
Common Misconceptions Concerning Heuristic Search

Robert C. Holte
Computing Science Department, University of Alberta

Edmonton, Canada T6G 2E8
(holte@cs.ualberta.ca)

Abstract

This paper examines the following statements about heuristic
search, which are commonly held to be true:

• More accurate heuristics result in fewer node expansions
by A* and IDA*.

• A* does fewer node expansions than any other equally in-
formed algorithm that finds optimal solutions.

• Any admissible heuristic can be turned into a consistent
heuristic by a simple technique called pathmax.

• In search spaces whose operators all have the same cost
A* with the heuristic function h(s) = 0 for all states, s, is
the same as breadth-first search.

• Bidirectional A* stops when the forward and backward
search frontiers meet.

The paper demonstrates that all these statements are false and
provides alternative statements that are true.

Introduction
Heuristic search is one of the pillars of Artificial Intelli-
gence. Sound knowledge of its fundamental results and al-
gorithms, A* (Hart, Nilsson, & Raphael 1968) and IDA*
(Korf 1985), is requisite knowledge for all AI scientists and
practitioners. Although its basics are generally well under-
stood, certain misconceptions concerning heuristic search
are widespread. In particular, consider the following asser-
tions about heuristic search:

• If admissible heuristic h2 is more accurate than admissi-
ble heuristic h1 A* and IDA* will do fewer node expan-
sions if they use h2 than if they use h1.

• A* is optimal, in the sense of doing fewer node expan-
sions than any other equally informed algorithm that finds
optimal solutions.

• Any admissible heuristic can be turned into a consistent
heuristic by a simple technique called pathmax.

• In search spaces whose operators all have the same cost
A* with the heuristic function h(s) = 0 for all states, s,
is the same as breadth-first search.

• Bidirectional A* stops when the forward and backward
search frontiers meet.

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Although these statements are intuitively highly plausi-
ble and are widely held to be true, as a matter of fact, they
are all false. The aim of this paper is to demonstrate how
they fail with simple counterexamples and to provide alter-
natives to these statements that are true. The falsity of the
above statements, and the corrections given, have all have
been reported previously, but usually in specialized publica-
tions. The contributions of this paper are to draw attention to
them, to bring them together in one widely accessible docu-
ment, and to give simple counterexamples.

Background, Terminology, and Notation
This section briefly reviews the terminology, notation, and
essential facts needed in the remainder of the paper. It is not
a full tutorial on heuristic search.

A state space consists of a set of states, a successor rela-
tion defining adjacency between states, and a function defin-
ing the cost of moving from state s to adjacent state t.

A* and IDA* are algorithms for finding a best (least-cost)
path from any given state, start, to a predetermined goal
state, goal. Both make use of three functions, g, h and f .
g(s) is the cost of the best known path from start to state s
at the current stage of the search. h(s), the heuristic func-
tion, estimates the cost of a best path from state s to goal.
f(s) = g(s) + h(s) is the current estimate of the minimum
cost of reaching goal from start with a path passing through
s. The true minimum cost of a path from start to goal is de-
noted f∗.

All heuristic functions are non-negative and have
h(goal) = 0. Heuristic h(s) is admissible if, for every state
s, it does not overestimate the cost of a best path from s to
goal. A* and IDA* are guaranteed to find a least-cost path
from start to goal if h(s) is admissible. h(s) is consistent
(p. 83, (Pearl 1984)) if for every two states1, s and t,

h(s) ≤ cost(s, t) + h(t) (1)

where cost(s, t) is the cost of a least-cost path from s to t.
A consistent heuristic is guaranteed to be admissible.

A* maintains a list of states called OPEN . On each step
of its search A* removes a state in OPEN with the smallest

1Pearl (1984) showed that restricting t to be a neighbour of s
produces an equivalent definition that is easier to verify in practice
and has an intuitive interpretation: in moving from a state to its
neighbour h must not decrease more than g increases.



f -value and “expands” it, which means marking the state as
“closed”, computing its successors, and putting each succes-
sor in OPEN if it has not previously been generated or if
this path to it is better than any previously computed path to
it. A* terminates as soon as goal has the smallest f -value
in OPEN . When A* is executed with a consistent heuris-
tic, the f -values of the states it expands as search progresses
form a monotone non-decreasing sequence. This is not true,
in general, if A* is executed with an inconsistent heuristic.

