
Multimapping Abstractions and Hierarchical Heuristic Search

Bo Pang
Computing Science Department

University of Alberta
Edmonton, AB Canada T6G 2E8

(bpang@ualberta.ca)

Robert C. Holte
Computing Science Department

University of Alberta
Edmonton, AB Canada T6G 2E8

(holte@cs.ualberta.ca)

Abstract

In this paper we introduce a broadly applicable
method, called multimapping abstraction, that allows
multiple heuristic values for a state to be extracted
from one abstract state space. The key idea is to define
an abstraction to be a multimapping, i.e., a function
that maps a state in the original state space to a set
of states in the abstract space. We performed a large-
scale experiment on several benchmark state spaces to
compare the memory requirements and runtime of Hi-
erarchical IDA* (HIDA*) using multimapping domain
abstractions to HIDA* with individual domain abstrac-
tions and to HIDA* with multiple, independent domain
abstractions. Our results show that multimapping do-
main abstractions are superior to both alternatives in
terms of both memory usage and runtime.

Introduction
An abstraction φ of a state space S is a mapping of the
states of S to the states of another state space T (the
abstract space) such that the distance between any pair
of states in S is greater than or equal to the distance
between the corresponding states in T , i.e., d(s1, s2) ≥
d(φ(s1), φ(s2)), where d(x, y) is the cost of a least-cost
path from state x to state y. h(s) = d(φ(s), φ(goal)) is
therefore an admissible heuristic for searching in S.1

Techniques have been developed that allow several
heuristic lookups to be done for a state using a sin-
gle abstraction φ. These techniques use special prop-
erties of the state space to define “symmetry” map-
pings symi: S → S such that d(symi(s), goal), the
cost to reach the goal state from symi(s), is guaran-
teed to be the same as d(s, goal). With this guar-
antee, h(symi(s)) never overestimates d(s, goal) and
the heuristic hmax(s) = max(h(s),maxi{h(symi(s))})
is admissible. Commonly used sym functions are the
geometric symmetries in puzzles such as the 15-puzzle,
Rubik’s Cube, and TopSpin, and the “dual state”

Copyright c© 2012, Association for the Advancement of Ar-
tificial Intelligence (www.aaai.org). All rights reserved.

1The paper is written assuming there is just one goal
state, but multimapping abstractions apply equally well
when there is a goal condition, as long as the condition can
be abstracted properly.

function in permutation state spaces (Zahavi et al.
2008). General symmetry mappings, based on automor-
phisms (Domshlak, Katz, and Shleyfman 2012), could
also be used for this purpose. Substantial speedup can
result from taking the maximum over multiple heuristic
lookups in a single abstract space (Zahavi et al. 2008).

The main drawback of these techniques is that they
apply only to state spaces that contain symmetries.
The main contribution of the present paper is a general
technique, called “multimapping abstraction”, allowing
multiple heuristic lookups in the same abstract space to
be defined for a broad range of state spaces including
ones that do not contain symmetries. The key idea is to
define an abstraction to be a multimapping, i.e., a func-
tion that maps a state in the original space to a set of
states in the abstract space. This technique was briefly
introduced by us last year (Pang and Holte 2011) but
here we give a thorough discussion and evaluation.

The use of multiple abstractions is well-known and
the heuristic h(s) = maxi{d(φi(s), φi(goal))} has been
shown to be highly beneficial (Holte et al. 2006) when
the abstract distances in each abstract space are pre-
computed to create a pattern database (PDB) (Cul-
berson and Schaeffer 1996). In hierarchical heuristic
search, where abstract distances are computed during
search on an as-needed basis, the cost of computing
multiple abstract distances can outweigh the benefits of
having an improved heuristic value (Holte, Grajkowski,
and Tanner 2005). What differentiates multimapping
abstractions from the normal use of multiple abstrac-
tions is that in the latter each abstract space is entirely
distinct (φi : S → Ti with Ti 6= Tj if i 6= j) whereas
in our method the abstractions of a state are all in the
same abstract space (φ(s) ⊆ T ).

The difference between a multimapping and the use
of multiple, independent abstractions is illustated with
the 5-pancake puzzle in Figure 1. We wish to estimate
the distance from the state s = 〈3, 4, 2, 5, 1〉 (at the
bottom of the figure) to the goal state g = 〈1, 2, 3, 4, 5〉
(at the top of the figure). The two abstractions, φ1

and φ2, both map to the abstract space in which states
contain three 1s and two 2s; all such states are reach-
able from one another using the pancake puzzle oper-
ators. If treated as multiple independent abstractions,



1 1 2 1 2 1 2 1 2 1 

2 1 

2 2 1 1 1 1 1 1 2 2 

2 1 

4 3 

2 3 

1 2 3 4 5 

3 4 2 5 1 

Figure 1: Pancake puzzle with two domain abstractions.
φ1 maps constants 1, 2, and 3 to 1, and maps 4 and 5
to 2. φ2 maps 3, 4, and 5 to 1, and maps 1 and 2 to 2.
Rectangles are states in the original space, ovals are ab-
stract states. Dotted lines are distances between states
based on the same abstraction, thin solid lines are dis-
tances between states based on different abstractions.

