
Move Pruning and Duplicate Detection

Robert C. Holte

Computing Science Department
University of Alberta

Edmonton, AB Canada T6G 2E8
rholte@ualberta.ca

Abstract. This paper begins by showing that Burch and Holte’s move
pruning method is, in general, not safe to use in conjunction with the
kind of duplicate detection done by standard heuristic search algorithms
such as A*. It then investigates the interactions between move pruning
and duplicate detection with the aim of elucidating conditions under
which it is safe to use both techniques together. Conditions are derived
under which simple interactions cannot possibly occur and it is shown
that these conditions hold in many of the state spaces commonly used
as research testbeds. Unfortunately, these conditions do not preclude
more complex interactions from occurring. The paper then proves two
conditions that must hold whenever move pruning is not safe to use with
duplicate detection and discusses circumstances in which each of these
conditions might not hold, i.e. circumstances in which it would be safe
to use move pruning in conjunction with duplicate detection.

1 Introduction

Burch and Holte [1, 2] introduced a generalization of the method for eliminating
redundant operator sequences introduced by Taylor and Korf [3, 4], proved its
correctness, and showed that it could vastly reduce the size of a depth-first search
tree in spaces containing short cycles or transpositions.1 Both methods work by
pruning moves, i.e. disallowing (“pruning”) the use of an operator (“move”) after
a specific sequence of operators has been executed. Burch and Holte also showed
that move pruning could not, in general, be safely used in conjunction with
transposition tables [5]; i.e. there is a risk, if move pruning is used together with
transposition tables, that all optimal paths from start to goal will be eliminated.

A*, breadth-first search, and many other search algorithms use a duplicate
detection strategy that is simpler than the transposition tables considered by
Burch and Holte. Such algorithms simply record each state that is generated
and its distance from the start state. If the state is generated again by a path
that is cheaper than the recorded distance, the distance is updated and the
state is “re-opened” with a priority based on the new distance. Otherwise the

1 A “transposition” occurs when there are two distinct paths leading from one state
to another.

2

S T U

A

B
C

Fig. 1. Example in which duplicate detection and move pruning interact to produce
erroneous behaviour.

new path to the state is ignored. I shall refer to this as “duplicate detection” in
the remainder of this paper.

Burch and Holte did not discuss whether it was safe to use their move pruning
in conjunction with duplicate detection, but it was observed by Malte Helmert
(personal communication) that it is not. Figure 1 shows the typical situation
in which a problem arises. A and B are operators or operator sequences that
are not redundant with each other in general, but happen to produce the same
state, T , when applied to state S. AC and BC are the only two paths from S to
U , and move pruning determines that AC is redundant with BC and decides to
prohibit C from being applied after A. However, the search generates T via path
A first, and records this fact using the usual backpointer method found in A*
implementations. When the search later generates T via path B it notices that
T has already been generated by a path of the same cost and therefore ignores
B. Since the only recorded path from S to T is A, move pruning prevents C
from being applied to T and state U is never reached.

To see that it is possible for such A, B, and C to exist, with AC and BC being
redundant with each other but A and B not being redundant with one another,
here is a very simple example (also due to Malte Helmert) presented in the
notation of the PSVN language (see [2]). A state in this example is described by
three state variables and is written as a vector of length three. The value of each
variable is either 0, 1, or 2. The operators are written in the form LHS → RHS
where LHS is a vector of length three defining the operator’s preconditions
and RHS is a vector of length three defining its effects. The LHS may contain
variable symbols (Xi in this example); when the operator is applied to a state,
the variable symbols are bound to the value of the state in the corresponding
position. Preconditions test either that the state has a specific value for a state
variable or that the value of two or more state variables are equal (this is done by
having the same Xi occur in all the positions that are being tested for equality).
For example, operator A below can only be applied to states whose first state
variable has the value 0. The following operators behave like A, B, and C in
Figure 1 when applied to state S = 〈0, 1, 1〉:

A : 〈0, X1, X2〉 → 〈1, 1, X2〉
B : 〈0, X3, X4〉 → 〈1, X3, 1〉
C : 〈1, X5, X6〉 → 〈2, 1, 1〉

A and B are not redundant with one another, in general, but both can be applied
to state S = 〈0, 1, 1〉 and doing so produces the same state, T = 〈1, 1, 1〉.