IDA* does a series of cost-bounded depth-first searches.
When searching with a specific cost bound θ, state s is ig-
nored if f(s) > θ. If f(s) ≤ θ the successors of s are
searched in a depth-first manner with the same cost bound.
IDA* terminates successfully as soon as goal is reached by
a path whose cost is less than or equal to θ. If search does
not terminate successfully with the current value of θ, the
smallest f -value exceeding θ seen during the current iter-
ation is used as θ’s new value for a depth-first search that
begins afresh from start.

The basic operation of both A* and IDA* is to expand one
state, and the time complexity of the algorithms is measured
by the number of times this operation is executed, i.e., the
number of state expansions (or, as they are more commonly
called, “node expansions”).

Better Heuristics Can Result in More Search
One admissible heuristic, h2, is defined to be “better than”
(or “dominate”) another, h1, if for all states s, h1(s) ≤ h2(s)
and there exist one or more states s for which h1(s) <
h2(s). Is A* guaranteed to do fewer node expansions when
it is given the better heuristic ?

Although intuition urges the answer “yes”, and there do
exist provable connections between the accuracy of a heuris-
tic and the number of node expansions A* will do (Dinh,
Russell, & Su 2007), the true answer is much more complex
(pp. 81-85, (Pearl 1984)). Even when the heuristics are con-
sistent, the answer is not an unequivocal “yes” because with
the better heuristic A* might expand arbitrarily more states
that have f(s) = f∗.

&%

'$
start
h1 = 3
h2 = 3

-1

&%

'$
A

h1 = 2
h2 = 3

-1

&%

'$
B

h1 = 1
h2 = 2

-2

&%

'$

goal

?
1

&%

'$
C

(f = 3)

PPPPq
1 ¶

µ

³

´Di (f = 4)

-1
¶

µ

³

´Ei (f = 4)

Figure 1: The better heuristic (h2) results in more A* search.

Consider the state space in Figure 1, and two consistent
heuristics, h1 and h2, which are identical except along the
optimal path, start − A − B − goal. h2 is better than h1.
The ovals labelled Di and Ei represent arbitrarily large sets
of states with f = 4. States in Di are successors of start
with g = 1. States in Ei are successors of C and have g = 2.

Using h1, A* expands four states. First it will expand
start, then A, B and C in some order (all have f=3). At
this point search will terminate. None of the states in sets
Di or Ei will be expanded because as soon as all states with
f < 4 are expanded, goal is in the OPEN list with f = 4
so search terminates.

By contrast, using h2 there is no systematic way for A*
to avoid expanding some of the states in Di or Ei. After
start and C (f=3) are expanded, the OPEN list contains a
large set of states with f = 4, but does not contain goal. If
A* breaks ties in favour of larger g values, as is most often
done, all the states in Ei will be expanded before A will be
expanded. If A* breaks ties in the opposite manner, all the
states in Di will be expanded before B will be expanded.
If A* breaks ties without considering g, it has no way of
identifying A and B as being preferable over the states in
Di and Ei, and therefore cannot guarantee that A and B
will be expanded before any of the states in Di and Ei.

The key point in this example is that low heuristic values
are not always harmful. If they occur along an optimal path
low heuristic values are beneficial because they will cause
the goal to be placed in OPEN earlier, potentially reducing
the number of states with f = f∗ that are expanded.

There is an additional source of confusion on this topic
when the heuristics are admissible but not consistent. In this
case, A* may have to expand the same state many times (see
Figure 3 below and the text discussing it). Some theorems
do not take into account repeated expansions of the same
state, they only show that under certain conditions the set of
states expanded using h1 is a superset of the set expanded
using h2.

What about IDA* ?
The preceding counterexample does not apply to the stan-
dard implementations of IDA* because they fail to notice
that during the iteration with θ = 3 goal was encountered
with f = 4. If IDA* was programmed to notice this, it could
terminate as soon as θ was increased to 4 and save consider-
able effort. The savings would only occur if h1 was used. If
the better heuristic, h2, were used, at least part of the θ = 4
iteration would have to be performed.

¹¸

º·
start -¾

f1 = 1
f2 = 1

±°
²¯
A -¾

f1 = 1
f2 = 2

±°
²¯
B -¾

f1 = 3
f2 = 3

±°
²¯
C -¾

f1 = 3
f2 = 4

±°
²¯
D -¾

f1 = 5
f2 = 5

¹¸

º·
goal

f1 = 5
f2 = 5

Figure 2: The better heuristic (h2) requires more IDA* iter-
ations.

