
Machine Learning for Semi-Automated Gameplay Analysis

Finnegan Southey, Robert Holte, Gang Xiao, Mark Trommelen
Department of Computing Science, University of Alberta

John Buchanan
Electronic Arts

Abstract

Compelling gameplay requires constant testing and refinement during the development process,
amounting to a considerable investment in time and energy. This article presents an approach to
gameplay analysis intended to support and augment the work of game designers, collecting and
summarizing gameplay information from the game engine so designers can quickly evaluate the
behaviour to make decisions. Using readily available machine learning technologies, a reusable
tool has been constructed that can repeatedly choose scenarios to examine, run them through
the game engine, and then construct concise and informative summaries of the engine's
behaviour for designers. Based on the past scenarios, new scenarios are intelligently chosen to
verify uncertain conclusions and refine the analysis. Game designers can examine the
summaries produced by the analyzer, typically with a secondary visualization tool, providing the
essential human judgement on what constitutes reasonable and entertaining behaviour. The
inevitable role of the designer is why we use the term `semi-automated'. The analysis tool,
SAGA-ML (Semi-Automated Gampeplay Analysis by Machine Learning), is based on machine
learning research known as 'active learning', and has been used to evaluate Electronic Arts'
FIFA'99 soccer game, uncovering some interesting anomalies in gameplay. With only minor
changes, the tool was interfaced to FIFA 2004, and plays an active, in-house role in the
development and testing of the FIFA series. While designed and developed in this context, the
analysis tool is general purpose, requiring only a thin interface layer to be written to connect to
different game engines. For the specific case of FIFA, a visualization tool, SoccerViz, has also
been developed. SAGA-ML and SoccerViz were designed and developed by the University of
Alberta GAMES group in cooperation with Electronic Arts.

While presentation aspects like graphics and sound are important to a successful commercial
game, it is likewise important that the gameplay, the non-presentational behaviour of the game,
is engaging to the player. Considerable effort is invested in testing and refining gameplay
throughout the development process. We present an overall view of the gameplay management
problem and, more concretely, our recent research on the gameplay analysis part of this task.
This consists of an active learning methodology, implemented in software tools, for largely
automating the analysis of game behaviour in order to augment the abilities of game designers.
The SAGA-ML (semi-automated gameplay analysis by machine learning) system is
demonstrated in a real commercial context, Electronic Arts' FIFA'99 Soccer title, where it has
identified exploitable weaknesses in the game that allow easy scoring by players.

Introduction

Modern computer games are very complex constructions, sophisticated software systems
involving many parameters for the graphics, simulation, and artificial intelligence (AI). The virtual
worlds portrayed in many games are three-dimensional, have rich physics models, and may
feature dozens or even hundreds of game agents, each of which may have a wide range of
properties. Computer games may have many different levels or maps and there are often a
variety of objectives, constraints, rules and options in different sections of the game. The number
of players often varies too, especially when playing on the Internet, and there may be a mixture
of human and computer-controlled players.

This variability poses difficult problems for developers. They must expend considerable effort to
ensure that the game is "well-behaved" across the widest possible range of scenarios. Beyond
the already difficult task of ensuring that the game runs reliably (e.g. no crashes, graphical
glitches, or networking problems), they must ensure that the simulation is plausible and
consistent, that artificial opponents and allies behave reasonably, and, most importantly, that the
game is enjoyable for the player. We will refer to this range of properties as the gameplay of a
game.

Gameplay is a popular term used throughout the industry. Lacking any precise definition, it
typically refers to the behaviour of a game (e.g. the rules, difficulty, consistency, fairness, goals,
and constraints), rather than the presentation of the game (e.g. graphics, artwork, and sound).
Gameplay contributes much to the enjoyability of a game and considerable effort is invested in
designing and refining gameplay. This problem is nothing new to game developers. Quality
assurance and playtesting are fundamental parts of the development process. For the most part,
these evaluations are made by continuously playing the game during development and adjusting
accordingly. Toward the end of the development cycle, many human playtesters are employed to
rigorously exercise the game, catching remaining bugs and fine-tuning its behaviour.