3

This example motivates the study reported in this paper, whose aim is to
understand the interactions between move pruning and duplicate detection and
to identify conditions under which it is safe to use the techniques together. There
are two main contributions of this paper. The first is to derive conditions under
which simple interactions between move pruning and duplicate detection, such
as the one depicted in Figure 1, cannot possibly occur. It turns out that these
conditions hold in many of the state spaces commonly used as research testbeds
(Rubik’s Cube, TopSpin, etc.). Unfortunately, these conditions do not preclude
more complex interactions from occurring. The second contribution of the paper
is to derive conditions that must hold whenever there is a deleterious interaction
between move pruning and duplicate detection.

1.1 Motivation

The motivation for adding move pruning to a system that does duplicate detec-
tion is computational—move pruning is faster than duplicate detection. This is
because with duplicate detection a state must be generated and looked up in
a data structure to determine if it is a duplicate. Move pruning saves the time
needed for duplicate detection because it avoids generating states when it knows
(by analysis in a preprocessing step) the resulting state will be a duplicate. For
example, the depth-first search system used in Burch and Holte’s experiments [1]
did “parent pruning,” an elementary form of duplicate detection, and they re-
ported that using move pruning to achieve the same effect as parent pruning
was more than twice as fast as doing parent pruning by explicit duplicate de-
tection. In addition, if suboptimal paths to a state are generated before optimal
ones, duplicate detection will involve updating the data structure that stores the
distance-from-start information. This can be relatively expensive—updating the
priority queue used by A*, for example. Move pruning will avoid some of these
updates by not generating some of the suboptimal paths at all.

On the other hand, duplicate detection is useful to add to a system that
does move pruning because move pruning, in general, is incomplete: it only
detects short sequences that are redundant (in the current implementation move
pruning considers all and only sequences of length L or less) and it only detects
“universal” redundancy, as opposed to “serendipitous” redundancy, as illustrated
in the example above, where sequences A and B are redundant when applied to
certain states but are not redundant in general. Duplicate detection is complete,
unless there is not enough memory to store all the generated states.

The final motivation for undertaking this study is that it applies much more
broadly than just to systems that use Burch and Holte’s method for automatic
move pruning. When problem domains with many obvious redundancies, such as
TopSpin and Rubik’s Cube, are coded by hand, the researchers writing the code
manually do a simple version of the move pruning that Burch and Holte have
automated. For example, here is a detailed description of the standard move
pruning done by hand for Rubik’s Cube [6]:

Since twisting the same face twice in a row is redundant, ruling out such
moves reduces the branching factor to 15 after the first move. Further-

4

more, twists of opposite faces of the cube are independent and commu-
tative. For example, twisting the front face, then twisting the back face,
leads to the same state as performing the same twists in the opposite
order. Thus, for each pair of opposite faces we arbitrarily chose an order,
and forbid moves that twist the two faces consecutively in the opposite
order.

These are precisely the kinds of redundant operator sequences that Burch and
Holte’s method detects automatically. The correctness of the move pruning done
manually has never been questioned, but the problem illustrated in Figure 1
applies regardless of whether the move pruning was inferred by an automatic
method or by hand. Thus it brings into question the correctness of the standard
encodings of testbeds such as Rubik’s Cube and TopSpin if they are used in
a system that does duplicate detection. In fact, I have verified that the manu-
ally encoded move pruning in the IDA* code written in my research group for
TopSpin results in non-optimal solutions being produced if it is used in A*.