An example of a better heuristic leading to more search
with a standard IDA* implementation is shown in Figure 2.
h1 alternates between 1 (for start, B, and D) and 0 (for
A,C, and goal). h2 is 1 on every state except goal, and is
therefore better than h1. Both heuristics are consistent. The
f -values corresponding to these two heuristics are shown
in the figure. The key point is that h1 produces only three



distinct f -values, whereas the better heuristic produces five.
This means IDA* will do two extra iterations with h2 and,
consequently, will do more node expansions using h2 than
h1. Although rare, this does arise in practice. In one case
(Holte et al. 2006) use of a better heuristic increased the
number of node expansions by IDA* by more than 50%.

This phenomenon was first noted in Manzini’s compar-
ison of the perimeter search algorithm BIDA* with IDA*
(Manzini 1995). Manzini (p. 352) observed that BIDA* can-
not do more node expansions than IDA* for a given θ but
that BIDA* can do more node expansions than IDA* in total
because “the two algorithms [may] execute different itera-
tions using different thresholds”.

A* is Not Always Optimal
There is a general belief that A* is optimal among search
algorithms that use the same information, in the sense of
doing the fewest possible node expansions and still being
guaranteed to find an optimal solution path. This claim has
been a source of confusion throughout its history (p. 111,
(Pearl 1984)).

This claim is certainly false when the heuristic being used
is admissible but not consistent. In this case, A* may have
to move closed states back onto OPEN where they might
be expanded again. In the worst case, A* can do as many as
O(2N ) node expansions, where N is the number of distinct
states that are expanded in solving the problem, while there
are rival search algorithms2 that do only O(N2) node expan-
sions in the worst case. This was proven by Martelli (1977),
who defined a family of graphs Gi, for i ≥ 3, such that Gi

contains i + 1 states and A* does O(2i) node expansions to
find the solution. Graph G5 in Martelli’s family is shown
in Figure 3.3 In this figure, the value inside a circle (state)
is the state’s heuristic value. There are many inconsisten-
cies in this graph. For example, d(n4, n3) = 1 but h(n3) is
6 smaller than h(n4). The unique optimal path from start
(n5) to goal (n0) visits the states in decreasing order of their
index (n5, n4, ..., n0), but n4 has a large enough heuristic
value (f(n4) = 14) that it will not be expanded by A* un-
til all possible paths to the goal (with f < 14) involving all
the other states have been fully explored. Thus, when n4 is
expanded, states n3, n2 and n1 are reopened and then ex-
panded again. Moreover, once n4 is expanded, the same
property holds again of n3, the next state on the optimal
path, so it is not expanded until all paths from n4 to the
goal involving all the other states have been fully explored.
This pathological pattern of behavior repeats each time one
additional state on the optimal path is expanded for the last
time.

Martelli (1977) also introduced a variant of A*, called B,
that improves upon A*’s worst-case time complexity while
maintaining admissibility. Algorithm B maintains a global
variable F that keeps track of the maximum f -value seen so

2A*’s “rivals” are other search algorithms that use the same in-
formation and return an optimal solution when given an admissible
heuristic.

3This figure and the related text are copied from (Zhang et al.
2009).

23

13

7300

11 9 6
1

19 1 1

1

6

3

4

(n
5
)

(n
4
)

(n
3
)(n

2
)(n

1
)(n

0
)

Figure 3: G5 in Martelli’s family.

far among the states expanded. When choosing the next state
to expand, if the minimum f -value in the open list (denoted
fm) satisfies fm ≥ F , then a state with minimum f is cho-
sen as in A*, otherwise a state with minimum g-value among
the states with f < F is chosen for expansion. Because F
can only change (increase) when a state is expanded for the
first time, and no state will be expanded more than once for
a given value of F , the worst-case time complexity of algo-
rithm B is O(N2). Other A* variants with O(N2) worst-
cases have also been developed (Bagchi & Mahanti 1983;
Mero 1984). A description and experimental comparison of
these algorithms can be found in (Zhang et al. 2009), which
also shows that A*’s exponential worst-case requires the so-
lution costs and heuristic values to grow exponentially with
N .

