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Abstract

In his 1997 paper on solving Rubik’s Cube optimally using
IDA* and pattern database heuristics (PDBs), Rich Korf con-
jectured that there was an inverse relationship between the
size of a PDB and the amount of time required for IDA*
to solve a problem instance on average. In the current pa-
per, I examine the implications of this relationship, in par-
ticular how it limits the ability of abstraction-based heuristic
methods, such as PDBs, to scale to larger problems. I dis-
cuss methods that might allow abstraction-based heuristics
to scale better than Korf’s Conjecture suggests and identify
important auxiliary roles for abstraction-based heuristics in
heuristic planning and search systems of the future that do
not depend on their ability to scale well. Finally, I examine
some key assumptions in the analysis underlying Korf’s Con-
jecture, and identify two complications that arise in trying to
apply it in practice.

Introduction
In 1997, Rich Korf published a paper (Korf 1997) in which
random instances of Rubik’s Cube were solved optimally
for the first time using a general-purpose search algorithm
(IDA*). This outstanding achievement was made possi-
ble by abstraction-based heuristics called pattern databases
(PDBs), which had only recently been invented (Culber-
son and Schaeffer 1996). Korf’s paper launched the golden
age of abstraction-based methods for heuristic search, and
a few years later Edelkamp (2001) introduced PDBs to the
fledgling world of heuristic-search planning.

Korf’s Rubik’s Cube paper contained a second important
but largely overlooked contribution that casts serious doubt
on the long-term future of abstraction-based heuristics. Korf
conjectured that there was an inverse relationship between
m, the size of a PDB, and t, the number of node expansions
that IDA*, using a PDB of size m, would perform to solve a
problem instance on average, i.e. m · t = n, where n is the
size of the brute-force search tree for the original state space.
Since node expansion is the primary operation in IDA*, t
is indicative of IDA*’s execution time. Korf later gave a
rigorous analysis, refining the conjecture to be M · t = n,
where M = m

1+log(m) (Korf 2007).
In this paper I examine the implications of M · t = n,

in particular how it limits the ability of abstraction-based
heuristic methods, such as PDBs, to scale to larger prob-

lems. Much of the discussion surrounds methods that might
allow abstraction-based heuristics to scale better than Korf’s
Conjecture suggests. There are several promising possibil-
ities, which I believe should be the focus of research in the
next few years. I also identify important auxiliary roles for
abstraction-based heuristics in heuristic planning and search
systems of the future that do not depend on their ability
to scale well. Finally, I examine some key assumptions
in the analysis underlying Korf’s Conjecture, and identify
two complications that arise in trying to apply it in practice.
This paper supercedes the version published last year (Holte
2013).

Background
Planning and heuristic search study the problem of finding a
least-cost path (sequence of actions) from a given start state
to a given goal state (goal).1 The distance from state s to
state t, denoted d(s, t), is the cost of a least-cost path from
s to t. An abstraction of a state space S is a mapping φ
to another state space, S′, such that d(φ(s), φ(t)) ≤ d(s, t)
for all pairs of states s, t ∈ S. For any choice of S′ and φ,
h(s) = d(φ(s), φ(goal)) is an admissible, consistent heuris-
tic for S. For example, consider the standard 3x3x3 Rubik’s
Cube, which consists of 8 corner cubies and 12 edge cubies.
One way it can be abstracted is to consider all the corner
cubies indistinguishable, e.g. to paint all the faces of every
corner cubie black. A solution to this abstract problem is
a sequence of actions that puts all the edge cubies in their
goal positions without regard for what happens to the corner
cubies. Distances in this space cannot be greater than the
corresponding distances in the original Rubik’s Cube space
because the same operators exist in both spaces and solu-
tions in the original space also must put the edge cubies in
their goal positions. There are a variety of different families
of abstraction functions that can be implemented as simple
operations on standard state space representations, the most
common of which are projection (Edelkamp 2001), and do-
main abstraction (Holte and Hernádvölgyi 1999).