2 Essential Theory by Burch and Holte [1]

This section defines terminology and repeats the key theoretical ideas from [1].
The empty sequence is denoted ε. If A is a finite operator sequence then |A|

denotes the length of A (the number of operators in A, |ε| = 0), cost(A) is the
sum of the costs of the operators in A (cost(ε) = 0), pre(A) is the set of states
to which A can be applied, and A(s) is the state resulting from applying A to
state s ∈ pre(A). I assume the cost of each operator is non-negative. A prefix of
A is a nonempty initial segment of A (A1...Ak for 1 ≤ k ≤ |A|) and a suffix is a
nonempty final segment of A (Ak...A|A| for 1 ≤ k ≤ |A|).

Operator sequence B is redundant with operator sequence A if (i) the cost
of A is no greater than the cost of B, and, for any state s that satisfies the
preconditions of B, both of the following hold: (ii) s satisfies the preconditions
of A, and (iii) applying A and B to s leads to the same end state. Formally,

Definition 1. Operator sequence B is “redundant” with operator sequence A iff
the following conditions hold:

(R1) cost(B) ≥ cost(A)
(R2) pre(B) ⊆ pre(A)
(R3) s ∈ pre(B)⇒ B(s) = A(s)

We write B ≥ A to denote that B is redundant with A.

Let O be a total ordering on operator sequences. B >O A indicates that B is
greater than A according to O. O has no intrinsic connection to redundancy so
it can easily happen that B ≥ A according to Definition 1 but B <O A.

Definition 2. A total ordering on operator sequences O is “nested” if ε <O A
for all A 6= ε and B >O A implies XBY >O XAY for all A, B,X, and Y .

5

Definition 3. Given a nested ordering O, for any pair of states s, t define
min(s, t) to be the least-cost path from s to t that is smallest according to O
(min(s, t) is undefined if there is no path from s to t).

Theorem 1. Let O be any nested ordering on operator sequences and B any
operator sequence. If there exists an operator sequence A such that B ≥ A ac-
cording to Definition 1 and B >O A, then B does not occur as a consecutive
subsequence in min(s, t) for any states s, t.

As noted by Burch and Holte [1], from Theorem 1 it immediately follows that
a move pruning system that restricts itself to pruning only operator sequences B
that are redundant with some operator sequence A and greater than A according
to a fixed nested ordering will be “safe”, i.e. it will not eliminate all the least-cost
paths between any pair of states. In Burch and Holte’s implementation of move
pruning, all operator sequences of length L or less are generated in an order
defined by a fixed nested ordering, and each newly generated sequence is tested
for redundancy against all the non-redundant sequences generated before it.

3 Conditions Precluding Simple Interactions

I will call the situation depicted in Figure 1 a “simple” interaction between du-
plicate detection and move pruning, by which I mean the interaction takes place
between two optimal paths, AC and BC, that have a common suffix (C). In this
section I derive commonly occurring conditions under which simple interactions
cannot possibly happen. Throughout the rest of the paper I assume there is a
fixed nested ordering on operator sequences, O, used for move pruning.

Because AC and/or BC can be longer than the sequences that move pruning
considers, define A′ to be the suffix of A, B′ to be the suffix of B, and C ′ to
be the prefix of C such that move pruning determines that A′C ′ ≥ B′C ′ and
A′C ′ >O B′C ′. The latter implies A′ >O B′. This, together with the fact that
A′ is not pruned by move pruning (A′ is fully executed) implies that A′ 6≥ B′.

Thus, a simple interaction requires an interesting situation: A′C ′ ≥ B′C ′ but
A′ 6≥ B′ . There are natural conditions in which this combination is impossible
because (A′C ′ ≥ B′C ′)⇒ (A′ ≥ B′) for all sequences A′, B′, and C ′. To derive
such conditions, recall that the definition of X ≥ Y has three requirements:

(R1) cost(X) ≥ cost(Y)
(R2) pre(X) ⊆ pre(Y)
(R3) s ∈ pre(X)⇒ X(s) = Y (s)

In order to derive conditions under which (A′C ′ ≥ B′C ′)⇒ (A′ ≥ B′) we need
to consider each of these in turn.

(R1) We require conditions under which (cost(A′C ′) ≥ cost(B′C ′))⇒ (cost(A′)
≥ cost(B′)). In fact, no special conditions are needed, this is always true be-
cause the cost of an operator sequence is the sum of the costs of the operators
in the sequence and operator costs are non-negative.