h(s) would be computed using each abstraction sepa-
rately (the dotted lines in the figure) and the maximum
taken (4 in this example). If treated as a multimapping,
we would have φ(s) = {φ1(s), φ2(s)} and the heuristic
function would be defined as

h(s) = max
s′∈φ(s)

min
g′∈φ(g)

d(s′, g′)

Hence, all four distances between the abstract states
in the figure would be taken into account (the solid
diagonal lines as well as the dotted lines), producing
the value 3, the maximum of min(4, 3) and min(2, 3).

Given the same set of abstractions, multimapping
cannot produce a heuristic value larger than would be
produced by using them independently. The poten-
tial advantage of multimapping is computational. If
the abstract states generated by different abstractions
are reachable from each other, the memory and time
needed for computing the heuristic could be substan-
tially smaller for multimapping than for multiple ab-
stractions. For example, if the heuristic is stored as a
PDB, multimapping would build just one PDB whereas
the multiple abstraction approach would build and store
multiple copies of the PDB. Similar memory and time
savings are expected in the hierarchical heuristic search
setting (Holte, Grajkowski, and Tanner 2005), because
all the abstractions would share the same cache, as op-
posed to each having its own cache.

Compared to using a single abstraction mapping,
multimapping has the advantage that in computing
h(s) it takes the maximum abstract distance to goal
over all the states in φ(s). This advantage might be
offset by having a set of abstract goal states over which
distance is minimized. In this paper we present three
ways of reducing the negative effect due to this mini-
mization. An additional disadvantage of multimapping
compared to a single abstraction mapping is that com-

puting the heuristic is slower with multimapping be-
cause it computes more than one abstraction of a state
and abstract distance to goal.

We chose to evaluate multimapping abstraction in
the hierarchical heuristic search setting. Our experi-
ments show that Hierarchical IDA* with multimapping
abstractions solves problems using less time and less
memory than it does with a single abstraction or with
multiple, independent abstractions.

Multimapping Abstractions
A multimapping from S to T is a function, φ, that
maps each s ∈ S to a subset of T . If S and T are state
spaces, multimapping φ is an abstraction if, for every
s ∈ S, φ(s) is not the empty set and the following holds
for all pairs of states s, g ∈ S:

∀s′ ∈ φ(s) : min
g′∈φ(g)

d(s′, g′) ≤ d(s, g).

This definition of abstraction guarantees the admis-
sibility of h(s) for multimappings, as defined in the In-
troduction. Note that we do not require every abstract
goal state to be reachable from every abstract state:
admissibility is still guaranteed even if d(s′, g′) =∞ for
some s′ ∈ φ(s) and g′ ∈ φ(g). If exactly one g′ ∈ φ(g) is
reachable from each s′ ∈ φ(s), multimapping abstrac-
tion is equivalent to using multiple, independent ab-
stractions. When several, or all, of the g′ are reachable
from each s′ the two methods are different.

Lemma 1 If φ is a multimapping abstraction of state
space S then the heuristic h based on φ is consistent.

Proof. Let s and t be any two states in S and g
the goal state in S. We need to prove that h(s) ≤
d(s, t) + h(t). The key ideas behind the proof are il-
lustrated in Figure 2. Let s′ ∈ φ(s) and g′s ∈ φ(g) be
such that h(s) = d(s′, g′s) (i.e., these are the abstract
states that define the max and the min, respectively,
in the calculation of h(s)). Let t′ ∈ φ(t) be such that
d(s′, t′) ≤ d(s, t). The existence of t′ is guaranteed by
how we defined multimapping abstractions. Finally let
g′t ∈ argming′∈φ(g)d(t′, g′). From the definition of g′s
we have:

h(s) = d(s′, g′s) ≤ d(s′, g′t)

By the triangle inequality we get:

≤ d(s′, t′) + d(t′, g′t)

g’t s’ 

t’ 

≥ h(s) 

≤ h(t) ≤ d(s,t) 

Figure 2: Key ideas in the proof that h(s) is consistent.
t′ and g′t are chosen so that the inequalities shown hold.
h(s) ≤ d(s, t) + h(t) follows immediately from these
inequalities and the triangle inequality.



From the definition of t′ we get:

≤ d(s, t) + d(t′, g′t)

Finally, from the definition of h(t) we get:

≤ d(s, t) + h(t) �

The definition of h(s) for multimappings is inher-
ently asymmetric, even if distances in S are symmetric
(d(s, g) = d(g, s) for all s, g ∈ S). For example, suppose
φ maps s to two abstract states, s′1 and s′2, and maps
g to just one abstract state, g′. If g is the goal, then
the heuristic estimate of the distance between s and
g will be max(d(s′1, g

′), d(s′2, g
′)), but if s is the goal

then the heuristic estimate of the same distance will be
min(d(s′1, g

′), d(s′2, g
′)). A similar phenonemon occurs

with dual lookups: if sd is the dual of state s and g is
the goal, we are guaranteed d(sd, g) = d(s, g) and yet
it frequently happens that h(s) 6= h(sd) (Zahavi et al.
2008). This can be exploited by computing both heuris-
tic values and taking the maximum but we did not do
this in our experiments.