In the context of computer games, AI is usually associated with computer-controlled opponents
and allies. While this is certainly a key application, it is not the only area in which AI can
contribute to computer games. Our recent research has been directed toward what we call semi-
automated gameplay analysis, developing techniques to partially automate the process of
evaluating gameplay in order to reduce the burden on designers and improve the quality of the
final product. To this end, we have developed sampling and machine learning techniques that
automatically explore the behaviour of the game and provide intelligible summaries to the
designer. We use the term semi-automatic to reinforce the notion that such tools cannot replace
the human designer but can only assist, helping them make complex decisions about what
constitutes enjoyable gameplay. This analysis is a key component in the larger task of gameplay
management, which deals not only with the analysis of gameplay but also with the visualization
of analysis results and the adjustment of the game's parameters and design.

In the following sections, we will briefly characterize the overall gameplay management task and

its role in the development process, and then focus on gameplay analysis, presenting recent
research efforts applied to Electronic Arts' FIFA Soccer title. While discussed in this specific
context, the approach is general and treats the game engine as a black box. We describe the
overall methodology and our current implementation, the reusable part of which we call SAGA-
ML (semi-automated gameplay analysis by machine learning). Our chief concern in this article is
to describe the overall approach rather than the details of the underlying machine learning. We
address practical issues relevant to industry developers who may be interested in adopting the
methodology. We conclude by noting significant industry interest in our work, as well as the
possibilities for future research and improvements to computer games.

Gameplay Management

It is difficult to characterize the gameplay management task precisely. This is largely due to the
fact that it inevitably involves some human judgement. "Enjoyability" is essentially impossible to
quantify. An integral but complex part of enjoyability is the gameplay offered. One important
aspect of good gameplay is appropriate difficulty. A game that is too hard is frustrating, while too
little challenge can be boring. In multi-player games, it is important that the game be fair, offering
no player an intrinsic advantage. Some internal consistency in the game world is also important.
Even in fictional worlds, players expect some sort of logic to apply.

The designer must shape and regulate the gameplay throughout the game (e.g. by controlling
difficulty and varying the rules and objectives). It would be naive to think that this can be
addressed without human intervention. However, computational tools can reduce the human
burden, allow more extensive testing, and search in systematic ways that may be tedious or
unintuitive to a human. Where possible, these tools should be applicable to many games. This
re-usability is important since industry development cycles have little spare time to redevelop
such tools for each project. The tools must also be easy to use. Many designers are not
programmers, so it is not reasonable to expect them to write or understand complex scripts to
guide the process.

We will now outline the gameplay management task. By decomposing this process more
formally, we can address the components one by one in our research.

gameplay metrics: The aspects of gameplay of interest to the designer. These are the
game aspects we attempt to measure. Typical metrics include the time to complete part of
the game, the "cost" (e.g. health, game money, resources) involved, and the probability of
succeeding. The amount of variance in any one of these is also of interest (highly variable
outcomes may indicate an inconsistency, a bug, or a poorly chosen parameter). Typically,
we want to evaluate a metric given some initial game state and a set of player actions
taken from that initial state.

goals: The targets the designer wishes to achieve. Having identified a metric, the
designer needs to decide what a reasonable value is (e.g. on average, the game should
take less than 8 hours, or the player wins with no more than 40% of health remaining). If
goals can be formally expressed, software can detect when they are met or even help to
achieve them. Much of the time, however, the designer is balancing an array of loosely
defined goals.

analysis: Once metrics have been identified, they must be measured. Analysis is the
problem of estimating values for a set of metrics by testing the game's behaviour. It is the
focus of our current research efforts and this article.