6

(R2) We require conditions under which (pre(A′C ′) ⊆ pre(B′C ′)) ⇒ (pre(A′)
⊆ pre(B′)). This is often not true, but it certainly holds if pre(XY) =
pre(X) for all operator sequences X and Y (with X non-empty). There are
at least two commonly occurring conditions in which this is true:
• operators have no preconditions (every operator is applicable to every

state) as in Rubik’s Cube;
• the precondition of any sequence is the precondition of the first operator

in the sequence (because the preconditions of the next operator in the
sequence are guaranteed by the effects and unchanged preconditions of
the operators preceding it), as in the sliding-tile puzzles with one blank.

(R3) We require conditions under which (s ∈ pre(A′C ′)⇒ A′C ′(s) = B′C ′(s))
⇒ (t ∈ pre(A′)⇒ A′(t) = B′(t)). This follows if both of the following hold:
• pre(XY) = pre(X) for all operator sequences X and Y (with X non-

empty), the same condition discussed in connection with (R2); and
• all operators are 1-to-1 ((op(x)=op(y))⇒ (x=y)).

The two conditions listed under (R3) are thus sufficient to prevent simple in-
teractions from occurring. These conditions hold in many commonly used state
spaces: the sliding-tile puzzle with one blank, Rubik’s Cube, Scanalyzer [7], Top-
Spin, and the Pancake puzzle. In all such spaces, simple interactions between
move pruning and duplicate detection cannot occur.

Unfortunately, simple interactions are not the only way that move pruning
and duplicate detection can interact deleteriously, i.e., the situation in Figure 1
is not a necessary condition for move pruning to be unsafe in conjunction with
duplicate detection. Figure 2 gives an example based on an actual run of A* on
(10, 4)-TopSpin2 when move pruning is applied to sequences of length 4 or less.
The start state is at the top of the figure, the goal state is at the bottom. Move
pruning eliminates all but two of the optimal paths from start to goal; those
two paths are labelled J (the leftmost path) and M (the rightmost path) in the
figure; the individual operators in a path are indicated by a subscript (e.g. J2 is
the second operator in path J).

Three additional paths (K, L, and N) are shown because they play a role in
preventing J and M from being fully executed even though they themselves can-
not be fully executed because of move pruning. The move pruning that eliminates
K, L, and N is shown in the figure by an X through operators K6, L5, and N6.
The reasons for these are as follows. Move pruning detects that N5N6 ≥ J5J6

and therefore prevents N6 from being executed after N5. It also detects that
K3...K6 ≥ L3...L6 and therefore prevents K6 from being executed after K3...K5.
Similarly, it detects that L2...L5 ≥M2...M5 and therefore prevents L5 from be-
ing executed after L2...L4. These can all be seen in the figure as paths of length
4 or less that branch apart at some particular state and later rejoin.

2 In (10, 4)-TopSpin there are 10 tokens (numbers 0 to 9) in a circle and there are
operators that reverse the order of any 4 adjacent tokens. Because only the cyclic
order matters and not the absolute location within the circle, in the figure a state is
written as a vector with token 9 always placed at the end.

7

1284706539
J1, N1

3456782109

4821706539

4821735609

0654821739

0123456789

3765482109

0123765489

6543782109 0123784569 3210765489

3782104569 3210784569 3701265489

3701284569 1265480739

1284560739

K1, L1, M1

J4, N4

J3, N3

J2, N2

K4 L4 M4

K3 L3 M3

K2, L2 M2

J5

N5 K5 L5
M5

J6, K6 L6, M6, N6

Fig. 2. Example from (10, 4)-TopSpin of move pruning and duplicate detection inter-
acting to prevent the goal (bottom node) from being reached from the start (top node)
by an optimal path.

