
Using Coarse State Space Abstractions to Detect Mutex Pairs

Mehdi Sadeqi
Computer Science Department

University of Regina
Regina, SK, Canada S4S 0A2

(sadeqi2m@cs.uregina.ca)

Robert C. Holte
Computing Science Department

University of Alberta
Edmonton, AB, Canada T6G 2E8

(holte@cs.ualberta.ca)

Sandra Zilles
Computer Science Department

University of Regina
Regina, SK, Canada S4S 0A2

(zilles@cs.uregina.ca)

Abstract

A mutex pair in a state space is a pair of assignments of val-
ues to state variables that does not occur in any reachable
state. Detecting mutex pairs is a problem that has been ad-
dressed frequently in the planning literature. In this paper, we
present the Coarse Abstraction (CA) method, a new efficient
method for detecting mutex pairs in state spaces represented
with multi-valued variables. CA detects mutex pairs based on
exhaustive search in a collection of very small abstract state
spaces. While in general CA may miss some mutex pairs, we
provide a formal guarantee that CA finds all mutex pairs un-
der a simple and quite natural condition. Using this formal
guarantee, we prove that these properties hold for a range of
common benchmark domains. We also show that CA can find
all mutex pairs even if the formal guarantee is not satisfied.
Finally, we show that CA’s effectiveness depends on how the
domain is represented, and that it can fail to find mutex pairs
in some domains and representations.

Introduction
In the context of planning or search in a given state space,
the term mutually exclusive pair (of facts), or mutex pair for
short, refers to a pair of variable-value assignments that do
not co-occur in any state that is reachable from the start state.
In the case of a binary state space representation, such a pair
corresponds to a pair of grounded atoms,1 but in this paper
we will assume multi-valued domain representations. For
instance, in a Blocks World domain, in which named blocks
can be stacked onto each other, an example of a mutex pair
would be a pair of grounded atoms (or of variable-value as-
signments) that represents the facts Block a is on top of Block
b and Block b is on top of Block a.

Mutex pair detection has long been in use for improv-
ing the performance of planning systems, in particular for
the purpose of search space pruning. In regression plan-
ning, nodes in the search space correspond to partial assign-
ments of state variables, and edges correspond to actions.
Search proceeds backward from the goal until reaching a
node whose assignment is true in the start state. One way

Copyright © 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1We treat propositional logic variables, such as those commonly
used in planning, as variables that can take on one of two values
(true and false).

of making regression planning more efficient is to prune
nodes that are “impossible” in the sense that they contain
mutex pairs. The original success of mutex detection in
Graphplan (Blum and Furst 1995) led to the development
of many efficient planners incorporating mutex detection,
such as temporal planners, different SAT-based planners and
planners based on constraint programming. SATPLAN04
(Kautz 2004), BLACKBOX (Kautz and Selman 1996), DIS-
COPLAN (Gerevini and Schubert 2000), MIPS (Edelkamp
and Helmert 2001) and FD (Helmert 2006) are some ex-
amples of planners that successfully integrated mutex con-
straints in their reasoning process (see the section Related
Work for more details).

Mutex detection can also be applied for improving the
quality of heuristic functions derived from abstractions.
Heuristic functions estimate, for any state s, the distance
from s to a goal state. Heuristic search algorithms like A*
and IDA* are guaranteed to find optimal solutions when us-
ing admissible heuristics, i.e., heuristic functions that never
overestimate the true distances. One popular method for ob-
taining admissible heuristics is to create an abstract version
of the original state space and to use the true distances in the
abstract state space as heuristic values. The key to the effi-
ciency of A* and IDA* is the quality of the heuristic values:
the closer the heuristic values are to the true distances, the
more effective they will be in speeding up search. Unfor-
tunately, standard efficient methods known for enumerating
abstract state spaces may include abstract states to which no
reachable original state is mapped by the abstraction. Such
abstract states are called spurious; they may create short-cuts
in the abstract space and thus lower heuristic values (Zilles
and Holte 2010). In many cases, spurious states contain mu-
tex pairs. Hence, by removing some of the shortcuts created
by spurious abstract states, mutex detection can help to im-
prove the quality of a heuristic resulting from an abstraction,
and thus to speed up search.