I will use the term “pattern database” (PDB) to refer
to any data structure that is indexed by individual abstract
states and stores d(s′, φ(goal)) for each s′ ∈ S′ from which
the abstract goal can be reached. I will assume for the

1Korf’s analysis assumes there is just one goal state.



present that the PDB is uncompressed, i.e. that the amount
of memory needed for the PDB is linear in m, the number
of abstract states in S′ from which the abstract goal can be
reached. Sometimes “PDB" is used in a narrower sense than
this, but the reasoning underlying Korf’s Conjecture applies
to any data structure of this kind. A PDB is computed during
a pre-processing phase by enumerating abstract states back-
wards from the abstract goal and recording the distance to
each abstract state reached. During search, h(s), the heuris-
tic value for state s ∈ S, is computed by looking up the
distance for φ(s) in the PDB.

Overview of Korf’s Analysis
At the core of the analysis underlying Korf’s Conjecture is
the distribution of distances in the abstract space, which Korf
calls the heuristic distribution since these distances are being
used as heuristic values. Table 1 shows the distribution of
distances in the abstraction of the 3x3x3 Rubik’s Cube that
ignores the corner cubies, as described above. In this space
all moves cost 1, so the distance to the goal is the number of
moves from the goal (“depth”).

Given a heuristic distribution, Korf’s Conjecture is de-
rived in two steps. In the first step, the heuristic distribu-
tion is related to the size of the PDB. For this purpose, Korf
assumes the number of abstract states at a given distance
from the abstract goal grows exponentially as the distance
increases, i.e. that there will be bd abstract states at distance
d for some branching factor b.2 Korf recognizes that abstract
spaces are usually graphs, not trees, so his analysis may un-
derestimate the amount of pruning the heuristic will cause.
The key to the analysis being a good approximation is that
the exponential growth assumption be true of the majority
of heuristic values, as it clearly is in Table 1 (see the “ratio”
column).

The second step of the derivation relates the heuristic dis-
tribution to the number of nodes expanded by IDA*. In the
formal analysis (Korf 2007) this step is done using the KRE

2To simplify the analysis, Korf assumes that this b is the same
as the branching factor in the search tree for the original space.

depth #states ratio
0 1 -
1 18 18.0
2 243 13.5
3 3,240 13.3
4 42,807 13.2
5 555,866 13.0
6 7,070,103 12.7
7 87,801,812 12.4
8 1,050,559,626 12.0
9 11,588,911,021 11.0

10 110,409,721,989 9.5
11 552,734,197,682 5.0
12 304,786,076,626 -
13 330,335,518 -
13 248 -

Table 1: Distance-to-goal (“depth”) distribution for the
3x3x3 Rubik’s Cube abstraction that ignores the corner cu-
bies (Table 2 in (Korf 2008)). “ratio” is #states at depth d
divided by #states at depth d− 1 (not shown if less than 1).

formula (Korf, Reid, and Edelkamp 2001). The relationship
M · t = n follows directly from some straightforward ma-
nipulation of the KRE formula with an exponential heuristic
distribution.

Because this derivation is entirely formal, Korf’s Conjec-
ture is no longer a conjecture, except in the sense that the
assumptions on which the analysis is based are being con-
jectured to hold in problems of interest. That is a topic I will
return to later in the paper, but for the next few sections I
will assume Korf’s Conjecture has been proven and explore
its implications.

The Problem of Scaling
The fact that the amount of memory needed to store a PDB
is linear in m, the number of abstract states for which the
PDB stores information, limits how useful abstraction-based
heuristics can be in solving combinatorial problems. n
grows exponentially as the size of a combinatorial problem
increases (e.g. add 1 more block to the blocks world, 1 more
disk to the Towers of Hanoi, 1 more row or column full of
tiles to the sliding-tile puzzle). If Korf’s Conjecture is true,
then M · t must also grow exponentially. If we have a fixed
amount of memory, twould have to grow exponentially, and,
if we have an upper bound on how much time we are will-
ing to wait for a solution, then m must grow exponentially.
This represents a fundamental limitation on the ability of
abstraction-based heuristics to guide search effectively.