The effects of duplicate detection are shown by drawing the edges entering
the two states just above the goal as either solid or broken. A solid edge indi-
cates the path by which the state was first generated; a broken edge indicates
an alternative path to the state that is generated later (or not at all in the case
of L5). For example, state 3456782109 is first generated by path K (operator
K5) and is later generated by path J (operator J5). Since the path J1...J5 is not
cheaper than the first path to generate the state (K1...K5), it is ignored. Simi-
larly, M1...M5 is not cheaper than the first path to generate state 0123765489
(N1...N5), so it too is ignored.

What makes this fundamentally different than Figure 1 is that the path (K)
that blocks J because of duplicate detection is not itself blocked by J because
of move pruning, it is blocked by a different optimal path (L, which in turn is
blocked by M because of move pruning). Likewise, the path (N) that blocks
M because of duplicate detection is not itself blocked by M because of move
pruning, it is blocked by a different optimal path (J). As I will show next, this
represents the general situation in which move pruning and duplicate detection
interact deleteriously.

8

4 Necessary Conditions for Move Pruning to be Unsafe

In this section I state and prove conditions that must hold if move pruning
is unsafe to use in conjunction with duplicate detection. The importance of
identifying these “necessary” conditions is that one can then consider whether
there are specific circumstances in which one or more of the necessary conditions
are guaranteed not to hold. Move pruning is safe to use in such circumstances.

Let S be the start state, U any state that is reachable from S (U is the goal
state), and BC any optimal path from S to U that contains no operator sequence
considered redundant by move pruning (BC must exist because of Theorem 1).

Let Alg be a search algorithm that does neither duplicate detection nor move
pruning and has the following properties.

• Alg enumerates the paths (operator sequences) emanating from S in a fixed
sequence, thereby imposing a total order on the paths (p1 <Alg p2 denotes
that path p1 is enumerated by Alg before path p2).

• If operator sequence p1 is a prefix of operator sequence p2 then p1 <Alg p2.
• Alg is able to prove the optimality of any optimal path it generates.3

When Alg is used in conjunction with move pruning, the resulting system
is called AlgMP . The effect of move pruning is to remove paths from Alg ’s
enumeration sequence but not to change the order of those that remain. Path p1

will be removed by move pruning if and only if it is determined that there exists
another path p2 such that p1 ≥ p2 and p1 >O p2. Note that every such AlgMP

generates BC.
When Alg is used in conjunction with duplicate detection, the resulting sys-

tem is called AlgDD. The effect of duplicate detection is to remove paths from
Alg ’s enumeration sequence but not to change the order of those that remain.
For a given start state S, duplicate detection removes path p1 if and only if there
exists a prefix of p1, p′ (possible p1 itself), and a path p2 such that p′(S) = p2(S),
p′ >Alg p2, and p2 is not itself eliminated by duplicate detection. A* and breadth-
first search are examples of such AlgDD search algorithms.

When Alg is used in conjunction with both move pruning and duplicate
detection, the resulting system is called AlgMP

DD .
I assume that the elimination of paths from Alg ’s enumeration sequence

(whether by move pruning or duplicate detection or both) does not adversely
affect its ability to prove a path it generates is optimal among the paths that
remain in the enumeration sequence. This is true of A* and breadth-first search.

Definition 4. We say move pruning is “safe” to use in conjunction with dupli-
cate detection if, for any algorithm Alg with the properties stated above, AlgMP

DD

generates an optimal path from S to U for all states S and all states U that are
reachable from S.

3 Algorithms such as A* and breadth-first search accomplish this by enumerating all
paths that might be cheaper than the current cheapest path from S to U .

9

A1

C=C1

A2

An C2

Cn
U

T2

Tn

T1

S

B2

B=B1

Bn
D1

Fig. 3. Illustration of the Proof of REQ-2.

In other words, move pruning is unsafe to use in conjunction with duplicate
detection only if some AlgMP

DD fails to generate any optimal path from S to U .
In particular if move pruning is unsafe, AlgMP

DD will fail to generate BC. From
this fact, I will now derive necessary conditions for move pruning to be unsafe
to use in conjunction with duplicate detection.