adjustment: Given the metrics, the ability to analyze, and a set of goals, adjustments
must be made to the game to achieve the desired effect. Currently, most adjustment is
done by hand. It may be possible to automate parts of the process, with the designer
setting and refining goals, and the software working to achieve them. This is a key part of
the overall problem and is very difficult, but we will not consider it deeply at present.
Before one can adjust effectively, one must be able to analyze.

visualization: The results of analysis must be presented clearly to the designer. Methods
for expressing goals and machine learning techniques for summarizing data are areas
where AI has much to offer, but a substantial part of visualization consists of user
interface design. We have worked extensively on a visualization tool for our current case
study and consider this a very important part of the problem, but one in which our
expertise can have only limited impact. Ultimately, game developers will best understand
how to interact with their game.

Gameplay Analysis

As noted above, our current research efforts are focused on the task of gameplay analysis. The
metrics to be evaluated will be game dependent, but the analysis methods are one part that may
be transferred between projects. Our methodology embraces three basic tools used in many
branches of AI research: abstraction, sampling, and machine learning.

While our framework is intended to be independent of game, and even of genre, we illustrate the
approach with our implementation for Electronic Arts' FIFA'99 Soccer game.For this project,
Electronic Arts has provided us with their AI testbed for FIFA'99, including source code. This
includes the full game's gameplay, physics, and AI, but only limited graphics capabilities. In
particular, we have developed a general purpose analysis tool (SAGA-ML) and a FIFA-specific
visualization tool (SoccerViz). The aim is to identify "sweet spots" (manoeuvres that can be used
to repeatedly score goals with unreasonable ease) and "hard spots" (situations where it is too
difficult to score) in various FIFA scenarios. In this case, the metric of interest is the probability of
scoring.

Electronic Arts' FIFA'99 Soccer

We have used SAGA-ML to analyze scenarios in the Electronic Arts (EA) soccer game, FIFA'99.
Games are generally too complex to be analyzed in their entirety. It makes sense to analyze
certain specific scenarios, especially when the game itself distinguishes between scenarios (e.g.
different levels, minigames, and control modes). We have explored a small set of scenarios in
FIFA but here we will only consider the corner kick and the shooter-goalie scenarios.

In the corner kick scenario, the ball has rolled across the endline and was most recently touched
by the defenders. It must be kicked back in from the corner by a member of the offense. This is a
key opportunity for the player's computer controlled teammates to score. Illustration 1 shows a
screenshot of this scenario in the FIFA engine. The player, shown at the bottom right, must pick
a spot for the ball to land when they kick. The success or failure of the player's teammates in
scoring depends on where the ball lands. The specific metric we consider is a single number, the
probability of scoring given that a single teammate touches the ball after the player kicks it
(otherwise the ball might continue in play for some time before scoring). The initial game state is
trivial in this case; we only require that we be in the corner kick scenario. The player action is the
target for the ball, (x_{k},y_{k}), giving us a two-dimensional space to search.

Illustration 1 The Corner Kick scenario in FIFA'99.

In the shooter-goalie scenario, shown in Illustration 2, the player controls a shooter placed
somewhere near the goal and shooting into it, with the goalie placed to defend the goal. All other
players are absent from the scenario. This tests the ability of the player to shoot and the goalie
to block shots on goal, a critical part of the the game. The metric is a single number, the
probability of scoring from the player's kick. More formally, the initial game state of the scenario
has the shooter at position (x_{s},y_{s}) on the field and the goalie at position (x_{g},y_{g}). The
player action is that the shooter kicks the ball toward point (x_{k},y_{k}). This means we must
search a six-dimensional space for this scenario.