We call a mutex detection method “complete” if it finds
all mutex pairs. Existing mutex pair detection algorithms
usually make a compromise in the number of detected mu-
tex pairs for the computational complexity of the algorithm.
Various methods differ in the number and type of mutex
pairs they detect (see Related Work for more details). To
the best of our knowledge, there are no formal conditions
discussed in the literature under which any of the existing



mutex detection methods are guaranteed to be complete.
In this paper, we propose the Coarse Abstraction method

(CA), a new, efficient method that uses very coarse abstract
versions of the original state space to find mutex pairs. CA
is guaranteed to be complete under certain natural, easy-to-
test conditions on the state space representation. We demon-
strate that CA is complete for specific representations of
many of the typical benchmark domains (namely permuta-
tion problems, such as Scanalyzer, and non-trivial Sliding-
Tile Puzzles). Empirically, we also verify that CA is very ef-
ficient on the Scanalyzer and Sliding-Tile Puzzle domains. It
is important to emphasize two remarkable properties of the
formal condition under which CA’s completeness is guaran-
teed: (i) it is very natural—we expect it to apply to many
domain representations, and (ii) the literature offers efficient
methods for verifying the formal condition by simple syn-
tactic checks of the operators in the domain representation
(Zilles and Holte 2010). We further prove that CA can be
complete even in cases when the conditions guaranteeing its
completeness do not apply, for example in the case of a par-
ticular representation of the Blocks World with distinct table
positions.

In a small experiment on the Towers of Hanoi, on a differ-
ent representation of the Blocks World, and on a constrained
version of the Sliding-Tile Puzzle, CA performed poorly. It
is interesting that CA is provably complete on one represen-
tation of the Blocks World, while it finds none of the mutex
pairs in another representation of the same domain. This
shows that the success of CA depends on both the domain
and on how the domain is represented. We conclude that CA
is not a general-purpose mutex detection method, but that it
clearly outperforms existing methods in certain domain rep-
resentations.

Most mutex-detection methods apply only to binary-
valued domain representations, not to multi-valued ones (an
exception is a recent study by Solèr (2012)). CA is the op-
posite, it is applicable only to multi-valued representations.
This is a minor limitation since many planners convert their
given binary representation into a multi-valued representa-
tion in a preprocessing step.

Coarse Abstraction Mutex Detection
Assume that states are represented as variable-value pairs
in m variables. We denote the variables with V1, . . . , Vm,
so that the state vector 〈v1, . . . , vm〉 corresponds to the as-
signment vector (V1 = v1, . . . , Vm = vm). Sometimes we
also use V,W,X, Y to denote state variables. Propositional
logic variables, such as those commonly used in planning,
are treated as variables that can take on one of two values
(true and false).

With this convention, we define the notions of reachable
state and mutex pair formally.

Definition 1 Let s∗ be any fixed state. Let Σ be the value
set of the state variables.

Since s∗ is fixed, we will simply call a state reachable if it
is reachable from s∗. For any i, j with 1 ≤ i < j ≤ m and
any vi, vj ∈ Σ, the partial original state (Vi = vi, Vj = vj)
is a reachable pair if there are vk, for k ∈ {1, . . . ,m}\{i, j}

such that 〈v1, . . . , vm〉 is a reachable state; otherwise (Vi =
vi, Vj = vj) is a mutex pair.

Our mutex detection method builds on the notion of ab-
straction; in particular it uses domain abstractions.

Definition 2 An abstraction mapping Ψ maps any state s in
the original state space to an abstract state Ψ(s). A do-
main abstraction Ψf is induced by a mapping f on Σ in
the following way: if f maps values v to values f(v), and
s = 〈v1, . . . , vm〉 then Ψf (s) = 〈f(v1), . . . , f(vm)〉.

For example, if s = 〈1, 2, 2, 0〉, f(1) = f(2) = dc, and
f(0) = 0, then Ψf (s) = 〈dc, dc, dc, 0〉. Here dc can be
thought of as a “don’t care” value, i.e., the domain abstrac-
tion Ψf keeps the value 0 unchanged and maps the values 1
and 2 to “don’t care”.

As is standard practice in planning and heuristic search,
we assume that edges between abstract states are generated
by applying the abstraction mapping to the operators.

The Coarse Abstraction (CA) method for identifying mu-
tex pairs builds on the following fact: if V and W are any
two state variables and there is a reachable state with vari-
able assignments V = v and W = w, then any abstraction
Ψ that does not project out V and W will create a reachable
abstract state with V = Ψ(v) and W = Ψ(w). The set of
pairs (V = v, W = w) that are reachable in the original
space is therefore a subset of the pre-image2 of the set of
pairs (V = Ψ(v), W = Ψ(w)) reachable in the abstract
space Ψ. This means that any pair (V = v, W = w) in
the original space that is not in this pre-image is certainly a
mutex pair.

CA works as follows. For each pair (v, w) of constants in
Σ (including pairs of the form (v, v)):

1. define the domain abstraction Ψv,w (called a coarse ab-
straction) that leaves v and w distinct (or only v for pairs
of the form (v, v)) and maps all other constants to the
same constant (“don’t care”),

2. enumerate the abstract states that are reachable from
Ψv,w(s∗) (using exhaustive search from Ψv,w(s∗)),

3. for each pair (X,Y ) of state variables such that (X =
v, Y = w) occurs in a state thus enumerated mark (X =
v, Y = w) as “non-mutex”.

4. mark each remaining pair (X = x, Y = y) as “mutex”.