Theorem 2. Let Alg be any search algorithm with the properties stated above.
Then AlgMP

DD can only fail to generate BC if both of the following conditions
hold:

REQ-1 There exists a state T1 = B(S) on BC(S) and an alternative path A1

from S to T1 such that cost(A1) = cost(B) and T1 was generated by AlgMP
DD

via A1 prior to being generated via B (i.e. A1 <AlgMP
DD

B).
REQ-2 There exists a state Tn on BC(S), an alternative path An from S to

Tn, and a suffix Cn of C such that Cn(Tn) = U , AnCn is an optimal path
from S to U , and move pruning prohibits Cn from being applied after An.

Proof of REQ-1. This is necessary because if no such T1 and A1 existed duplicate
detection would not affect the generation of BC, which contradicts the premise
that AlgMP

DD fails to generate BC. A1 cannot be cheaper than B because B is
part of an optimal path to U and is therefore an optimal path to T1. ut
Proof of REQ-2. Figure 3 depicts the key ideas needed to prove this. A1 here is
as in REQ-1 and sequences B and C from above are renamed here B1 and C1.
As the proof proceeds, they are replaced by Ai, Bi, and Ci for larger values of
i, with Bi increasing in length as i increases and Ci decreasing in length. In all
cases BC = BiCi, Ai(S) = Bi(S) = Ti and AiCi is an optimal path from S to
U . Di is the operator subsequence in BC that leads from Ti to Ti+1.

A1C1 is an optimal path from S to U , why did AlgMP
DD not generate it in

full? Either because A1C1 was eliminated by move pruning or because it was

10

eliminated by duplicate detection. If it was eliminated by move pruning then we
are done, with n = 1 (Tn = T1, An = A1, and Cn = C1 = C). If it was eliminated
by duplicate detection then there must be a state T2 later in the BC(S) sequence
and alternative path A2 from S to T2 such that cost(A2) = cost(A1D1) and T2

was generated by AlgMP
DD via A2 prior to being generated via A1D1. Let C2 be

the suffix of C such that C2(T2) = U and B2 be the prefix of BC such that
B2(S) = T2. Now repeat this reasoning for the path A2C2, which is an optimal
path from S to U . If it was eliminated because of move pruning we are done with
n = 2, and if it was eliminated because of duplicate detection, there must exist
a T3, A3, B3, and C3 such that T3 is later in the BC(S) sequence than T2, etc.
This generates a sequence of states T1, T2, ..., each later in the BC(S) sequence
than the one before, and therefore there must be a final state in this sequence,
Tn, with a corresponding An, Bn, and Cn, with AnCn being an optimal path
from S to U . This path was not executed and it cannot have been eliminated by
duplicate detection (because if it were there would be a Tn+1), therefore it must
have been eliminated because move pruning did not allow Cn to be executed
after An.

ut
Because both of these requirements are necessary for move pruning to be unsafe,
if one of them does not hold, move pruning is safe to use in conjunction with
duplicate detection. The remainder of this section considers each of them in turn.

4.1 Discussion of REQ-1.

REQ-1 states that there must be an alternative optimal path, A1, to T1 = B(S)
that is generated before B. This could fail to hold in at least three different ways.
First, it would fail to hold if there was only one path to each of the states on
BC(S) (namely, the path that is part of BC). This would happen, for example, if
move pruning eliminated all alternative paths, as it does in the Arrow Puzzle [2].
In such cases, no duplicate is ever generated so duplicate detection is obviously
safe to use with move pruning. Secondly, it would fail to hold if there were
alternative paths to one or more states T1 = B(S) generated prior to B, but all
of them were suboptimal. This is not impossible; for example, it would happen
if there was a unique shortest path from S to each state in the state space.

The third way that REQ-1 could fail to hold, and perhaps the most interest-
ing from a practical point of view, is that there are indeed alternative optimal
paths to a state T1 = B(S) but none of them is generated before B. For exam-
ple, consider the special case depicted in Figure 1, where A1 = A is generated
before B (i.e. A <Alg B) but A >O B. In other words there is a disagreement
between how Alg orders the sequences and how they are ordered by O. If the
two orderings >O and >Alg were chosen so that such a disagreement did not
occur then the special case depicted in Figure 1 could not arise. Whether this
can be done in practice, and whether it solves the general problem and not just
the special case depicted in Figure 1 are open problems at present.