Overview of SAGA-ML

The overall architecture of the approach is shown in Illustration 3. The game engine is treated as
a black box and SAGA-ML interacts with it through an abstraction layer. This layer is game-
specific and translates game-specific data and function calls to an abstract state format used by
SAGA-ML. The sampler component uses the abstraction layer to evaluate situations by running
the game with an initial state and a sequence of actions, and then observing the outcome. The
learner uses the data gathered by the sampler to construct a concise model (or summary) of the
game's behaviour. The learner may then request more samples to refine its model. The model is
passed to the game-specific visualizer for the designer to evaluate. The algorithm is summarized

Illustration 2 The Shooter-Goalie scenario in FIFA'99.

in Algorithm 1. We will now discuss each of these components in greater detail using our FIFA
scenarios to illustrate.

Abstraction

Games have far more variables than we can reasonably expect to interpret. When evaluating the
game, we are interested in the metrics we are analyzing (e.g. goals scored, time elapsed, etc.)
but we also need to set up the initial game state (e.g. position, speed, resources, etc.) and player
actions (e.g. move, shoot, buy) we want to sample . The abstraction layer restricts and
transforms the raw game variables to form the corresponding game state, player actions, and

1. Collect initial uniform random sample, S.
2. Learn model M from samples in S.
3. If the M is unchanged from the previous model, or we are out of

time, pass M to to the visualizer and exit.
4. Else, examine model M to determine where new samples should

be placed (active learning).
5. Collect additional samples and add them to S.
6. Goto step 2.

Algorithm 1SAGA-ML Algorithm

Illustration 3 Architecture for sampling/learning analyzer. The ""Sampler and ""Learner
components are not game-dependent.

metrics used by SAGA-ML. These are three vectors of numbers exchanged between SAGA-ML
and the abstraction layer to control and observe the game.

SAGA-ML uses machine learning to summarize and generalize data from the game engine. The
raw game variables in an engine must serve several purposes. Aside from deciding gameplay
issues, the engine must also use those variables to render the graphics, compute physics
simulations, etc. Different representations are often well-suited to one of these tasks but not to
another. The developer must weigh the tradeoffs involved and choose the representation offering
the best overall performance. In many cases, the game's raw variables may not be directly
suited to gameplay decisions, thus requiring substantial code to make those decisions. Simply
handing those variables to the SAGA-ML system and expecting it to learn a sensible model may
cause problems. Therefore, the abstraction should provide the features that are really used to
make the decisions. Developers of the gameplay code will necessarily be aware of these
features and it is likely that the gameplay code can be reused to export suitable features through
the abstraction layer.

For example, FIFA stores player positions as x-y coordinates on the field. But the actual outcome
of a shot on goal is determined by the angle between shooter and goalie, the distance between
them, and the relationship of the shooter to the goalposts. If the learner only sees the x-y
coordinates, it may not be able to deduce the underlying rules used by the game engine or it
may learn an overly complex set of rules. Learning is most likely to be successful if you provide
appropriate features. It is also easier to develop visualizations if the features allow for readily
comprehensible models.

In our research capacity, outside the game's real development, the construction of the
abstraction layer involved a lot of exploration of the codebase. This burden would be much less
for developers actively working on the game in normal development. Indeed, it may simply be an
extension of existing gameplay code, or of a testing harness. Furthermore, the usual benefits of
adding any kind of testing code will apply, encouraging developers to think about how their code
works and design clean interfaces.

Sampling

A game's internal variables, combined with the player's strategies and controls, form a very large
space. Even within a single scenario in the game, with an abstraction already applied, the space
will often be impossible to explore completely. Furthermore, games often include a random
component, so that, even given identical initial game states and player actions, outcomes may
differ on repeated trials. Exhaustive analysis is clearly infeasible. We must approximate our
evaluations using sampling.

Systematic sampling (e.g. picking points at regular intervals on a soccer field) may fail to catch

some anomaly because corresponding regularities may occur in the logic controlling the game
(e.g. if you sample at 4 pixel intervals across the width of the soccer field, you will miss a bug
that occurs only with odd numbered pixel locations). Uniform random sampling is a better choice
and has attractive statistical properties. With such large spaces, however, we may need to
sample more intelligently, but we will return to this issue later when we discuss active learning.