This example shows that, when the heuristic being used is
admissible but not consistent, A* can do exponentially more
node expansions than its rivals. In fact, it can be shown that
there is no optimal search algorithm for admissible, incon-
sistent heuristics (Dechter & Pearl 1983). The situation is
different when the heuristic is consistent. In this case A*
“largely dominates” its rivals, which means that A* does not
do more node expansions than any of its rivals, except per-
haps for some states with f(s) = f∗ (p. 85, (Pearl 1984);
Theorem 3 in (Dechter & Pearl 1983)).

In discussing the optimality of A* it is important to bear
in mind that the algorithm that does the fewest node expan-
sions is not necessarily the algorithm that runs fastest (Korf
1985). For example, the Fringe algorithm introduced in
(Bjornsson et al. 2005) does more node expansions than
A* in the experiments reported but runs 25-40% faster, even
though the data structures used in the A* implementation
were highly optimized.

Pathmax does not make Heuristics Consistent
It is commonly understood that there is a simple method,
called pathmax, to turn any admissible, inconsistent heuris-
tic into a consistent one. Pathmax is based on the idea that
when state s is reached by A* by some path, it is admissible
to use the maximum f -value seen along the path instead of
f(s).

While it is true, trivially, that with pathmax f -values



never decrease along a path, this is not the same as the
heuristic being converted into a bonafide consistent heuris-
tic. To see this, recall that with a consistent heuristic, closed
states are never re-opened by A*, because when a state is
removed from OPEN for the first time we are guaranteed
to have found the least-cost path to it. This is the key advan-
tage of a consistent heuristic over an inconsistent, admissible
heuristic. Pathmax does not correct this deficiency of in-
consistent heuristics. This is noted in (Zhou & Hansen 2002)
and in (Nilsson 1998) (p. 153).

&%

'$

start
¡

¡
¡µ

@
@

@R

&%

'$
A

@
@

@R

(h = 99)

&%

'$

B -

@
@@R

99

&%

'$

goal

&%

'$
C

(h = 11)
¡

¡
¡µ

9 9

1 1

¶

µ

³

´
Di (f < 100)

Figure 4: Example where a closed state must be reopened
with pathmax.

Consider the example in Figure 4 with the admissible, in-
consistent heuristic h(A) = 99, h(B) = 0, and h(C) = 11.
The optimal path in this example is start− A−B − goal,
with a cost of 101. A* will expand start and then C (f=20),
at which point A and B will be in OPEN . A will have
f = 100 and B, because of pathmax, will have f = 20 in-
stead of f = 18. B will be closed, even though the least-cost
path to B (via A) has not been found. A* will then expand
the entire set of states Di before A. At that point A will be
expanded, revealing the better path to B, and requiring B
and all of the Di to be expanded for a second time.

Pathmax is half of the two-part strategy introduced by
Mero (1984) to exchange heuristic information between a
state and its successors when the heuristic is not consistent.
Even the full strategy does not guarantee that closed states
will not be re-opened, but it can lead to very substantial re-
ductions in the number of node expansions. See (Zhang et
al. 2009) for full details of Mero’s algorithm (called B′),
corrections to certain statements in (Mero 1984), and exper-
imental comparisons involving B′.

A* with h=0 and Uniform Costs is not
Breadth-first Search

In describing the standard search algorithms, such as Dijk-
stra’s algorithm (Dijkstra 1959) and A*, it is common to give
a generic search algorithm and then discuss how it can be
specialized for particular circumstances. Often breadth-first
search is described as an instance of the generic algorithm,
in the special case when all operator costs are the same and
h = 0 for all states.

This statement is true except for one important detail, the
stopping condition. Breadth-first search stops when the goal

&%

'$

start

¡
¡

¡ª

@
@

@Rº

¹

·

¸
Ai

¡
¡

¡ª

@
@

@R

&%

'$

goal

Figure 5: Breadth-first search will stop after expanding two
states.

is first generated (p.47, (Barr & Feigenbaum 1981)). It never
needs to put the goal in the OPEN list. A*, Dijkstra’s algo-
rithm, and the generic search algorithms in many textbooks,
put the goal in the OPEN list and continue searching un-
til it is removed. Breadth-first search can be implemented
that way, but it is needlessly inefficient. Consider the ex-
ample in Figure 5. Expanding start produces an arbitrarily
large set of successors, Ai. Expanding any one of these gen-
erates goal. Breadth-first search would therefore stop after
expanding only two states, but A* with h(s) = 0 for all
states would have to expand all of the Ai before stopping.
Note that A* would exactly mimic breadth-first search if it
had been given the heuristic h(goal) = 0 and h(s) = 1 for
all other states.