If we allow m and t to both increase as n increases, it is
somewhat encouraging to see that they can increase with the
square root of n (M=

√
n⇒ t=

√
n). If the time to construct

the PDB is linear in M , then the total time to solve a single
problem instance will also grow with the square root of n,
instead of being linear in n as brute-force search would be.
Nevertheless, if n grows exponentially as we increase the
size of our combinatorial problems, t and m will both also
grow exponentially.

Possible Solutions
In this section I review existing technologies that might pro-
vide a solution to the scaling problem.

Disk-based and Distributed PDBs. Storing PDBs on
disk instead of in RAM (Sturtevant and Rutherford 2013;
Zhou and Hansen 2005) or distributing them across a cluster
of workstations that each have their own RAM (Edelkamp,
Jabbar, and Kissmann 2008) allows m to be two or three or-
ders of magnitude larger than it could be if the PDB had to
fit in the RAM of one workstation. This is extremely useful,
but, in the end, is just a big constant factor, not a solution to
the scaling problem.

PDB Compression. Lossless compression of PDBs, such
as symbolic PDBs (Edelkamp 2001), routinely reduces the
memory needed to store a PDB by one to two orders of
magnitude (Ball and Holte 2008). In certain special cases
symbolic PDBs have been proven to be logarithmic in the
uncompressed size of the PDB (Edelkamp and Kissmann
2011). The scaling problem is solved by symbolic PDBs



in these spaces, but not in general. Large memory reduc-
tions have also been obtained with lossy PDB compression
methods (Felner et al. 2007; Samadi et al. 2008), which offer
a little more hope for addressing the scaling issue because it
seems that by allowing some loss of heuristic information,
these methods sometimes produce a more favourable trade-
off between time and memory than is predicted by Korf’s
Conjecture. For example, Felner et al. (2007)’s Table 9 re-
ports that a 9 times reduction in memory results in only 2.25
greater search time, and an even more favourable tradeoff is
reported in their Table 4 for the Towers of Hanoi.

Hierarchical Heuristic Search. Instead of precomput-
ing, and storing, the entire PDB, hierarchical heuristic
search (Holte, Grajkowski, and Tanner 2005; Leighton,
Ruml, and Holte 2011) computes, on demand, precisely
those abstract distances that are required as heuristic values
in solving a given problem instance. Experimentally, only
about 1% of the PDB entries actually need to be computed to
solve a problem instance (see Table 3 in (Holte, Grajkowski,
and Tanner 2005)), which means about one order of magni-
tude less memory is required than for the full PDB since the
data structure for caching distance-to-goal information in hi-
erarchical heuristic search is not as compact as a good PDB
data structure. What is not known is how the memory re-
quirements of hierarchical heuristic search scale as the state
space size increases. It is possible that hierarchical heuris-
tic search scales better than PDBs and therefore provides at
least a partial solution to the scaling problem.

Multiple PDBs. One direction that offers clear hope for
mitigating the scaling problem is the use of multiple PDBs.
Korf’s Conjecture, as I have described it here, is about how
search time is related to the size of a PDB when just one
PDB is used to guide IDA*. But it is known that, for a fixed
amount of memory, search using one PDB that uses all the
memory is much slower than search that takes the maximum
of two PDBs that each require half the memory (Holte et al.
2004; 2006). Could it be that as a search space scales up,
the total size (m) of a set of PDBs does not have to grow
exponentially in order to keep t constant?