11

C

An

Cn

U

Tn

W

T1

S

B

V

D

Bn

A’

C’

B’

D’

Fig. 4. General Case for Requirement 2.

4.2 Discussion of REQ-2.

REQ-2 says that there must exist optimal paths AnCn and BnCn such that move
pruning prohibits Cn from being executed after An but allows it after Bn. This
is very similar to the special case depicted in Figure 1, but with one important
difference. In the special case, C = Cn is prohibited after A = An because of
B = Bn, i.e., AC ≥ BC. In the general case we are now considering we do not
require AC ≥ BC, we just require that AC is redundant with some path.

Let A′ be the suffix of An and C ′ be the prefix of Cn such that A′C ′ is the
sequence within AnCn that move pruning determines to be redundant with some
other sequence D. There are two possibilities for D. The first possibility, which
is what we saw in Figure 1, is that D is part of BC, i.e., there exists a suffix B′

of Bn such that A′C ′ ≥ B′C ′ and A′C ′ >O B′C ′. Circumstances in which this
cannot possibly happen have been discussed in Sections 3 and 4.1 above.

The other possibility for D is shown in Figure 4. Here D is a sequence entirely
distinct from BC. In this case, we have another optimal path from S to U—
one that follows An to state V , then executes D, which leads to state W on
the BC path from which the goal is reached by sequence D′. This, in fact, is
precisely what we saw in the TopSpin example in Figure 2. In that example
optimal solution J was blocked by duplicate detection by another sequence, K,
which in turn was blocked by move pruning by a sequence, L, that had nothing
in common with J .

There is, however, one special circumstance in which REQ-2 cannot possibly
occur and therefore move pruning is safe to use in conjunction with duplicate
detection, and that is if move pruning is restricted to considering only sequences
of length 1, i.e. redundancy among individual operators considered in a fixed
order. If this restriction is imposed, move pruning cannot prohibit Cn from being
executed after An but allow it after Bn since no “history” is taken into account.

12

5 Summary and Conclusions

This paper has investigated the interactions between move pruning and duplicate
detection with the aim of elucidating conditions under which it is safe to use both
techniques together. I have derived conditions under which simple interactions
cannot possibly occur and shown that these conditions hold in many of the
state spaces commonly used as research testbeds (Rubik’s Cube, TopSpin, etc.).
Unfortunately, these conditions do not preclude more complex interactions from
occurring and an example was given where A* fails to find an optimal solution in
TopSpin because of these more complex interactions. I then derived conditions
that must hold whenever there is a deleterious interaction between move pruning
and duplicate detection.

6 Acknowledgements

Thanks to Malte Helmert for his insights. I gratefully acknowledge the finan-
cial support of Canada’s Natural Sciences and Engineering Research Council
(NSERC).

References

1. Burch, N., Holte, R.C.: Automatic move pruning revisted. In: Proceedings of the
5th Symposium on Combinatorial Search (SoCS). (2012)

2. Burch, N., Holte, R.C.: Automatic move pruning in general single-player games. In:
Proceedings of the 4th Symposium on Combinatorial Search (SoCS). (2011)

3. Taylor, L.A.: Pruning duplicate nodes in depth-first search. Technical Report CSD-
920049, UCLA Computer Science Department (1992)

4. Taylor, L.A., Korf, R.E.: Pruning duplicate nodes in depth-first search. In: AAAI.
(1993) 756–761

5. Reinefeld, A., Marsland, T.A.: Enhanced iterative-deepening search. IEEE Trans.
Pattern Anal. Mach. Intell. 16(7) (1994) 701–710

6. Korf, R.E.: Finding optimal solutions to Rubik’s Cube using pattern databases. In:
AAAI. (1997) 700–705

7. Helmert, M., Lasinger, H.: The scanalyzer domain: Greenhouse logistics as a plan-
ning problem. In: ICAPS. (2010) 234–237