Ways to Define Multimapping Abstractions
One way to define a multimapping abstraction φ
is to use an ordinary abstraction ψ together with
a set of symmetry functions (as defined in the In-
troduction), sym1, ..., symn−1, and define φ(s) =
{ψ(s), ψ(sym1(s)), ..., ψ(symn−1(s))}. n is called φ’s
mapping factor. This is what has been described in the
past as multiple lookups in a single PDB.

A second way to create a multimapping is to use
the state-set abstraction method we presented last
year (Pang and Holte 2011). This method applies to
state spaces in which there are multiple occurrences of
the same constant in the representation of a state. The
idea is to replace some of the occurrences of each con-
stant by a special kind of symbol (see last year’s paper
for details). Because there are different ways of choos-
ing which occurrences are replaced, this naturally pro-
duces a multimapping. For example, if a state contains
three 1s and two 2s (examples of such states can be
seen in Figure 1) there are six ways to replace two of
the 1s and one of the 2s by special symbols x, y, and
z: state 〈1, 2, 1, 2, 1〉, for example, would be mapped to
〈x, y, z, 2, 1〉, 〈x, 2, 1, y, z〉, 〈1, x, y, 2, z〉 etc.

A third way to define a multimapping abstraction φ
is to use a set of ordinary abstractions, φ1, ..., φn, that
all map to the same abstract space and define φ(s) =
{φ1(s), ..., φn(s)}. Again, n is called φ’s mapping factor.
This is the method illustrated in Figure 1 and which we
will use to define multimappings in the rest of the paper.

Minimizing the Effect of Minimizing
The biggest weakness of multimapping compared to ei-
ther using a single abstraction or using multiple, in-
dependent abstractions, is the fact that in computing
h(s) it minimizes over the set of states in φ(g). This
is necessary to guarantee admissibility but can weaken

the heuristic so much that it is inferior to a heuristic
based on a single abstraction mapping. In this section
we will look at three ways to reduce the harmful effect
of this minimization: (1) choosing an appropriate map-
ping factor n, (2) Goal Aggregation (minimizing the
distance between the states in φ(g)), and (3) Remap-
ping (to prevent goal “creep” in hierarchical search).

Choosing a Mapping Factor
The mapping factor n affects the quality of the heuristic
produced by a multimapping in two ways. In comput-
ing h(s) a maximum is taken over all the states in φ(s)
so increasing the number of such states, i.e., the map-
ping factor, will increase the maximum, all other things
being equal. At the same time however, a minimum is
being taken over all the states in φ(g) so increasing the
mapping factor will make the minimum smaller. It is
hard to predict which of these effects will dominate in
general, but very large mapping factors will certainly
produce poor heuristics. This situation is analogous to
the effect of increasing the number of PDBs while keep-
ing the total memory usage constant when maximizing
over multiple PDBs (Holte et al. 2006). Increasing the
number of PDBs will increase the maximum, all other
things being equal, but in order to keep memory use
constant, increasing the number of PDBs means each
PDB must be smaller, which tends to decrease the val-
ues over which the maximum is taken.

To illustrate the effect on the heuristic when the map-
ping factor is increased, we ran a small experiment on
the 8-puzzle. Before describing the experiment, let us
review the notions of domain abstraction and granular-
ity. We represent an 8-puzzle state using 9 constants,
one for each of the 8 tiles and one for the blank. A
“domain abstraction” is a mapping of these constants
to a smaller set of constants. For example, φ3 in Ta-
ble 1 (bottom row) maps the blank to 0 and maps all
the tiles to 1. Applied to an 8-puzzle state, this pro-
duces an abstract state in which one position in the
puzzle is 0 and the rest are 1s. The “granularity” of
this domain abstraction is 〈8, 1〉 because 8 constants are
mapped to one abstract constant and 1 to the other. In
general a granularity is a vector of non-increasing val-
ues 〈k1, k2, ...〉 with ki indicating how many constants
in the original domain are mapped to the ith abstract
constant. When the total number of constants in the
original state space is clear from context, the 1s in the
granularity vector can be omitted. For example, for the
8-puzzle, granularity 〈6, 1, 1, 1〉 would be written as 〈6〉.

original blank 1 2 3 4 5 6 7 8
φ0 0 1 2 3 3 3 4 4 4
φ1 0 1 2 3 3 3 3 3 3
φ2 0 1 2 2 2 2 2 2 2
φ3 0 1 1 1 1 1 1 1 1

Table 1: Domain abstractions of the 8-puzzle.



n 1 2 3 4 5 24
avg. 3700 1824 1545 1610 1699 4101
std. 495 513 273 276 307 609

Table 2: Nodes Expanded for various mapping factors.