In my opinion, the answer is almost certainly “no" when
the maximum is taken over the set of PDBs. Korf (2007)
analyzes this case when the PDBs are “independent”. Ac-
cording to the formula he derives with this assumption, the
optimal number of PDBs is two, which is not consistent with
experimental data. Korf offers two reasons for this discrep-
ancy. One is that the heuristic distribution is not necessarily
exponential. I return to this point below. The other is that
the derived formula overestimates the pruning power of a
set of PDBs if they are not truly independent. I suspect that
non-additive PDBs will rarely be independent, or even ap-
proximately independent, and so their total size will have to
scale almost as quickly as a single PDB.

On the other hand, a set of PDBs based on additive ab-
stractions (Yang et al. 2008) might well give us the scaling
behaviour we want. Breyer and Korf (2010) proved that the
speedup produced using a set of additive heuristics is the
product of their individual speedups over brute-force search
if the heuristics are independent in the same sense as above.

This seems to me a much more plausible assumption for
additive abstractions than non-additive ones. Breyer and
Korf’s analysis suggests that as a state space is scaled up,
t could be kept constant by increasing the number of PDBs,
which is only a linear increase in memory. A more power-
ful version of this idea, which I call “factored heuristics", is
discussed below.

Multiple PDB Lookups. Another source of hope related
to the use of multiple PDBs is the use of multiple lookups in
a single PDB: to compute the heuristic value of state s one
not only does the normal PDB lookup, but has a mechanism
for extracting one or more additional values from the PDB
that are also lower bounds on s’s distance to goal. This ob-
tains the benefits of having multiple PDBs while using the
memory needed by only one PDB. Most studies that make
multiple lookups in a PDB use symmetries in the search
space to define the additional lookups (Zahavi et al. 2008).

A particularly powerful form of symmetry is seen in the
Towers of Hanoi. The standard method of abstracting this
space is to choose k disks and build a PDB containing the
number of moves needed to get those k disks to their goal
positions, entirely ignoring all the other disks (Felner et al.
2007). If the Towers of Hanoi problem one is trying to solve
has 2k disks, two lookups can be made in this PDB and their
values added: one lookup is based on any set of k disks, the
other lookup is based on the other k disks. If the problem
is made bigger by increasing the number of disks, the PDB
remains the same, but more lookups are done and added to-
gether to compute a state’s heuristic value. I call this a “fac-
tored heuristic" because the heuristic calculation is done by
decomposing the state into parts (in this example, partition-
ing the set of disks into groups that each contain k or fewer
disks), making separate lookups for each part in the same
PDB, and then adding the results.

The same idea has been used for the Pancake puzzle (Tor-
ralba Arias de Reyna and Linares López 2011) and produced
extremely good (sub-exponential) scaling behaviour. Dou-
bling the number of pancakes from 20 to 40 increased the
number of nodes generated by a factor of 120, a miniscule
fraction of the increase in the size of the state space (from
20! to 40!).

Reliance on symmetries in the state space has limited
the use of multiple PDB lookups. However, Pang and
Holte (2012) report a technique that allows multiple PDB
lookups to be based on multiple abstractions that all map to
the same abstract space, thereby allowing multiple lookups
to be done for state spaces that do not have symmetries.

Alternative Ways of Representing Abstraction-based
Heuristics. It may be possible to avoid the scaling prob-
lem by representing abstraction-based heuristics in a form
that is entirely different than a lookup table. Manhattan Dis-
tance, for example, could be implemented as an additive
PDB, but is more commonly implemented as a procedure
that is executed for a given state. In fact, this procedure
strongly resembles hierarchical heuristic search, but with in-
dividual abstract spaces that are so small there is no need for
a hierarchy of abstractions or for search results to be cached.



An alternative representation of abstraction-based heuris-
tics that is especially useful if admissibility is not required
is to use machine learning to create an extremely compact
approximation of a PDB (e.g. a small neural network), as
was done by Samadi et al. (2008). If admissibility is re-
quired, a lookup table can be used to store the PDB entries
that the neural network overestimates. In the experiments by
Samadi et al., only about 2% of the PDB entries needed to
be explicitly stored.

