nodes. There are 8, 856 reachable pairs in this domain.
Table 2 shows, for various sample sizes, the number of reachable pairs MMM
found in a sample of that size, and the average solution length and the number of
nodes expanded using the MMM-based PDB for that sample size. For all sample
sizes, the solutions are within 2% of optimal and the number of nodes expanded
is close to the one using the PDB based on all mutex pairs.

The second such experiment was with the top representation of the Blocks
World top with 12 blocks and 3 table positions. The abstraction we used mapped
constant 0 and 1 to 0, constants 2, 3, and 4 to 1, constants 5 and 6 to 2, constants

7, 8, and 9 to 3, and constants 10, 11, and 12 to 4. The optimum average solution
length over 100 problem instances is 50.02. With the PDB for this abstraction
IDA* expands 338, 837, 610 nodes on average, and with the PDB based on know-
ing all mutex pairs it expands 219, 554, 160 nodes. There are 16, 744 reachable
pairs in this domain. Table 3 shows, for a variety of sample sizes, the number of
reachable pairs MMM found in a sample of that size, and the average solution
length and the number of nodes expanded using the MMM-derived PDB for the
given sample size. Even for small sample sizes, the solutions found are optimal
and the number of nodes expanded is close to the number expanded using the
PDB based on all mutex pairs. The average heuristic values over 1, 000 prob-
lem instances are also shown in this table. Although the inadmissibility of the
heuristic due to missing reachable pairs can cause A* or IDA* to find suboptimal
solutions (see the second row of the table), the suboptimality will be bounded
(p.219, [11]).

Table 3. Results on MMM-based PDBs for the Blocks World with 12 blocks and 3
positions in top representation, over various sample sizes used by MMM. The average
heuristic value of the original PDB over 1, 000 problem instances is 23.214.

#Samples # Pairs Found Avg. Solution Length # Nodes Expanded Average Heuristic

2,500 6,769 50.02 334,008,819 23.246
5,000 10,504 50.26 292,895,093 23.744
7,500 12,137 50.02 245,575,442 23.770
10,000 13,212 50.02 232,661,738 23.896
15,000 14,870 50.02 230,423,751 23.912
20,000 15,860 50.02 223,020,627 23.956
25,000 16,414 50.02 221,228,345 23.966
30,000 16,493 50.02 219,554,160 23.968
35,000 16,539 50.02 220,180,915 23.956
40,000 16,654 50.02 219,554,160 23.968
45,000 16,700 50.02 219,554,160 23.968
50,000 16,726 50.02 219,554,160 23.968

As a final example, consider a second abstraction of the Blocks World with
12 blocks and 3 table positions in top representation, one that contains no mu-
texes. The abstraction we used mapped constants 0, 1 and 2 to 0, constants 3,
4, and 5 to 1, constants 6, 7 and 8 to 2, constants 9, 10, 11, and 12 to 3. With
the PDB for this abstraction IDA* expands 11, 315, 347, 373 nodes on average.
There are 16, 744 reachable pairs in this domain. Table 4 shows, for a variety
of sample sizes, the number of reachable pairs MMM found in a sample of that
size, and the average solution length and the number of nodes expanded using
the MMM-derived PDB for the given sample size. The average heuristic values
over 1, 000 problem instances are also shown in this table. With every sample
size, the solutions found are optimal. In some cases when the sample size is very
small, the number of nodes expanded is less than the number expanded using
the original PDB. This means that missing reachable pairs by MMM does not
necessarily yield suboptimality; we can even gain a speed-up in search without
sacrificing solution quality. As mentioned before, the inadmissibility caused by
missing reachable pairs can make A* or IDA* find suboptimal solutions. How-

ever, the missing pairs do not cause any suboptimality in solution length in the
100 problem instances experimented here.

Table 4. Solution length, number of nodes expanded, averaged over 100 problem in-
stances and average heuristic value of the MMM-based PDB over 1, 000 problem in-
stances of the Blocks World with 12 blocks and 3 table positions in top representation.
The average heuristic value of the original PDB over 1, 000 problem instances is 18.058.

#Samples # Pairs Found Avg. Solution Length # Nodes Expanded Average Heuristic

2,500 6,769 50.02 10,089,469,726 18.222
5,000 10,504 50.02 10,934,356,821 18.120
7,500 12,137 50.02 10,996,998,475 18.136
10,000 13,212 50.02 11,315,347,373 18.058
15,000 14,870 50.02 11,267,254,232 18.058
20,000 15,860 50.02 11,315,347,373 18.058
25,000 16,414 50.02 11,315,347,373 18.058
30,000 16,493 50.02 11,315,347,373 18.058
35,000 16,539 50.02 11,315,347,373 18.058
40,000 16,654 50.02 11,315,347,373 18.058
45,000 16,700 50.02 11,315,347,373 18.058
50,000 16,726 50.02 11,315,347,373 18.058