For now, we consider only uniform random sampling. In the corner kick scenario, we would
simply pick random positions within the range of the kicker. The more samples we take, the
better coverage we will achieve. One thing that assists us in this endeavour is the fallibility of
human control. If it turns out that there is a single pixel location that always results in a goal
during the corner kick, we probably don't need to worry because a human player is unlikely to be
able to reliably hit this spot, even assuming they ever find it. Our sampling and the entire
gameplay analysis, including learning, can afford to take a coarse-grained approach. In FIFA, we
need only identify regions of high scoring probability large enough that the player can hit them
repeatedly.

Realistically, sampling will always depend on available resources. As scenarios grow more
complex, decisions about how many samples are "enough" will quickly be replaced by the
question of how much time and computation we can afford for analysis. Making the best use of
resources is the goal of active learning (see Active Learning below).

Machine Learning

The raw data from sampling is too large and too complicated to understand readily. Machine
learning techniques can generalize the sample data, constructing an abstract model of the
game's behaviour that takes any game state and action features as inputs and outputs a
prediction for the metric of interest. This allows us to visualize overall results rather than specific
data points. There are two key motivations behind our use of machine learning. The first, a
human interface issue, is to provide more useful feedback to the designer. The second, a
computational issue, is to use the model to decide where new samples should be taken.

Addressing the human interface issue, the model can be examined to see if it matches up with
how we believe the game is supposed to behave. If we believe we built the game such that "no
shooter can score on the goalie from further than 6 metres", then we can look at the learned
model to see if it agrees with that statement. Similarly, we may examine the model and find
general rules that we didn't anticipate or intend. A designer can then decide whether these
gameplay properties are acceptable or not.

In interesting scenarios, our models are likely to be fairly complex, so looking at the model
directly may be difficult. We can use visualization tools to express the model in a way more
natural to the designer. If embedded in the game engine or in design and support tools, the
designer has a familiar framework in which to understand what the model is saying. We will

discuss the visualization question briefly and describe our own visualizer in a later section.

Turning now to the computational issue, the model will generalize to make predictions over the
entire space, even in regions we have not sampled. The quality of this prediction will vary,
depending on the quality of the learner, the complexity of the space, and the number of samples
available. Using predictions for unsampled regions, we can decide where it would be most useful
to sample next in order to learn the most about the space, thus making the best possible use of
our computational resources. This is active learning and is discussed in its own section below.

Rule Learners

SAGA-ML uses rule learners for the learning component. Rule learners attempt to construct a
set of rules that predict an output based on inputs. For example, in the shooter-goalie scenario,
such a rule might be: IF the shooter is within 5 metres of the goalie AND the angle between
shooter and goalie is between 30^{\circ} and 40^{\circ} AND the goalie is within 1 metre of the
goal's centre THEN the probability of scoring is greater than 70%. The conditioning statements
in these rules are expressed in terms of the features provided by the abstraction layer. From a
given set of samples, a set of rules will be learned that describes the behaviour of the game.
Such rules are easier to understand than the raw, multidimensional data points but visualization
tools can make them clearer still and are better suited to designers with little or no programming
experience.

If we think about the rules in a two-dimensional space, such as the corner kick scenario, then the
rules describe rectangles where our prediction is positive (true) or negative (false) (this is just an
example, predications could be more complex, e.g. probabilities). Illustration 4 (a) shows the
results, positive and negative, of a set of samples. Illustration 4 (b) shows a single, positive rule
learned from these samples represented as a rectangle (it is easy to see how an IF-THEN style
rule about x-y coordinates can be drawn as a rectangle). Illustration 4 (c) shows a second,
overlapping positive rule learned from the same data. If we have several rules that overlap, but
all agree in their prediction, then we can merge them together to form what we call a region (as
shown in Illustration 4 (d)). This idea extends to higher-dimensional data, where the regions are
composed of hyper-rectangles.