A different way of compactly approximating an
abstraction-based heuristic is to map the abstract states into
a low-dimensional Euclidean space in such a way that Eu-
clidean distances between states are admissible and consis-
tent. The basic technology for this exists (Rayner, Bowl-
ing, and Sturtevant 2011), but at present it requires the same
amount of memory as a PDB.

Alternative Roles for Abstraction-based
Heuristics

In this section I consider what role there might be for
abstraction-based heuristics if, indeed, they are unable to
scale to provide effective guidance for solving much larger
problems than we currently study. Assuming they do not
scale, we need to consider roles in which weak heuristics can
make important contributions to solving search problems.

Node Ranking. Many search algorithms, including depth-
first branch and bound, beam search, greedy best-first
search (Doran and Michie 1966), and limited discrepancy
search (Harvey and Ginsberg 1995), sort the nodes they gen-
erate according to what might be called a ranking function.
Although there is no need for the ranking function to be an
estimate of the cost to reach the goal (e.g. (Xu, Fern, and
Yoon 2009)), a heuristic function is an obvious candidate to
use for ranking. Even a relatively weak heuristic can be ef-
fective for ranking. For example, BULB (Furcy and Koenig
2005), which combines beam search and limited discrep-
ancy backtracking, solves instances of the 9 × 9 sliding-tile
puzzle in 120 seconds using Manhattan Distance for rank-
ing, which is not an especially effective heuristic for that
size of puzzle.3

Type Systems. Levi Lelis and his colleagues have devel-
oped methods for a variety of search-related tasks that re-
quire the nodes in a search tree to be partitioned into a set
of “types" (Lelis et al. 2012; Lelis, Zilles, and Holte 2013a;
2013b; Lelis, Otten, and Dechter 2013; Xie et al. 2014). In
the ideal partitioning, the search subtrees below nodes of the
same type are identical in certain key regards, such as the
size of the subtree, the cost of the cheapest solution in the
subtree, etc. Type systems based on heuristic functions have
proven very effective in all these studies, and, as with node

3In 2001 it was estimated that IDA* would need 50,000 years
of CPU time to solve one instance of the 5 × 5 sliding-tile puzzle
using Manhattan Distance (Korf, Reid, and Edelkamp 2001). Korf
has re-calculated this based on the speed of today’s computers and
estimates that only 7,600 years would be required now (personal
communication).

ranking, there is no need for the heuristic to be especially
accurate (many of Lelis’s heuristics are small PDBs).

Features for Learning. There has been recent inter-
est in using machine learning to create heuristic func-
tions (Samadi, Felner, and Schaeffer 2008; Jabbari Arfaee,
Zilles, and Holte 2011). In these studies small PDBs have
proven to be excellent features for machine learning. Again,
there is no obvious need for heuristics used for this purpose
to be especially accurate.

Heuristic Search as a Component Technology. One ap-
proach to solving a very large problem is to decompose it
into a sequence of subproblems that are then solved one by
one, in order, to produce a solution to the original prob-
lem. Korf developed this technique for solving Rubik’s
Cube, with the subproblems being solved by brute-force
search (Korf 1985). Later, Hernádvölgyi (2001) realized that
abstraction-based heuristics could be used to guide the solv-
ing of the subproblems. This speeded up search so much that
it allowed several subproblems to be merged to form a sin-
gle subproblem that was still feasible to solve, resulting in
much shorter solutions (50.3 moves, on average, compared
to 82.7). This is just one example of how abstraction-based
heuristic search can be used as a component in a different
type of search system.