In this experiment we generated all 280 of the
〈3, 3, 2, 1〉 domain abstractions of the 8-puzzle that map
the blank to a different constant than any tile. For each
mapping factor n > 1 we generated a multimapping by
choosing n of these domain abstractions uniformly at
random. We evaluated the resulting heuristic by count-
ing the average number of 8-puzzle nodes expanded in
solving 500 test problems (randomly generated solvable
start states). We repeated this 280 times for each value
of n > 1. For n = 1 we evaluated each of the 280
domain abstractions individually. The average results
and standard deviations, truncated to integer values,
are shown in Table 2.

The entry for n = 1 shows the average performance
if no multimapping is done, i.e., if we just use one do-
main abstraction to define the heuristic. Using a mul-
timapping based on n = 2 domain abstractions reduces
the number of nodes expanded by 50%. The number of
nodes expanded decreases again when one more domain
abstraction is added (n = 3) but begins to increase af-
ter that. With n = 24, the number of nodes expanded
is worse than using a single abstraction.

Although this experiment involves just one state
space and tiny abstract spaces, we believe the general
lesson to be drawn is that multimapping will be most
effective when the mapping factor is quite small. In our
experiments, we use n = 3.

Goal Aggregation
The second technique to reduce the harmful effect of
minimizing over all the states in φ(g) is to choose φ so
that the maximum distance, ∆, between states in φ(g)
is as small as possible. We call this Goal Aggregation.
It is expected to be effective because ∆ is an upper
bound on the “harm” that can be done by taking the
minimum: for any abstract state s′,

max
g′∈φ(g)

d(s′, g′) ≤ ∆ + min
g′∈φ(g)

d(s′, g′).

For example, φ1(g) and φ2(g) in Figure 1 are just 1
move apart (reversing one of them produces the other)
and therefore the minimum distance to these goal states
must be within 1 of the distance to either one of them—
it was not a coincidence that h(s) using multimapping
in this example was only 1 smaller than h(s) using mul-
tiple independent abstractions.

In hierarchical heuristic search, mapping the goal to
abstract states that are near one another is expected
to have a second benefit: after very few searches at
the abstract level the entire space around all the goal
states will be fully explored and stored in cache, thereby
speeding up subsequent searches and possibly reducing
the number of cache entries as well.

original 1 2 3 4 5 6 7 8 9
φ1 1 1 1 1 2 3 4 5 6
φ2 2 1 1 1 1 3 4 5 6
φ3 3 2 1 1 1 1 4 5 6

Table 3: Abstractions based on Goal Aggregation.

Example 1 As an example of how to construct a set
of n domain abstractions based on Goal Aggregation
consider the 9-Pancake puzzle with a goal state of
〈1, 2, 3, 4, 5, 6, 7, 8, 9〉 and a mapping factor of n = 3.
The first abstraction, φ1, is picked arbitrarily and ap-
plied to the goal state to produce state s′1. Using φ1

from Table 3, s′1 would be 〈1, 1, 1, 1, 2, 3, 4, 5, 6〉. Next,
pick any two operators and apply them separately to
s′1 to produce two adjacent abstract states, e.g., s′2 =
〈2, 1, 1, 1, 1, 3, 4, 5, 6〉 and s′3 = 〈3, 2, 1, 1, 1, 1, 4, 5, 6〉.
Each of these abstract states uniquely defines an ab-
straction, φ2 and φ3 in Table 3, that will map the goal
to them (e.g., φ2(goal) = s′2).

For each state space there is a limit on how small ∆
can be. We have seen that ∆ = 1 is possible for the
pancake puzzle. This is not possible for the 8-puzzle
for any abstraction that keeps enough information to
allow the exact location of the blank to be determined
because distinct states that have the blank in the same
location are at least four moves from one another, so ∆
must be 4 or more. ∆ = 4 still makes the states “close”
to one another, relatively speaking, since the average
distance to the goal state in a 〈3, 3〉 abstraction of the
8-puzzle is 16. In the Blocks World our goal state has
all the blocks in one stack. Our Blocks World has a
hand to pick up and put down blocks, so 8 moves are
required to reach a different state with a single stack
(the top two blocks have to swap positions) so ∆ must
be 8 or more. If the mapping factor is 3, ∆ must be
at least 12 because the top three blocks need to be re-
arranged to generate a third state with all the blocks in
one stack. With 8 blocks and a 〈3, 3〉 abstraction, the
average distance to goal is 24.7, so ∆ = 12 is too large
for Goal Aggregation to be useful.