A Guarantee on CA
While any pair considered mutex by CA is indeed mutex,
CA is in general not guaranteed to find all mutex pairs. This
section is concerned with finding conditions on the domain
representation that (i) guarantee that CA will find all mutex
pairs and (ii) can be easily checked, e.g., by a syntactic check
of the operators that can be computed efficiently.

One such guarantee can be obtained under a simple and
quite natural condition, based on the notion of spurious
state. A spurious state is an abstract state that is reachable

2The pre-image of the set of pairs (V = Ψ(v), W = Ψ(w)) is
the set of all pairs in the original state space that are mapped to this
set by the abstraction.



from the abstract version of s∗, while it has no reachable
pre-image under the abstraction mapping (Zilles and Holte
2010).

Definition 3 Let Ψ be any abstraction mapping. An ab-
stract state a is called spurious if a is reachable from Ψ(s∗),
but there is no original state t such that Ψ(t) = a and t is
reachable from s∗.

It turns out that the absence of spurious states in the coarse
abstractions used by CA is a sufficient condition for CA to
be complete.

Theorem 1 If all the coarse abstractions are free of spuri-
ous states, then CA finds all mutex pairs.

Proof Suppose CA considers the variable assignment (V =
v, W = w) non-mutex. This means that (V = v, W = w)
is marked non-mutex through the coarse abstraction Ψv,w.
Since Ψv,w generates no spurious states, there is a reachable
state in the original state space that has the assignment (V =
v, W = w). Hence this pair is non-mutex. Consequently,
no mutex pair is mistakenly flagged “non-mutex”. �

Unfortunately, deciding whether or not an abstrac-
tion contains spurious states is PSPACE-complete in gen-
eral (Zilles and Holte 2010). In special cases though this de-
cision problem can be solved efficiently via simple syntactic
checks on the operators. Zilles and Holte (2010) provide a
number of such conditions, each of which guarantees an ab-
straction of a particular type (domain abstraction or projec-
tion) to be free of spurious states. The following is a special
case of one of their general conditions.

Theorem 2 (Zilles and Holte 2010) Suppose no original
operator has any preconditions. Then any domain abstrac-
tion is free of spurious states.

In other words, if every operator applies to every state,
then any domain abstraction is free of spurious states. This
theorem applies to natural representations of any state space
that is a finite mathematical group, such as Rubik’s Cube,
the pancake puzzle, TopSpin, and Scanalyzer (Helmert and
Lasinger 2010). CA is therefore complete on all such do-
mains. In the rest of the paper we use Scanalyzer as a repre-
sentative of such state spaces.

We also show, using domain-specific knowledge, that the
coarse abstractions of two common representations of non-
trivial versions of the Sliding-Tile Puzzle satisfy the condi-
tions of Theorem 1, thereby proving that CA is complete on
this domain as well.

Application Case 1: Scanalyzer
In the n-Belt Scanalyzer domain, a state describes the place-
ment of n plant batches on n conveyor belts along with in-
formation indicating which batches have been “analyzed”.
(For a detailed description of this domain, see (Helmert and
Lasinger 2010).) In a rotate move, a batch can be switched
from one conveyor belt in the upper half (A, B and C in Fig-
ure 1) to one in the lower half (D, E and F in Figure 1) and
vice versa. In a rotate-and-analyze move, a batch can si-
multaneously be transferred and analyzed from the topmost
conveyor belt to the bottommost one while the batch at the

bottommost conveyor belt is moved to the topmost one with-
out any change to its “analyze” state. Once a batch is ana-
lyzed, it will remain analyzed.

Figure 1: 6-Belt Scanalyzer, from (Helmert and Lasinger
2010). Arrows indicate legal moves.

We use a representation of the n-Belt Scanalyzer in pro-
duction system vector notation (PSVN) (Hernádvölgyi and
Holte 1999). Here, a state is encoded as a vector of length
2n in which each belt corresponds to two components: the
name of the batch on that belt and a flag indicating whether
that batch is analyzed. This representation uses a set of op-
erators each of which applies to every state in the domain.

The state s∗, again the standard goal state for this do-
main, corresponds to having all plant batches analyzed and
replaced back on their original conveyor belts.

We can prove that with the above PSVN representation of
Scanalyzer, CA will detect all mutex pairs, independent of
the size of the domain.

Theorem 3 CA finds all mutex pairs in the Scanalyzer do-
main of any size, using the representation described above.

We will show that the coarse abstractions are free of spu-
rious states and thus obtain Theorem 3 immediately from
Theorem 1.

Since no operator in our encoding of the Scanalyzer do-
main has any preconditions, Theorem 2 immediately proves
the following lemma.

Lemma 1 No coarse abstraction of the Scanalyzer domain
of any size, using the representation described above, con-
tains any spurious states.

Together with Theorem 1 we obtain that CA is complete
on our representation of the Scanalyzer domain, i.e., Theo-
rem 3 is proven. The same proof applies to any state space
representation in which the operators have no preconditions.