5 Conclusions

The purpose of this paper was to study the effects on search performance when
errors are made by the mutex detection method that is informing the construc-
tion of a pattern database (PDB). We have considered two mutex detection
methods, h2, which can fail to recognize a mutex pair but never regards a reach-
able pair as mutex, and MMM, which makes the opposite type of error. Both
methods are very often perfect, i.e., they exactly identify which pairs are mutex
and which are reachable. In the cases that they err that we have examined in this
paper, h2’s errors cause search to be moderately slower (7%−24%) than it other-
wise would be, but its PDB is guaranteed to be an admissible heuristic. MMM’s
errors can cause its PDB to be an inadmissible heuristic but in our experiments
its errors rarely caused a non-optimal solution to be found and when they did
the solutions were extremely close to optimal. MMM’s errors were expected to
speed up search but this was not observed; they had little effect on search speed.
Our experiments also showed that MMM can perform very well with quite small
sample sizes.

Acknowledgements. This work was supported by the Natural Sciences and
Engineering Research Council of Canada (NSERC).

References

1. Berend, D., Kontorovich, A.: The missing mass problem. Stat. and Prob. Lett. 82
(2012) 1102–1110

2. Blum, A.L., Furst, M.L.: Fast planning through planning graph analysis. Artif.
Intell. 90(1) (1995) 1636–1642

3. Bonet, B. and Geffner, H. Planning as heuristic search: New results. In: ECP,
360–372. Springer, 1999.

4. Chen, Y., Huang, R., Xing, Z., and Zhang, W. Long-distance mutual exclusion for
planning. Artif. Intell., 173(2):365–391, 2009.

5. Culberson, J., Schaeffer, J.: Pattern databases. Comput. Intell. 14(3) (1998) 318–
334

6. Edelkamp, S., Helmert, M.: MIPS: The Model-Checking Integrated Planning Sys-
tem. AI Magazine 22(3) (2001) 67–72

7. Fox, M. and Long, D. The automatic inference of state invariants in TIM. J. Artif.
Intell. Res., 9:367–421, 1998.

8. Gerevini, A., Saetti, A., and Serina, I. Planning through stochastic local search
and temporal action graphs in lpg. J. Artif. Int. Res., 20:239–290, 2003.

9. Gerevini, A., Schubert, L.K.: Discovering state constraints in DISCOPLAN: Some
new results. In: AAAI/IAAI. (2000) 761–767

10. Gerevini, A. and Schubert, L. Inferring state constraints for domain-independent
planning. In AAAI/IAAI, pages 905–912, 1998.

11. Harris, L.R.: The heuristic search under conditions of error. Artificial Intelligence
5(3) (1974) 217–234

12. Haslum, P.: Admissible Heuristics for Automated Planning. Linköping Studies in
Science and Technology: Dissertations. Dept. of Computer and Information Sci-
ence, Linköping Univ. (2006)

13. Haslum, P., Bonet, B., and Geffner, H. New admissible heuristics for domain-
independent planning. In: AAAI, pages 1163–1168, 2005.

14. Helmert, M.: The Fast Downward planning system. J. Artif. Intell. Res. 26 (2006)
191–246

15. Helmert, M., Lasinger, H.: The Scanalyzer domain: Greenhouse logistics as a
planning problem. In: ICAPS. (2010) 234–237

16. Hernádvölgyi, I., Holte, R.: PSVN: A vector representation for production systems.
Technical Report TR-99-04, Dept. of Computer Science, Univ. of Ottawa (1999)

17. Kautz, H.: SATPLAN04: Planning as satisfiability. In: 4th International Planning
Competition Booklet. (2004)

18. Kautz, H., Selman, B.: Pushing the envelope: Planning, propositional logic, and
stochastic search, AAAI Press (1996) 1194–1201

19. Penberthy, J. and Weld, D. Temporal planning with continuous change. In: AAAI,
1010–1015, 1994.

20. Rintanen, J. An iterative algorithm for synthesizing invariants. In: AAAI/IAAI,
806–811. 2000.

21. Sadeqi, M., Holte, R.C., Zilles, S.: Detecting mutex pairs in state spaces by sam-
pling. In: 26th Australasian Joint Conference on Artificial Intelligence. (2013)
490–501

22. Sadeqi, M., Holte, R.C., Zilles, S.: Using coarse state space abstractions to detect
mutex pairs. In: SARA. (2013) 104–111

23. Scholz, U. Extracting state constraints from PDDL-like planning domains. In:
AIPS Workshop on Analyzing and Exploiting Domain Knowledge for Efficient
Planning, 43–48, 2000.

24. Vidal, V. and Geffner, H. Branching and pruning: An optimal temporal pocl
planner based on constraint programming. Artif. Intell., 170:298–335, 2006.

25. Zilles, S., Holte, R.C.: The computational complexity of avoiding spurious states
in state space abstraction. Artif. Intell. 174 (2010) 1072–1092