Remapping
In hierarchical heuristic search there is a sequence of
increasingly abstract spaces, T0, T1, ..., TL starting with
the original state space T0 = S (the “base level”), with
each space connected to the next by some sort of ab-
straction mapping. φi denotes the abstraction that
maps Ti to Ti+1. As usual, exact distances in space
Ti+1 are used as a heuristic to guide search in Ti.

Assume that φ0 is a multimapping with a mapping
factor of n. If φ1 is also a multimapping with a mapping
factor of n there could be as many as n2 goal states in
T2, with the consequence that the heuristic for guiding
search in T1 is very weak. To avoid this proliferation
of abstract goal states, we use normal abstraction map-
pings, not multimappings, for all φi except φ0. That
way there will be at most n goal states at each level.



This does not entirely solve the problem because, as
discussed above, a critical factor is the distance between
the different goal states relative to the average distance
between states. Since the latter is decreasing as we
move up the abstraction hierarchy, it is important for
the distance between goal states to decrease at least as
quickly. In early experiments we did nothing to control
this and found that the heuristics became very weak
very quickly, especially in the larger state spaces.

Our solution, called “Remapping”, is to choose φ1

so that there is only one goal state in T2. In other
words, we choose φ1 so that φ1(g′) = φ1(g′′) for all
g′, g′′ ∈ φ0(g). For example, suppose in the pancake
puzzle that φ0 has a mapping factor of n = 2 and that
the two domain abstractions that define φ0, φ0

1 and φ0
2,

agree on how to map all the pancakes except pancakes
1, 2, and 3. φ0

1 maps pancakes 1 and 2 to 1′ and maps
pancake 3 to 2′, whereas φ0

2 maps pancake 1 to 1′ and
maps pancakes 2 and 3 to 2′. φ0 maps the one goal state
in T0 to two goal states in T1. To ensure that there is
just one goal state in T2, it suffices to choose any φ1

that maps constants 1′ and 2′ to the same constant.
Goal Aggregation and Remapping interact with one

another, because the former dictates what the abstract
goal states shall be and the latter dictates how those will
be mapped to the next higher level. Used together, the
granularity of φ2 is entirely determined by Goal Aggre-
gation’s choices. This can be problematic if a particular
granularity for T2 is required, as in our experiments.

Example 2 If Remapping is applied to the three ab-
stract goal states that Goal Aggregation produces in Ex-
ample 1, it must map constants 1, 2, and 3 to the same
constant, which produces a granularity of at least 〈6〉.
If we required that level to have a granularity of 〈5〉
we would need to abandon one of the two techniques or
choose a different φ1 for the Goal Aggregation process.

Experiment Design

The aim of our experiments is to compare multimap-
ping abstractions with single abstraction mappings and
with multiple, independent abstractions in a hierarchi-
cal search setting. We use domain abstractions and the
Hierarchical IDA* (HIDA*) search algorithm (Holte,
Grajkowski, and Tanner 2005). We use MM-HIDA*,
DA-HIDA*, and MA-HIDA* to refer to HIDA* when
it is used with multimapping abstractions, single do-
main abstractions, and multiple, independent abstrac-
tions, respectively. The abstraction hierarchies used for
each version of HIDA* are illustrated in Figure 3. For
DA-HIDA*, every abstract level consists of only one
abstract space and each state, at every level, maps to
just one state at the next higher level. For MA-HIDA*,
each abstract level consists of three separate abstract
spaces; each state in the original space is mapped to
one abstract state in each space at the first level of
abstraction, and each abstract state, at every level, is
mapped to just one abstract state at the next higher
level. For MM-HIDA*, there is just one abstract space

MM-HIDA* MA-HIDA* DA-HIDA* 

Original Space 

Abstract Level 1 

Abstract Level 2 

…
 

…
 

…
 

Figure 3: Abstraction hierarchies for the HIDA* vari-
ants.

at each level; each state in the original space is mapped
to n = 3 abstract states in the first level of abstraction,
and each abstract state, at every level, is mapped to
just one abstract state at the next higher level.

Our experiments were run on a computer with two
AMD Opteron 250 (2.4GHz) CPUs and 8GB of mem-
ory. We used four problem domains: the sliding-tile
puzzle, the Pancake puzzle, Topspin, and the Blocks
World with a hand and distinct table positions, a vari-
ant of the Blocks World in which there are a fixed num-
ber of positions on the table (3 in our experiments) that
are distinguishable from each other, so that having all
the blocks in a stack in position 1 is not the same state
as having them all in a stack in position 2.

We use two sizes of each problem domain. The
smaller size allows a large number of abstraction hi-
erarchies of each type to be compared, giving us a very
accurate picture of the range of possible behaviours of
the different abstraction techniques. The larger size
allows us to test, in a limited manner, whether the ob-
servations made in the small versions continue to hold
as the state spaces scale up in size.