Application Case 2: Sliding-Tile Puzzle
The n × `-Sliding-Tile Puzzle represents an n × ` grid, in
which tiles numbered 1 through n · ` − 1 each fill one grid
position and the remaining grid position is blank. A move
consists of swapping the blank with an adjacent tile. Fig-
ure 2 shows a state of the 3 × 3-puzzle, often also called
8-puzzle, where the blank is depicted with a black grid po-
sition.

We use two representations of this domain.
In the standard representation, states are represented as

vectors of length n·`, where each component corresponds to



Figure 2: A state of the 3× 3-puzzle.

a grid position and contains a value in {1, 2, . . . , n·`−1, B},
representing the number of the tile in this position (B, if the
position is blank). For example, the state in Figure 2 would
be represented by 〈3, 4, 5, 1, B, 6, 7, 2, 8〉. In the dual rep-
resentation of the n × `-puzzle, a vector component corre-
sponds to either the blank or one of the tiles. The value of
a vector component is an integer in {1, . . . , n · `}, repre-
senting the grid position at which the corresponding tile is
located. For example, the state in Figure 2 would be en-
coded as 〈4, 8, 1, 2, 3, 6, 7, 9, 5〉, where the ith component,
for i ≤ 8, holds the position of tile i, and the 9th component
holds the position of the blank.

As the state s∗, we choose a goal state for this domain,
which contains the blank in the bottom right corner of the
grid, while the remaining grid positions contain tiles with
increasing numbers, row by row from top to bottom, each
row being filled from left to right. However, all our results
on this domain hold true independent of the choice of s∗.

We will now prove that CA is complete on both represen-
tations of the Sliding-Tile Puzzle.

Theorem 4 CA finds all mutex pairs in any Sliding-Tile
Puzzle domain of size n × ` for n, ` ≥ 2 and n × ` ≥ 5,
represented in standard representation or in dual represen-
tation.

The proof consists of the following two lemmas, which
state that, for either case of domain representation, the
coarse abstractions are free of spurious states. Theorem 4
then is an immediate consequence of Theorem 1. The proofs
of the two lemmas will make use of the fact that swapping
the locations of two numbered tiles in a state of a Sliding-
Tile Puzzle domain will always change the “parity” of a
state, mapping a reachable state to an unreachable one and
vice versa (Johnson and Story 1879).

Lemma 2 No coarse abstraction of any Sliding-Tile Puzzle
domain of size n × ` for n, ` ≥ 2 and n × ` ≥ 5, given in
standard representation, contains any spurious states.

Proof Let Ψi,j (with i, j ∈ {blank, 1, ..., (n × ` − 1)}) be
a coarse abstraction of a Sliding-Tile Puzzle domain of size
n × ` for n, ` ≥ 2 and n × ` ≥ 5, given in standard repre-
sentation, and let t be a resulting abstract state. Let i and j
be the symbols kept by the coarse abstraction Ψi,j , i.e., the
symbols not mapped to “don’t care”.

Let s be any original state in the pre-image of t. Consider
the state s′ that is created from s by swapping the locations
of two distinct numbered tiles named i′ and j′ chosen from
the set of tile names that Ψi,j maps to “don’t care”, i.e., any
two numbered tiles whose names are not in {i, j}. Since
there are at least 4 tiles when n, ` ≥ 2 and n × ` ≥ 5,
two such tiles must exist. Since the names i′ and j′ of the
swapped tiles are both mapped to “don’t care” by Ψi,j , the

state s′ is in the pre-image of t as well. Consequently, the
pre-image of t contains two states s and s′ that can be ob-
tained from each other by swapping two tiles. One of these
states must be reachable. This implies that t is not spurious.
�

Lemma 3 No coarse abstraction of any Sliding-Tile Puzzle
domain of size n × ` for n, ` ≥ 2 and n × ` ≥ 5, given in
dual representation, contains any spurious states.

Proof The proof is similar to that of Lemma 2—one simply
replaces all references to tile names by location names. �

It should be noted that Lemmas 2 and 3 do not transfer
to the case of the 2×2-Sliding-Tile Puzzle or any n × 1-
Sliding-Tile Puzzle for n > 2. In either of these cases, for
the standard representation, any coarse abstraction that maps
at least one tile and the blank to “don’t care” will allow one
of the tiles whose name is kept distinct to move to a position
that it cannot assume in any reachable state. For example,
in the 3×1 version of the puzzle, if both the blank and tile
2 are mapped to the same name, then tile 1 can assume any
position on the grid, while one position is impossible for tile
1 in any reachable state. A similar argument applies to the
dual representation.

Note also that our verification of CA’s completeness on
the Sliding-Tile Puzzle is not as straightforward as for the
Scanalyzer and requires domain-specific knowledge. How-
ever, we believe that the generality of the condition in Theo-
rem 1 (and of the conditions guaranteeing there are no spu-
rious states, derived by Zilles and Holte (2010)) will allow
a formal guarantee of completeness of CA to be widely ap-
plicable to cases in which it can be tested efficiently and
without domain-specific knowledge.