Illustration 4 a) Positive and negative samples in a 2-D space. (b) A single, positive rule learned from samples. (c) A
second, overlapping positive rule learned from samples. (d) Overlapping rules joined into a single positive region
(dashed lines are internal boundaries from the original rules).

We have tried two "off-the-shelf" rule learning methods. The first is C4.5 [Qui94], a well-known
decision tree learning algorithm capable of producing a suitable set of rules. The second is
SLIPPER [CS99], a more recent method that learns rules directly. We refer the interested
reader to the relevant publications for details. It is only important to understand that we can learn
a set of rules with readily available software and that SAGA-ML will use any rule learner. While
SAGA-ML uses rule learners, the overall methodology extends to other learning algorithms. We
have not explored alternatives, but possibilities include support vector machines, neural
networks, nearest-neighbour methods, and clustering.

Illustration 5 shows positive rules learned for the corner kick scenario (the kicker is placed in the
top right corner of the field). Note the large shaded region centred on the right goalpost. By
kicking the ball into this area, the player has a greater than 40% chance of scoring. This is quite
high and represents a "sweet spot" in the game. By watching what happens when the ball is
kicked into this region, we see that a nearby defender reacts poorly, running away from the ball
instead of intercepting it. The display of the rules and the interface for running the simulations to
see what is going on are handled by our SoccerViz visualizer. Illustration 6 shows a single
negative rule for the shooter-goalie scenario, along with the rest of the SoccerViz interface.

Illustration 5 Positive rules learned for Corner Kick scenario.

Active Learning

The literature on active learning offers many algorithms for deciding where to sample next,
chiefly differing in how they identify "interesting" regions. We have explored several samplers
which fall into three broad categories: uncertainty sampling [LG94], query by committee (QBC)
[SOS92], and our own method, decision boundary refinement sampling. A detailed discussion of
these methods is beyond the scope of this article, but we will briefly describe our own active
learning method which was used to produce the results shown here.

Decision boundary refinement sampling was developed specifically to deal with rule learners. As
shown in Figure [fig:Rules-and-Regions] (d), a set of rules can create a region. In order to ensure
that the boundary of this region is correct, new samples are randomly placed on both sides of the
boundary within a small margin. The size of the margin is specified by a parameter. These
additional samples will provide evidence confirming or refuting the current boundary. Sampling
near the boundaries between overlapping, agreeing rules is wasteful. This means we cannot
simply sample at rule boundaries but must identify the regions to do effective sampling.

Illustration 6 SoccerViz display of a rule predicting a low probability of scoring. Shading near
the goal shows goalie positions covered by the rule. The triangle in the field shows shooter
positions covered by the rule. Black dots show sampled shooter positions where no goal was
scored. One particular shooter/goalie position sample is shown. This sample was exported to
the game engine to obtain Illustration 2.

Fortunately, this is quite straightforward.

The active learning methods are of research interest, but happily their presence is transparent to
the designer using the tool. We have implemented all of the above methods and will publish a
comparison in an upcoming article focused on the machine learning issues. It is sufficient to
state here that the C4.5 rule learner combined with decision boundary refinement sampling
produces sensible rules that we can explore to confirm our understanding of what is going on.

Visualization

Visualization is an important aspect of gameplay management, and one which is best handled
by game developers who have considerable graphics, user-interface, and gameplay design
experience. Nevertheless, we have developed a tool to demonstrate how SAGA-ML usage might
feature in real game development. The SoccerViz visualization tool is shown in Figure
[fig:Soccer-Viz-Goalie-Shooter-Rule]. This tool displays the rules generated by the learning as
regions on a 2-D soccer field and allows the user to examine the samples supporting the rule.
These samples can also be exported to the FIFA'99 engine (see Figure [fig:Shooter-Goalie-
Engine]). This visualization is clearly specialized for soccer, and some customization was
required for the different scenarios. We believe that, in industry practice, much of the
visualization could be incorporated into the real game engine, or into its associated design tools,
in a cost-effective manner.