The Assumptions Underlying Korf’s Analysis
The previous sections have outlined directions for the future
of abstraction-based heuristics assuming that Korf’s Conjec-
ture holds. In this section, I examine the assumptions under-
lying Korf’s analysis, and describe two complications that
arise in trying to apply it in practice. The two points I will
make in this section will both be illustrated using the 5-disk,
3-peg Towers of Hanoi puzzle, with states being represented
the same way that Zilles and Holte (2010) represented states
in the Blocks World with distinct table positions. In this rep-
resentation there are 6 state variables for each peg. The first
variable is an integer (0 . . . 5) saying how many disks are on
the peg. The other 5 variables give the names of the disks
(d1 . . . d5 or nodisk) in the order they occur on the peg from
bottom to top: the first of these variables names the disk at
the bottom (nodisk if the peg has no disks on it), the second
names the disk second from the bottom (nodisk if the peg
has 0 or 1 disks on it), and so on. The abstraction of this
space that I will discuss is shown in Figure 1. This abstrac-
tion keeps the variables that say how many disks are on each
peg and deletes all the other variables, so that the identities
of the disks on each peg are entirely lost. For example, the
Towers of Hanoi goal state, which has all the disks on peg1,
would be mapped to abstract state 500 (at the top of the fig-
ure), and any Towers of Hanoi state in which there are 3
disks on peg1, 2 disks on peg2, and no disks on peg3 would
be mapped to abstract state 320.

The first thing one notices about this space is that the dis-
tance distribution is not exponential, it is linear; there are
exactly d + 1 abstract states at distance d from the abstract
goal. It would seem therefore that Korf’s Conjecture does
not apply in this case. However, Korf’s analysis could be
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Figure 1: Abstraction of the 5-disk, 3-peg Towers of Hanoi
state space that keeps track of how many disks are on each
peg but not their identities. 320, for example, is the abstract
state in which there are 3 disks on peg1, 2 disks on peg2, and
no disks on peg3.

repeated with a linear model plugged into the KRE formula
to derive the relation between t and m for this situation. I
have not actually done that, but using the simpler, “back of
the envelope” method of Korf’s original, intuitive analysis,
I estimate that, with a heuristic defined by an abstract space
with a linear distance distribution, if n is doubled, m does
not need to be doubled to keep t constant, it only needs to
be increased additively by approximately 2

√
m.4

In the preceding paragraph I said “it would seem” Korf’s
Conjecture does not apply because it is not correct, in gen-
eral, to equate the distance distribution in the abstract space
with the heuristic distribution. In the KRE formula the
heuristic distribution is the fraction of states in the original
state space that have a particular heuristic value,5 not the
fraction in the abstract space. The distance distribution in
the abstract space and the heuristic distribution are only the
same if the same number of states in the original space map
to each abstract state. That is certainly not the case for the
Towers of Hanoi abstraction in Figure 1. Only one Towers of
Hanoi state maps to abstract state 500, but 10 map to abstract
state 320, and 30 map to abstract state 221. The number of
Towers of Hanoi states that map to each abstract distance are
1 (distance 0), 10 (distance 1), 40, 80, 80, and 32 (distance
5), which is probably close enough to being an exponential
distribution that Korf’s Conjecture would hold in this case.
This is an important consideration because it oftens happens
naturally that different numbers of states that map to differ-
ent abstract states, as in this example, and, in addition, there
are several abstraction methods that are very likely to pro-
duce abstractions in which this occurs (e.g. CEGAR (Seipp

4This calculation assumes that t = 2D−h, whereD is the depth
of the search in the original space, 2 is the branching factor in
both the original space and the abstract space, and h is the average
heuristic value, which, for a space with a linear distance distribu-
tion, is approximately

√
m.

5Even this is not a perfectly correct statement. The distribution
described here is what Korf calls the overall distribution. The KRE
analysis requires the “equilibrium” distribution, which in general
is not the same as the overall distribution.

and Helmert 2013), CFDP (Raphael 2001), and merge-and-
shrink (Nissim, Hoffmann, and Helmert 2011)).