Other Cases in Which CA Is Complete
The condition in Theorem 1 is not necessary—it can happen
that some coarse abstractions generate spurious states and
yet CA is complete. An example of this phenomenon is ob-
tained from a particular representation of the Blocks World
with distinct table positions.

Application Case 3: Blocks World with Distinct
Table Positions
In the n-Blocks World with p distinct table positions, a state
is a constellation of n blocks stacked on a table with p named
(distinct) positions, where up to one block can be located in
a “hand”. In every move, either the empty hand picks up the
top block off a stack of blocks (including a stack of size 1)
or the hand places the block it is holding onto an empty table
position or on top of a stack of blocks.

In one representation of this domain, called the top repre-
sentation, a state vector has 1+p+n components, each con-
taining either the value 0 or one of n possible block names
(1, ..., n): (i) the value of the first component is the name of
the block in the hand or 0 if the hand is free, (ii) the values
of the next p components are the names of the blocks im-
mediately on table positions 1 through p, (iii) the values of
the last n components are the names of the blocks immedi-
ately on top of blocks a, b, c, . . ., where the value 0 means



“no block”. For example, Figure 3 illustrates a state of the
4-Blocks World with 4 distinct table positions, encoded by

〈c, 0, 0, b, d, 0, 0, 0, a〉 .

in top presentation.

Figure 3: A state of the 4-Blocks World with 4 distinct table
positions.

The state s∗ has all blocks stacked up in increasing lexi-
cographical order, starting with block a, on table position 1.

Consider the coarse abstraction Ψ0,a, which keeps the
name of the block a and the value 0 distinct, and maps all
other constants to “don’t care”. The (non-spurious) abstract
state corresponding to the reachable state depicted in Fig-
ure 3 would then be encoded as 〈dc, 0, 0, dc, dc, 0, 0, 0, a〉,
where dc is for “don’t care”. The original state s =
〈0, a, 0, 0, 0, c, 0, d, b〉 is reachable from the state in Figure 3:
one places c first onto table position 2, then picks up a and
places it on position 1, moves c to the top of a, and then
stacks d and b onto c. Consequently, the abstract version
Ψ0,a(s) = 〈0, a, 0, 0, 0, dc, 0, dc, dc〉 is not spurious. The
operator

〈0,−,−,−,−, b, 0,−,−〉 → 〈b,−,−,−,−, 0, 0,−,−〉

picking up block b from the top of block a does not ap-
ply to s, but its abstract version, in which b is replaced
by dc, does apply to Ψ0,a(s), producing the abstract state
〈dc, a, 0, 0, 0, 0, 0, dc, dc〉, which corresponds to Block a be-
ing the only block on the table, while there is no block on top
of Block a. The latter state is clearly spurious—no reachable
original state maps to it. Ψ0,a(s) will be generated by CA.
Note, however, that although it is spurious, Ψ0,a(s) contains
no mutex pairs involving the constants 0 and a, and therefore
the generation of this state by CA will not result in CA mis-
takenly inferring that some mutex pair involving 0 and/or a
is reachable.

In fact, when running CA on this domain with 9, 12, and
15 blocks, each with 3 table positions, we empirically veri-
fied that CA finds all mutex pairs.3 This first of all provides
proof of our claim above, stating that the condition in The-
orem 1 is not necessary. Second, it suggests that conditions
other than those given in Theorem 1 can yield a guarantee
for CA’s completeness.

A closer look at the top representation of the Blocks
World with Table Positions reveals such a condition.4 Every

3We verified this by manually calculating the actual number of
mutex pairs using domain-specific knowledge and then comparing
that number to the number of mutex pairs found by CA.

4In our representation, all operators have preconditions testing

operator in this representation has two properties that help
the CA method: (i) each operator swaps the values of two
of the variables that are tested in its preconditions, all other
values remain unchanged; and (ii) any variable not tested by
the precondition of an operator can be assigned any value
other than the ones swapped by the operator.

We can prove that these two properties are sufficient for
CA to find all mutex pairs:

Observation 1 Suppose each operator o in the domain rep-
resentation satisfies the following two properties, where
(Vi1 = v1, . . . , Vik = vk) are the preconditions of o.

1. The postconditions of o are of the form (Vi1 =
w1, . . . , Vik = wk), where wi = vi for all values of i
except two, i′ and i′′, and for those indices wi′ = vi′′ and
wi′′ = vi′ . (o leaves the values of all variables other than
Vi′ and Vi′′ unchanged.)

2. Let W be a variable different from every Vij and w a
value different from vi′ and vi′′ . Then (W = w, Vi1 =
v1, . . . , Vik = vk) is contained in some reachable state.

Then CA finds all mutex pairs.