Experiments with Small State Spaces

The smaller state spaces used in this experiment were
the 3 × 3 sliding-tile puzzle (8-puzzle), the 9-Pancake
puzzle, (10,4)-Topspin (10 tokens and a turnstile of
width 4), and the (8,3)-Blocks World (8 blocks, 3 dis-
tinct table positions). The abstraction hierarchies al-
ways had four levels and the first-level (φ0) abstractions
all had a granularity of 〈3, 3〉.2 A typical 〈3, 3〉 domain
abstraction of the 8-puzzle is φ0 in Table 1.

The mapping to the second abstract level (φ1) was
created by mapping the two abstract constants that
had 3 things mapped to them by φ0 to the same ab-
stract constant and leaving the other abstract constants
unique, for a granularity of 〈6〉; see φ1 in Table 1. The
mapping to the third abstract level (φ2) adds one ad-
ditional constant to the group of six that are indistin-
guishable at the second level (granularity 〈7〉), and the

2In the standard encoding of TopSpin token 0 is regarded
as being fixed in the leftmost position so there are only 9
tokens of consequence in (10,4)-Topspin.



DA MM MA0

500

1000

1500

2000

2500

3000

3500

4000

4500

No
de

s 
Ex

pa
nd

ed
 a

t B
as

e 
Le

ve
l

(a) 8-Puzzle

DA MM MA0

1000

2000

3000

4000

5000

No
de

s 
Ex

pa
nd

ed
 a

t B
as

e 
Le

ve
l

(b) 9-Pancake

DA MM MA0

100

200

300

400

500

600

700

800

900

No
de

s 
Ex

pa
nd

ed
 a

t B
as

e 
Le

ve
l

(c) (10,4)-Topspin

DA MM MA102

103

104

105

106

No
de

s 
Ex

pa
nd

ed
 a

t B
as

e 
Le

ve
l

(d) (8,3)-Blocks World

1

Figure 4: Average number of nodes expanded at the base level. The y-axis in (d) is on a log scale.

mapping to the fourth and final level (φ3) adds one
more constant to this group (granularity 〈8〉).

For the 8-puzzle we used all 280 of the 〈3, 3〉 domain
abstractions that do not map the blank and a tile to-
gether. For the other domains we used the analogous
abstractions.3 For DA-HIDA*, each abstraction was
used on its own. For MM-HIDA* on the 8-puzzle, Pan-
cake puzzle, and Topspin, we used each of these ab-
stractions together with two abstractions of the same
granularity determined by Goal Aggregation. If the
combination of Goal Aggregation and Remapping pro-
duced a second level of abstraction that did not have
granularity 〈6〉 (the granularity of DA-HIDA*’s second
level) we did not include it in our experiments. Thus
there are fewer abstraction hierarchies in our experi-
ments for MM-HIDA* than for the other methods (100
for the 8-puzzle, 68 for the 9-Pancake puzzle, and just
13 for (10,4)-Topspin). For MM-HIDA* on the Blocks
World, we created 280 sets of domain abstractions by
repeating the following process 280 times: (1) choose 6
blocks at random; (2) create three domain abstractions
by separating the 6 blocks into two groups of three at
random in three different ways. This process guaran-
tees that the first-level abstractions have granularity
〈3, 3〉 and that the second-level abstraction has granu-
larity 〈6〉 when Remapping is applied. For MA-HIDA*
on all the state spaces, we used the same first-level ab-
stractions as MM-HIDA*. These performed uniformly
better, in terms of CPU time, than choosing sets of
three domain abstractions at random.

For each state space, we used 500 random, solvable
start states as test cases. Each version of HIDA* was
run with each abstraction hierarchy. We measured the
average memory used by HIDA* (number of cache en-
tries at all levels of the hierarchy), and the average CPU
time (in seconds) needed to solve the test cases. We
also measured the average number of nodes expanded
at the base level as an indication of the effectiveness
of the heuristic defined by the first level of abstraction.
The results are shown in Figures 4 to 6 using box plots.
For each state space there are three box plots, one for
each type of abstraction (DA on the left, MM in the

3There are 840 such abstractions for the 9-Pancake puz-
zle, 280 for the other domains.

middle, MA on the right). The box for a given ab-
straction method contains exactly half the abstraction
hierarchies used for that method; the horizontal line
inside the box shows the median performance and the
bottom and top of the box represent the 75th and 25th
percentiles respectively (lower is better in all these fig-
ures). The vertical line below the box extends to the
best performance or to 1.5 times the interquartile range
(1.5×IQR), whichever is larger. If there are results be-
yond 1.5× IQR, they are plotted as individual points.
The vertical line and points above the box are analo-
gous, but for the performances in the bottom quartile.

Results in all four state spaces show exactly the same
trends. Figure 4 shows that the heuristics created
by multimapping abstractions are far superior to the
heuristics created by a single domain abstraction and
inferior to the heuristics created by multiple, indepen-
dent abstractions. If pattern databases were being used,
these results indicate that search would be faster with
heuristics defined by multiple abstractions than with
heuristics defined by multimapping since the number of
nodes expanded at the base level is strongly correlated
with CPU time when PDBs are used. The advantage
of multimapping over multiple PDBs in this setting is
that it requires n times less memory and preprocessing
time if the same n abstractions are used.