An important, but easily overlooked, feature of the num-
bers (1, 10, 40, etc.) just given is that they refer to the num-
ber of reachable states that map to each abstract state. If
we consider unreachable states as well, then the same num-
ber of states map to each abstract state and we are back to
a linear heuristic distribution. So, Korf’s Conjecture rests
on the heuristic distribution of reachable states being dis-
tributed exponentially. That is the first point about the con-
jecture I wish to make. This does not make the analysis any
less valid, it just means it is more difficult to apply than do-
ing a simple inspection of the abstract space, and that sim-
ilar problems might have very different behaviours: remov-
ing the Towers of Hanoi restriction that a larger disk cannot
be put onto a smaller one changes the heuristic distribution
from being (approximately) exponential to being linear.

The other point I wish to make is that although the pa-
rameter m in the analysis seems perfectly well defined, it
is, in fact, anything but. The most obvious source of doubt
about how exactly m should be defined is spurious abstract
states, which are abstract states that can be reached by back-
wards search from the abstract goal but whose pre-image6

cannot be reached by forward search from the start state in
the original space.7 Because they are reached by backwards
search from the abstract goal, there is an entry in the PDB
for each spurious state, but because their pre-images can-
not be reached during forward search from the start state in
the original state space, they contribute nothing to the prun-
ing power of the heuristic and therefore should not be in-
cluded in the heuristic distribution or the value of m used in
Korf’s analysis (if m is increased by adding spurious states,
t will obviously not change at all). For example, Zilles and
Holte (2010) report an abstraction of the Blocks World in
which there are 1, 310, 720 abstract states from which the
abstract goal can be reached, of which only 89, 400 are non-
spurious. In Korf’s analysis, m = 89, 400 must be used, not
m = 1, 310, 720. Unfortunately, there is no practical way,
in general, of determining how many abstract states are spu-
rious, or even deciding whether or not there are any spurious
states (Zilles and Holte 2010).

The difficulties concerning m’s definition raised by spu-
rious states is a special case of a more general phenomenon
where two abstract spaces of different sizes give rise to ex-
actly the same heuristic values for all states in the original
space. The space in Figure 1 has 21 states. Once 500 has
been designated as the goal, the space can be compressed
to just 6 states without losing any distance-to-goal informa-
tion. This is done by mapping all the states on the same
level in the figure to the leftmost state on the level. This is
an ordinary abstraction of the space in Figure 1 defined by
keeping the first state variable and deleting the other two.
We now have a real dilemma in deciding what value of m to

6If S is a state space and φ is an abstraction mapping S to S′,
the pre-image of s′ ∈ S′ is {s ∈ S|φ(s) = s′}.

7Spurious states can be caused either by the backwards (regres-
sion) search (Bonet and Geffner 2001) that computes the PDB or
by the abstraction process itself (Zilles and Holte 2010).



use. There are no spurious states in Figure 1, so m = 21 is
genuinely the size of the space, but the heuristic based on it
is identical to a heuristic based on a linear space of size 6.
If n is doubled and we want t to remain constant, doubling
“m” means to make a space equivalent to a linear space of
size 12, not a triangular space of size 42.8 For the purpose
of defining a heuristic, additional states at each level are as
useless as spurious states: increasing m by adding more of
them does not affect t at all.

Methods for creating symbolic PDBs (Edelkamp 2001)
can be seen as doing exactly what I have just illustrated with
the space in Figure 1: they take the distances-to-goal defined
in one abstract space (the space in Figure 1, for example),
and construct a smaller abstract space that returns exactly
the same heuristic value for every state in the original space
(the linear space with just 6 nodes, for example). This is
also what merge-and-shrink aspires to do with its shrink-
ing stategies that are h-preserving (Helmert, Haslum, and
Hoffmann 2007) or based on bisimulation (Nissim, Hoff-
mann, and Helmert 2011). In fact, these methods can be
seen as always producing a linear abstract space with one
state at each distance, coupled with a memory-based index-
ing mechanism for mapping a given state to one of these
abstract states.