Proof Let v, w ∈ Σ and let t be any abstract state reach-
able from Ψv,w(s∗) in the abstract state space created by
the coarse abstraction Ψv,w. Suppose that t contains some
pair of the form (V = v,W = w). We will prove by in-
duction on the abstract distance d of t from Ψv,w(s∗) that
(V = v,W = w) is not mutex.

The base case, d = 0, occurs when t = Ψv,w(s∗). Since
s∗ is reachable, any pair of the form (V = v,W = w) in t is
not mutex. Now suppose no abstract state at distance d from
Ψv,w(s∗) contains a mutex pair of the form (V = v,W =
w), and let t be at distance d + 1. Then there is an operator
o whose abstract version Ψv,w(o) maps an abstract state t′

at distance d to t. The pair (V = v,W = w) in t can be
produced by Ψv,w(o) in three different ways.

First, (V = v,W = w) in t might be produced because
Ψv,w(o) does not change the values of V or W . In this case
(V = v,W = w) occurs in t′ and so, by the inductive hy-
pothesis, it is not mutex.

Second, (V = v,W = w) in t might be produced because
Ψv,w(o) swaps the values of V and W . By property (1),
then (V = w,W = v) occurs in the preconditions of o and
therefore, by property (2), there is at least one reachable state
s in the original space to which o applies. In particular, in s
we will have (V = w,W = v), and therefore there will be a
reachable state, o(s), in which (V = v,W = w). Therefore
(V = v,W = w) is not mutex.

three variables: (a) what the hand is holding (must be 0 for pickup
operators and must be the name of a block for put down operators);
(b) what is in top of the block to be picked up or put down (must
be 0); (c) what is on top of the block or table position from which
the block is being picked up (must be the name of the block being
picked up) or onto which it is being put down (must be 0). In other
words, the preconditions of all operators test three variables: two of
them must be 0 and the third must be the name of the block being
moved. The operators swap what is in the hand with what is in the
position onto which the block is being placed or from which it is
being picked up.



The only other way to produce (V = v,W = w) in t by
Ψv,w(o) is if one of these variables (say W ) is unchanged
by Ψv,w(o) but the other one (V ) is changed. This means V
obtains its value of v in t by swapping its value, x, in t′, with
some variable X that has the value v in t′. We may assume
x is not equal to v or w for otherwise one of the other two
cases would apply with respect to the variables V and X . In
other words, in t′ we have (X = v, V = x,W = w), with
x /∈ {v, w}, and the preconditions of o test (X = v, V = x),
and possibly other variables, but not necessarily W = w. By
property (2), we know there is at least one reachable state
s in the original space which satisfies W = w in addition
to all the preconditions of o. Therefore o will apply to s
and o(s) will have (X = x, V = v,W = w). Therefore
(V = v,W = w) is not mutex.

We have thus shown that at no distance d ≥ 0 is there a
reachable abstract state containing a mutex pair, and there-
fore CA will not label any mutex pair as “non-mutex”. It
will therefore find all mutex pairs. �

Note that even in cases when Observation 1 applies, a
coarse abstraction may contain spurious states, but these
spurious states will not contain any mutex pairs formed by
the values kept distinct by the coarse abstraction. Observa-
tion 1 is presumably of less practical use than Theorem 1,
because establishing the properties required by Observa-
tion 1 involves proving certain reachability conditions. We
use this observation here simply to formally explain why CA
is complete on the top representation of the Blocks World.

Theorem 5 CA finds all mutex pairs in any Blocks World
with Table Positions domain, represented in standard repre-
sentation or in dual representation.

Empirical Evaluation
We conducted two small sets of experiments. First, we tested
CA on the domains described above, to verify that its run-
ning time was acceptable. Second, for some cases in which
our formal guarantees on CA do not apply, we conducted
a small experimental study to see whether CA can still be
effective.

For the first experiment, we ran CA on the 5×5-Sliding-
Tile Puzzle in both representations, on the 28-belt Scana-
lyzer, and on the 26-Blocks World with 3 Table Positions in
top representation. With standard computers, CA takes on
the order of a minute for the 5×5-Sliding-Tile Puzzle and
about 2 minutes on the other two domains. This suggests
that CA is very efficient. The reason is that in all these cases
the number of states in every coarse abstraction is very small
and therefore the amount of time required to enumerate a
small number of coarse abstract state spaces is not large. For
example, for the 28-belt Scanalyzer, there are 30 constant
symbols (one for each belt and two for the analyzed status),
resulting in

(
30
2

)
+ 30 = 465 coarse abstractions. Most of

these coarse abstractions have about 750 abstract states.
For the second experiment, we chose a different repre-

sentation of the Blocks World with distinct table positions,
as well as two new domains. The particular representations
were intentionally chosen so that many mutex pairs exist;
hence they are not necessarily the most natural or the most

compact. It should be noted that Theorem 1 does not apply
to any of the domains (in the chosen representations) in this
experiment.

In our experiments, we fix the choice of the state s∗ with
respect to which we consider states and pairs reachable al-
ways to be the standard goal state.