However, in the hierarchical search setting the num-
ber of nodes expanded at the base level does not entirely
dictate CPU time because the cost to search in the ab-
stract levels can be substantial. In Figure 5 we see
that MM-HIDA* is 2–3.5 times faster than MA-HIDA*
and somewhat faster than DA-HIDA*. Memory usage
follows the same pattern (Figure 6): MM-HIDA* uses
considerably less memory than MA-HIDA* and slightly
less than DA-HIDA*. In terms of both CPU time and
memory, MM-HIDA* is the best of the three methods.

Experiments With Large State Spaces

Our final experiments are with large versions of the
problem domains: the normal 4 × 4 sliding-tile puzzle
(15-puzzle) and the “glued tile” variant in which tile 9
(second column, second row from the bottom) cannot
be moved from its goal location, the 14-Pancake Puz-
zle, (15,4)-Topspin, and the (12,3)-Blocks World. We



DA MM MA0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

CP
U 

Ti
m

e 
(s

)

(a) 8-Puzzle

DA MM MA

0.2

0.3

0.4

0.5

0.6

CP
U 

Ti
m

e 
(s

)

(b) 9-Pancake

DA MM MA0.0

0.2

0.4

0.6

0.8

1.0

1.2

CP
U 

Ti
m

e 
(s

)

(c) (10,4)-Topspin

DA MM MA0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

CP
U 

Ti
m

e 
(s

)

(d) (8,3)-Blocks World

1

Figure 5: Average CPU time (seconds).

DA MM MA2000

3000

4000

5000

6000

7000

8000

9000

10000

M
em

or
y 

Us
ag

e 
(E

nt
rie

s)

(a) 8-Puzzle

DA MM MA4000

6000

8000

10000

12000

14000

16000

M
em

or
y 

Us
ag

e 
(E

nt
rie

s)

(b) 9-Pancake

DA MM MA5000

10000

15000

20000

25000

30000

35000

40000

M
em

or
y 

Us
ag

e 
(E

nt
rie

s)
(c) (10,4)-Topspin

DA MM MA0

5000

10000

15000

20000

25000

30000

M
em

or
y 

Us
ag

e 
(E

nt
rie

s)

(d) (8,3)-Blocks World

1

Figure 6: Average memory used (number of cache entries).

used 100 random, solvable start states as test cases; for
the 15-puzzle these were the standard test cases (Korf
1985). For each state space, we hand-generated 5 “rea-
sonable” abstraction hierarchies for each abstraction
method (DA, MM, and MA). The granularity of the
abstraction hierarchies for DA-HIDA* and MM-HIDA*
were identical at all levels. The granularity of the
first-level abstraction was 〈6, 2〉 for the 15-Puzzle, 14-
Pancake puzzle, and (15,4)-Topspin, and 〈5〉 for the
(12,3)-Blocks world. Each successive level reduced the
number of abstract constants by one. The uppermost
abstract level had just one abstract constant except
for the 15-puzzle where it had two, “blank” and “not
blank”. For MM-HIDA* we always used Remapping
and we also used Goal Aggregation except on the Blocks
World. MA-HIDA* used the same abstractions as MM-
HIDA* except on the 15-puzzle where it was necessary
to use a coarser-grained first-level abstraction, 〈8, 3〉,
to fit in memory. Since the number of abstractions is
small and non-random, the purpose of this experiment
is to test if the conclusions drawn on the small state
spaces apply equally well to reasonable, hand-crafted
abstractions of larger state spaces.

Tables 4 to 8 present the average number of nodes ex-
panded at the base level, the average CPU time (in sec-
onds) and average memory needed (number of cache en-
tries at all levels) for each abstraction hierarchy tested.
The first column indicates with a check mark the type
of abstraction used in each row. The rows are sorted
by average CPU time. The conclusions drawn from the

DA MM MA Nodes CPU(s) Mem (×107)
X 3,669,519 768.2 2.784
X 1,667,888 782.0 2.758
X 7,945,182 798.1 2.802

X 20,571,539 806.4 2.758
X 5,545,817 914.6 2.687
X 24,547,168 1,029.4 2.753

X 2,910,399 1,040.6 4.430
X 552,289 1,224.7 3.673

X 54,322,104 1,253.1 4.453
X 906,147 1,344.0 4.297
X 789,905 1,360.4 4.295
X 1,007,468 1,557.2 5.092
X 926,771 1,616.2 4.435

X 1,178,024 1,681.8 5.978
X 16,793,560 1,909.7 5.834

Table 4: Results for the 15-Puzzle.

experiments on the smaller state spaces are confirmed
here. MM-HIDA* is the fastest method in all domains
except the Blocks World, where it is slower than the
two fastest DA-HIDA*s but still occupies 3 of the top 6
positions. MA-HIDA* is much slower than the fastest
method even though it expands far fewer nodes at the
base level than the other methods. Also as before, mem-
ory usage is highly correlated with CPU time.