Bidirectional Search Must Continue after the
Frontiers Meet In Order to Find Optimal

Solutions
Bidirectional search is usually described as stopping when
the two search frontiers “intersect”, or “meet”. This is incor-
rect. In order to guarantee finding an optimal path bidirec-
tional search must continue to search after a state has been
opened in both directions. Bidirectional searches other than
bidirectional breadth-first search must even continue after a
state has been closed in both directions.

The graph in Figure 6 illustrates why bidirectional
breadth-first search cannot stop when the search frontiers
first meet. First, start is expanded in the forward direction,
putting A and D on the forward-direction OPEN list. Next,
goal is expanded in the backwards direction, putting C and
E on the backward-direction OPEN list. If A is expanded
next in the forward direction and C is expanded next in the
backward direction then B will be open in both directions.
Search cannot stop at this point and declare the solution to
be start−A−B−C−goal because this is not the shortest
path.

Although bidirectional breadth-first search cannot stop
when a state, B, first becomes open in both directions, the



½¼

¾»
start ¡

¡µ
¡¡ª
@

@R
@@I

½¼

¾»
D -¾

½¼

¾»
A -¾

½¼

¾»
B -¾

½¼

¾»
C

½¼

¾»
E

½¼

¾»
goal@

@I
@@R
¡

¡ª
¡¡µ

Figure 6: Bidirectional breadth-first search might open B in
both directions before finding the shortest path.

path linking start to goal through B cannot be more than
one edge longer than the optimal path from start to goal.
To see this, let us consider the general case, not the specific
example in Figure 6. However, to make it easy to relate
the general discussion to the example, B will continue to be
used to refer to the first state opened in both directions. In
general, B is some distance, ds, from start and some dis-
tance, dg , from goal, and therefore the path from start to
goal through B is of length ds + dg. Because B is open
in the forward direction the forward-direction OPEN list
might contain some states distance ds − 1 from start, but it
cannot contain states that are closer than that to start. Let
OPENF (ds−1) denote the set of states open in the forward
direction that are distance ds−1 from start. In the example
OPENF (ds−1) = {D}. Likewise the backward-direction
OPEN list might contain some states distance dg − 1 from
goal, but it cannot contain states that are closer to goal. De-
fine OPENB(dg − 1) to be the set of states open in the
backward direction that are distance dg − 1 from goal. In
the example OPENB(dg − 1) = {E}. OPENF (ds − 1)
and OPENB(dg − 1) are the two sets of states that must
be examined to determine the shortest path between start
and goal. The two sets must be disjoint, otherwise B would
not be the first state open in both directions. However, there
might be an edge connecting a state in OPENF (ds − 1) to
a state in OPENB(dg − 1), and if there is, that would con-
stitute a path from start to goal of length ds + dg − 1, one
shorter than the path found through B.

Therefore, what remains to be done once the two search
frontiers for bidirectional breadth-first search have met at
state B is to search for an edge connecting a state in
OPENF (ds− 1) to a state in OPENB(dg − 1). If an edge
is found connecting state D ∈ OPENF (ds − 1) and state
E ∈ OPENB(dg − 1), it is part of the truly shortest path,
the remaining portions of the path being the segments from
start to D and from goal to E. If no such edge is found
then the path through B is optimal.

For bidirectional Dijkstra’s algorithm a similar stopping
criterion applies (Helgason & Kennington 1993; Nicholson
1966), but for bidirectional A* a different stopping condition
is needed (Kwa 1989; Pohl 1969). Every meeting of the two
search frontiers constitutes a path from start to goal and
therefore provides an upper bound on the optimal path cost.
If fupper is the cost of best known path from start to goal
bidirectional A* must continue until fupper is less than or
equal to the minimum f -value of any state in the OPEN
list for either search direction or the sum of the minimum g-

values in each OPEN list.4 When these conditions occur,
it will be impossible to find a path costing less than fupper

so search can stop and return the path whose cost is fupper.

&%

'$
start
hF = 6

6 -¾

3
6

?

&%

'$
B

hF = 1
hB = 1

6-¾

&%

'$
goal

hB = 6

3
6

?

&%

'$
A

hF = 6 3
-¾

&%

'$
C

hB = 6

Figure 7: A* will close B in both directions before finding
the least-cost path.