Domain 1: Blocks World with Distinct Table Positions
In an alternative representation of the n-Blocks World with
p table positions, called the height representation, a state
is encoded as a vector of length 1 + 3n + p, where (i) the
value of the first component is the name of the block in the
hand or 0 if the hand is free, (ii) for every block a sequence
of 3 components encodes the table position, the height of
the block within a stack of blocks (where 1 means that the
block is sitting directly on the table), and whether there is
any block on top of this block (value 1) or not (value 0),
(iii) the last p components are flags stating, for each table
position, whether there are any blocks on top of it (value 1)
or not (value 0). For example, the state in Figure 3 would be
encoded as

〈c, 4, 2, 0, 3, 1, 0, 0, 0, 0, 4, 1, 1, 0, 0, 1, 1〉 .
Domain 2: Towers of Hanoi In the n-Disks Towers of
Hanoi with p Pegs, a state describes the constellation of n
disks stacked on p named pegs. In every move, a disk can be
transferred from one peg to another provided that all disks
on the destination peg are larger than the moving disk.

In our representation of the n-Towers of Hanoi with p
Pegs, called the stack representation, a state is encoded as
a vector of length p(n + 1), where for every peg a se-
quence of n + 1 components encodes the number of disks
and the names of disks stacked on this peg (starting from
the bottom of the peg); for a stack of k disks, the last
n− k components for this peg contain a 0 where the value 0
means “no disk”. For example, Figure 4 illustrates a state
of the 4-Disk Towers of Hanoi with 3 Pegs, encoded by
〈1, 4, 0, 0, 0; 1, 3, 0, 0, 0; 2, 2, 1, 0, 0〉 in the stack represen-
tation.

Figure 4: A state of the 4-Disk Towers of Hanoi with 3 Pegs.

This domain is a good example for our reason to choose
seemingly “unnatural” domain representations. A “natural”
approach for representing the n-Disk Towers of Hanoi with
p Pegs would be to encode every state as a vector of n com-
ponents. Each component corresponds to a disk; its value
in {1, 2, ..., p} represents the peg on which the disk is lo-
cated. For example, the state in Figure 4 would be encoded
as 〈3, 3, 2, 1〉. However, this domain representation does not
result in any mutex pairs, because every one of the possible
pn vectors corresponds to a reachable original state. Hence
this domain representation is not useful for our studies.



Domain 3: Constrained Sliding-Tile Puzzle We modi-
fied the Sliding-Tile Puzzle by disallowing some of the tile
movements. Two versions of this “Constrained-Movement
Sliding-Tile Puzzle” were used—see Figure 5—encoded in
the same way as the standard representation of the original
Sliding-Tile Puzzle. Note that, in both constrained versions,
all the operators are invertible.

Figure 5: 3 × 4 and 4 × 5 Constrained-Movement Sliding-
Tile Puzzle. The arrows indicate the possible movements of
the tiles, based on the blank location.

Experimental Results
As shown above, CA is complete and very efficient for spe-
cific representations of many of the typical benchmark do-
mains. However, in our further experiments, CA performed
very poorly. CA does not find any mutex pairs on the 9-
Blocks World with 3 Table Positions in the height represen-
tation (despite the fact that it is complete on the same domain
in top representation) or on either version of the Constrained
Sliding-Tile Puzzle. It finds some mutex pairs, but not all of
them, for the Towers of Hanoi domain with 9 and 12 disks,
each with 4 pegs.

The reason is not that mutex pairs are scarce in these do-
mains: the 9-Blocks World with 3 Table Positions in height
representation has 10,986 reachable pairs and 1,218 mutex
pairs; the Towers of Hanoi with 9 disks on 4 pegs has 19,512
reachable pairs and 58,488 mutex pairs; the version with 12
disks has 50,627 reachable pairs and 177,467 mutex pairs,
as we calculated using domain-specific knowledge.

We conclude that the success of CA depends on both the
domain and its representation. It can fail badly, but it is the
method of choice whenever the formal guarantee from The-
orem 1 applies, since it is the only existing method that is
provably guaranteed to be complete under known non-trivial
circumstances.

Related Work
Mutex detection was originally suggested for finding pair-
wise conflicts between actions and between facts within
Graphplan (Blum and Furst 1995). In Graphplan, two ac-
tions or two facts at the same level of reasoning are con-
sidered mutually exclusive if there is no valid plan con-
taining both actions or making both facts true at the same
time. Inspired by Graphplan’s method, many planners
have adopted some sort of mutex detection in their reason-
ing process, thereby achieving significant improvement in
their performance. The methods range from being hand-
coded for a domain to being domain-independent and fully

automatic (Vidal and Geffner 2006), (Kautz and Selman
1998), (McCluskey and Porteous 1997). The systems SAT-
PLAN04 (Kautz 2004), BLACKBOX (Kautz and Selman
1996), DISCOPLAN (Gerevini and Schubert 2000), MIPS
(Edelkamp and Helmert 2001), MaxPlan (Chen, Xing, and
Zhang 2007), FD (Helmert 2006), and those introduced in
(Gerevini, Saetti, and Serina 2003) and (Penberthy and Weld
1994) are examples of planners using mutex detection.