Usage

SAGA-ML could be used in a variety of ways during game development. We will briefly mention
a few possible strategies, which may be combined to meet developer needs.

● Desktop Analysis: The designer interacts with SAGA-ML through the visualizer a few times a
day, requesting analyses as changes are made. Small sample sets are used to get a quick
impression of game behaviour.

● Batch Analysis: Large-scale sampling, possibly using banks of computers run overnight or on
weekends. Used to evaluate milestone builds exhaustively, or more continuously if resources
are available. Results are examined by individuals or teams to check progress.

● Regression Testing: Regular analysis using an established set of sample points (instead of
choosing new ones) to ensure that established behaviours are not lost. Models learned from
previous tests are kept for comparison. It may be possible to automatically detect drastic
changes in models and alert developers.

● Retrograde Analysis: Once small scenarios have been analyzed, they can be combined to
form a larger scenario. While this larger scenario may be too large to analyze directly, the
models learned for its components can be used to make predictions without running the actual
game engine. Preliminary results in this area look promising.

Evaluation

SAGA-ML and SoccerViz have been used to analyze four different scenarios in FIFA'99,
identifying various sweet and hard spots. However, the real question is whether commercial
game companies find this technology useful. This work was recently presented to developers at
two Electronic Arts sports game studios (Vancouver, BC and Orlando, FL) where it was very well
received. EA Vancouver has since ported the abstraction layer to the FIFA'2004 engine so we
can extend our research. More significantly, SAGA-ML and SoccerViz are now being used in-
house at EA Vancouver during development of the FIFA Soccer series. We regard this step as a
substantial validation of our approach.

The Future of Gameplay Management

Our gameplay management framework is based on our discussions with commercial game
developers. We have connections to several companies, including Electronic Arts, BioWare, and
Relic Entertainment. In this paper we have presented our current research, which is focused on
analysis. We believe this is necessarily the first step because the tasks of visualizing and
adjusting gameplay effectively will be tied to obtaining the right data for the designer and future
tools, and summarizing it in useful ways.

Returning to the broad view of gameplay management, rather than just analysis, there are two
fundamental ways these ideas could be applied, which we will call in-development and in-situ.
In-development applications impact only the development of the game. Analysis and
adjustments are performed during the development, but the final product does not use these
methods. More ambitiously, in-situ methods would take effect while playing the final game.
Understandably, developers are concerned about in-situ methods, which can impact the player
experience at a point when they no longer have control. We believe that in-situ methods will
ultimately be important but will need to be well-understood and predictable. We will now identify
some specific tasks, some of which are handled entirely by hand at present and some of which
are rarely, if ever, used.

In-Development Methods

● identifying sweet and hard spots, specific situations or player strategies that render the game
too easy or hard

● balancing opposing forces to ensure a fair contest
● hand-tuning simulation and AI parameters for difficulty level (e.g. Easy, Normal, Hard settings)
● automatically tuning parameters

In-Situ Methods

● dynamically adjusting difficulty based on recent player performance
● analyzing situations to make opponent/ally AI decisions

● providing feedback on opponent AI vs. player performance for learning
● providing commentary, feedback, or advice to the player during the game

Conclusions

The gameplay management task presents tough challenges but our contacts with the industry
indicate a strong inclination to pursue them. It will undoubtedly form a substantial portion of our
future research. Our current work on gameplay analysis has revealed many interesting AI
research problems and our experiments have uncovered real, gameplay issues in a commercial
product. The software has been adopted for internal use by a major game software developer.
With good analyzers in place, we can look forward to the adjustment aspect of the task, tuning
game parameters automatically to meet designer-specified goals. We believe this work will be
rewarding to both the AI research community and game developers, and that it offers another
avenue for AI research to interface with computer games.