The fact that abstract spaces of very different sizes can
produce identical heuristics suggests that Korf’s goal of re-
lating the number of node expansions by IDA* to the num-
ber of states in an abstract space is simply impossible. And
yet there is experimental data showing that a strong rela-
tion does indeed hold between PDB size and the number
of node expansions, exactly as predicted by Korf’s Conjec-
ture. The data in Table 2 is based on the results reported
in Korf (2007)’s Table 2, columns “Size” (m) and “IDA*”
(t). One iteration of IDA* with a depth bound of 12 was
run on the same 1000 Rubik’s Cube instances using four
PDBs of different sizes based on abstractions called “6 cor-
ners”, “6 edges”, “8 corners”, and “7 edges”. For a given
PDB, t is the average number of nodes expanded by IDA*
on these runs. The asymptotic branching factor of Rubik’s
Cube, 13.34847 (Korf 1997), was used as the base of the log-
arithm in computing M from m. If Korf’s Conjecture was
perfectly correct, the numbers in the M · t column would be
identical. They are nearly so: the largest value is only about
13% larger than the smallest value. This shows that, in this
particular experiment, Korf’s Conjecture makes very accu-
rate predictions about how the number of node expansions
will change if the PDB size is changed. Additional support

8The two are not the same; a triangular space would need 78
states to correspond to a linear space of length 12.

PDB m t M · t
6 corners 14,696,640 20,918,500 41,722 ×109
6 edges 42,577,920 8,079,408 44,222 ×109

8 corners 88,179,840 3,724,861 40,752 ×109
7 edges 510,935,040 670,231 39,191 ×109

Table 2: Evidence supporting Korf’s Conjecture. M · t is
almost constant for four PDBs of different sizes for Rubik’s
Cube. m and t are from Table 2 in (Korf 2007).

for Korf’s Conjecture is given in an experiment that looked
at a large number of PDBs of many different sizes for three
state spaces (Holte and Hernádvölgyi 1999), although this
study uses A*, not IDA*.

Conclusions
In this paper, I have examined how Korf’s Conjecture (M ·
t = n), if it is true, limits the ability of abstraction-based
heuristic methods, such as PDBs, to scale to larger prob-
lems. It is certain that abstraction-based heuristics can and
should play important auxiliary roles in the heuristic plan-
ning and search systems of the future, whether or not they
scale well. If they do not scale well, there are several alter-
native types of heuristics in the planning literature—delete
relaxations (McDermott 1996; Bonet, Loerincs, and Geffner
1997), heuristics based on linear programming (Bonet
2013), the causal graph heuristic (Helmert 2004), landmark-
based heuristics (Bonet and Helmert 2010), and hm (Haslum
2006)—whose scaling behaviour has only partly been stud-
ied (Helmert and Mattmüller 2008).

However, there are several reasons to expect that
abstraction-based heuristics may continue to play a primary
role in planning and search systems. In part, this hope lies in
the use of merge-and-shrink, multiple additive abstractions,
and multiple heuristic lookups in a single abstract space.
These technologies exist, and might possibly greatly miti-
gate the scaling problem, but more research is needed on
them. The second place where hope lies is in the scaling be-
haviour of compression methods and hierarchical heuristic
search, which I assumed to be linear in m in this paper. If
any of these were to scale logarithmically, say, instead of lin-
early, abstraction-based heuristic methods would continue to
play a central role in solving large combinatorial problems.

This paper has also shown that it is not straightforward
to apply Korf’s Conjecture in practice. One reason is that
the poor scaling behaviour rests on an assumption about the
heuristic distribution of reachable states, not just on the dis-
tribution of distances in the abstract space. The other reason
is that the number of entries in a PDB is definitely not the
sole determining factor of the pruning power of the resulting
heuristic: PDBs of very different sizes can give rise to ex-
actly the same heuristic. More research is needed to better
understand, and exploit, this phenomenon.
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