Figure 7 gives an example where bidirectional A* will
close a state, B, in both directions before finding the opti-
mal path, start − A − C − goal. hF is the heuristic for
the forward search, hB is the heuristic for the backward
search. Both are consistent. start is expanded in the for-
ward direction, adding B to the forward-direction OPEN
list with f(B) = 7 and adding A with f(A) = 9. Likewise
when goal is expanded B will be added to the backward-
direction OPEN list with f(B) = 7 and C will be added
with f(C) = 9. B has the smallest f -value in both OPEN
lists and therefore will now be expanded in both directions,
finding a path of cost 12 from start to goal. Since there are
entries on both OPEN lists with f < 12 search continues.
A is expanded in the forward direction, making contact with
the frontier of the backward search at state C. This path has
cost 9. Because at least one of the OPEN lists has no state
with a smaller f -value search can terminate and return this
as the optimal path.

Conclusions
This paper has examined five commonly held beliefs about
heuristic search, shown that they are all false, and provided
correct versions.

Acknowledgements
This research was supported in part by the Natural Sciences
and Engineering Research Council of Canada. Thanks to
David Furcy and Rich Korf for numerous suggestions for
improvements.

References
Bagchi, A., and Mahanti, A. 1983. Search algo-
rithms under different kinds of heuristics – a comparative
study. Journal of the Association of Computing Machinery
30(1):1–21.
Barr, A., and Feigenbaum, E. A., eds. 1981. The Handbook
of Artificial Intelligence (Volume 1). Addison-Wesley.

4The latter condition was brought to my attention by Rich Korf.



Bjornsson, Y.; Enzenberger, M.; Holte, R. C.; and Scha-
effer, J. 2005. Fringe Search: Beating A* at pathfinding
on game maps. In Proceedings of the IEEE Symposium on
Computational Intelligence and Games, 125–132.
Dechter, R., and Pearl, J. 1983. The optimality of A*
revisited. In Proceedings of the National Conference on
Artificial Intelligence (AAAI’83), 95–99.
Dijkstra, E. W. 1959. A note on two problems in connexion
with graphs. Numerische Mathematik 1:269–271.
Dinh, H. T.; Russell, A.; and Su, Y. 2007. On the value of
good advice: The complexity of A* search with accurate
heuristics. In Proceedings of AAAI, 1140–1145.
Hart, P.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems Science and Cyber-
netics 4:100–107.
Helgason, R. V., and Kennington, J. L. 1993. The one-to-
one shortest-path problem: An empirical analysis with the
two-tree Dijkstra algorithm. Computational Optimization
and Applications 1:47–75.
Holte, R. C.; Felner, A.; Newton, J.; Meshulam, R.;
and Furcy, D. 2006. Maximizing over multiple pattern
databases speeds up heuristic search. Artificial Intelligence
170:1123–1136.
Korf, R. E. 1985. Depth-first iterative-deepening: An op-
timal admissible tree search. Artificial Intelligence 27:97–
109.
Kwa, J. 1989. BS*: An admissible bidirectional staged
heuristic search algorithm. Artificial Intelligence 38(1):95–
109.
Manzini, G. 1995. BIDA*: An improved perimeter search
algorithm. Artificial Intelligence 75(2):347–360.
Martelli, A. 1977. On the complexity of admissible search
algorithms. Artificial Intelligence 8:1–13.
Mero, L. 1984. A heuristic search algorithm with modifi-
able estimate. Artificial Intelligence 23(1):13–27.
Nicholson, T. 1966. Finding the shortest route between
two points in a network. Computer Journal 9:275–280.
Nilsson, N. 1998. Artificial Intelligence: A New Synthesis.
Morgan Kaufman.
Pearl, J. 1984. Heuristics: Intelligent Search Strategies for
Computer Problem Solving. Addison-Wesley.
Pohl, I. 1969. Bi-directional and heuristic search in path
problems. Technical Report SLAC-104, Stanford Linear
Accelerator Center.
Zhang, Z.; Sturtevant, N.; Holte, R.; Schaeffer, J.; and Fel-
ner, A. 2009. A* search with inconsistent heuristics. In
Proceedings of the Twenty-first International Joint Confer-
ence on Artificial Intelligence (IJCAI’09).
Zhou, R., and Hansen, E. A. 2002. Memory-bounded A*
graph search. In Proceedings of the Fifteenth International
FLAIRS Conference (FLAIRS-02), 203–209.