Conclusions
We have introduced multimapping abstractions and
proven that they produce admissible, consistent heuris-



DA MM MA Nodes CPU(s) Mem (×106)
X 78,519 54.2 2.176

X 1,172,133 58.4 2.143
X 3,104,027 60.3 1.529
X 3,777,306 65.4 2.163

X 4,247,013 73.8 2.287
X 345,574 73.9 2.474

X 9,108,588 74.2 2.087
X 23,194,543 98.5 2.144
X 20,474,809 103.5 1.469

X 12,363,685 104.2 2.189
X 29,862 112.8 4.196
X 1,405,176 114.3 3.269
X 1,502,349 115.2 4.307
X 4,333,375 131.3 4.430
X 108,947 134.9 4.687

Table 5: Results for the Glued 15-puzzle.

DA MM MA Nodes CPU(s) Mem (×106)
X 587,931 284.6 7.646
X 454,853 293.3 7.976
X 480,962 304.8 7.934
X 217,028 312.2 7.887
X 206,675 322.1 7.758

X 1,369,956 397.9 8.892
X 1,176,908 401.2 8.778
X 2,861,843 507.0 11.745

X 118,043 525.1 13.870
X 1,818,312 531.6 11.780

X 114,719 535.1 14.197
X 79,196 540.1 13.837
X 46,751 565.3 13.849
X 102,077 593.6 14.350

X 1,253,427 635.1 11.963

Table 6: Results for the 14-Pancake Puzzle.

DA MM MA Nodes CPU(s) Mem (×106)
X 11,870 143.5 5.390
X 12,312 147.6 5.433
X 12,471 150.7 5.387
X 12,849 153.8 5.328
X 13,498 160.8 5.456

X 47,907 183.3 6.649
X 52,970 186.8 6.676
X 47,905 197.2 6.604
X 43,576 199.5 6.720
X 47,959 217.5 6.651

X 3,506 279.7 9.838
X 3,541 286.0 9.783
X 3,338 300.5 9.874
X 3,458 301.5 9.783
X 3,759 309.8 10.018

Table 7: Results for (15,4)-TopSpin.

tics. We have described three different ways of defin-
ing multimapping abstractions in practice and exam-
ined one in depth—multiple domain abstractions that
all map to the same abstract space. We proposed three

DA MM MA Nodes CPU(s) Mem (×106)
X 43,896 77.4 2.062
X 589,399 106.4 2.464

X 6,202,221 123.1 2.117
X 2,109 126.3 3.506

X 1,065,182 131.8 3.514
X 3,138,661 138.1 3.033

X 6,310,237 143.7 2.930
X 6,271,341 147.6 3.531

X 7,647,763 166.4 2.538
X 22,149 187.4 4.441

X 18,038,164 194.9 3.510
X 5,214 204.1 5.295

X 13,099,419 218.9 3.648
X 46,776 222.8 6.567
X 48,895 229.3 6.690

Table 8: Results for the (12,3)-Blocks World.

methods for overcoming the main potential weakness
of multimapping abstractions: (1) using a small map-
ping factor, (2) Goal Aggregation, and (3) Remapping.
Our experiments showed that HIDA* with multimap-
ping abstractions solved problems using less time and
less memory than HIDA* with one domain abstraction
or with multiple, independent domain abstractions.

Acknowledgements
We gratefully acknowledge the financial support of the
Natural Sciences and Engineering Research Council.

References
Culberson, J. C., and Schaeffer, J. 1996. Searching
with pattern databases. In Proceedings of the Canadian
Conference on Artificial Intelligence, volume 1081 of
LNAI, 402–416. Springer.
Domshlak, C.; Katz, M.; and Shleyfman, A. 2012. En-
hanced symmetry breaking in cost-optimal planning as
forward search. In Proc. 22nd International Conference
on Automated Planning and Scheduling (ICAPS 2012).
Holte, R. C.; Felner, A.; Newton, J.; Meshulam, R.;
and Furcy, D. 2006. Maximizing over multiple pattern
databases speeds up heuristic search. Artificial Intelli-
gence 170(16-17):1123–1136.
Holte, R. C.; Grajkowski, J.; and Tanner, B. 2005. Hi-
erarchical heuristic search revisited. In Proc. 6th Intl.
Symposium on Abstraction, Reformulation and Approx-
imation (SARA 2005), volume 3607 of LNAI, 121–133.
Korf, R. E. 1985. Depth-first iterative-deepening: An
optimal admissible tree search. Artificial Intelligence
27(1):97–109.
Pang, B., and Holte, R. C. 2011. State-set search. In
Symposium on Combinatorial Search (SoCS).
Zahavi, U.; Felner, A.; Holte, R. C.; and Schaeffer, J.
2008. Duality in permutation state spaces and the dual
search algorithm. Artificial Intelligence 172(4-5):514–
540.