State-of-the-art techniques for detecting mutexes in bi-
nary domain representation often use invariants. An invari-
ant is a property that holds true in all reachable states of a
state space and is usually detected by analyzing the problem
description in a process called domain analysis. Examples
of popular algorithms for deriving invariants are those used
in the planners MIPS (Edelkamp and Helmert 2001) and FD
(Helmert 2006), as well as those suggested by (Gerevini and
Schubert 1998), (Scholz 2000), (Rintanen 2000), and (Fox
and Long 1998). Rintanen’s invariant synthesis algorithm
generalizes the method used in HSP (Bonet and Geffner
1999). HSP is tailored to detect a certain type of mutex that
Graphplan misses. Fox and Long (2000) propose a modi-
fication to Graphplan to detect this type of mutex as well.
Constrained abstraction (Haslum, Bonet, and Geffner 2005)
uses particular types of invariants to detect some mutexes in
the description of an abstract state. For more background on
domain analysis and examples of constrained abstractions
using invariants the reader is referred to (Haslum 2006),
where mutex pairs are discussed as a special case of “at-
most-one” invariants consisting of only two atoms. In this
work, Haslum also introduces the h2 heuristic, which is a
state-of-the-art method for finding mutex pairs.

In temporal planning (Gerevini, Saetti, and Serina 2003),
one typically extends the notion of “mutex”. While the clas-
sical mutex definition only refers to conflicts at the same
time step, an extension to mutex detection is to look for con-
flicting actions and facts across different time steps, as im-
plemented in MaxPlan (Chen, Xing, and Zhang 2007) and
CPT (Vidal and Geffner 2006). Using domain-dependent
knowledge, distance-based constraints were extracted and
used in CPT. Here, if a pair of constraints is mutex, a dis-
tance value indicates the minimum number of reasoning
steps that must lie in between them. LONDEX (used in
MaxPlan) was later proposed for automatically detecting
such distance-based constraints. Another feature of LON-
DEX constraints is that they are extracted from a multi-
valued domain formulation (MDF) (Helmert 2006) of a
problem domain, using domain transition graphs.

We compared the performance of LONDEX on a binary
representation of the Sliding-Tile Puzzle to that of CA on
the two multi-valued representations presented above. For
any version of the puzzle of size n × `, for n, ` ≥ 2 and
n × ` ≥ 5, LONDEX always finds only half of the mutex
pairs (e.g., 22,680 of 45,360 for the 6 × 6-puzzle). Our CA
approach is known to be complete in this case in both multi-
valued representations, i.e., it finds all mutexes.

Mutex detection methods usually achieve efficiency at the
cost of missing mutex constraints. For example, since Bonet
and Geffner’s (1999) algorithm works on grounded repre-
sentations, in order to make it practical, the search for mutex



pairs is systematically limited to a restricted class. Graph-
plan produces a different, yet still incomplete set of mutex
constraints. The algorithm by Gerevini and Schubert (1998)
generates many classes of invariants in addition to mutexes,
but at the cost of decreasing the performance.

Conclusions
We introduced CA, a mutex detection method applicable to
multi-valued domain representations, which is guaranteed
to detect all mutex pairs under certain natural and easy-to-
check conditions. CA is based on exhaustive search in tiny
abstractions of the original state space, which makes it a sim-
ple and efficient approach.

While we formulated and evaluated CA only for mutex
pairs, its fundamental idea can be used to detect mutexes of
higher order as well (e.g., triples of variable-value assign-
ments that do not occur in any reachable state)—our formal
guarantee of completeness given by Theorem 1 will still ap-
ply. It remains to be tested to which order of mutexes the
approach scales. Another issue of future research is to find
further natural and easy to check conditions under which CA
is provably complete.

References
Blum, A. L., and Furst, M. L. 1995. Fast planning through
planning graph analysis. Artificial Intelligence 90(1):1636–
1642.
Bonet, B., and Geffner, H. 1999. Planning as heuristic
search: New results. In Proceedings of ECP-99, 360–372.
Springer.
Chen, Y.; Xing, Z.; and Zhang, W. 2007. Long-distance mu-
tual exclusion for propositional planning. In Proceedings of
the 20th International Joint Conference on Artificial Intelli-
gence (IJCAI 2007), 1840–1845.
Edelkamp, S., and Helmert, M. 2001. MIPS: The
Model-Checking Integrated Planning System. AI Magazine
22(3):67–72.
Fox, M., and Long, D. 1998. The automatic inference of
state invariants in TIM. J. Artif. Intell. Res. 9:367–421.
Gerevini, A., and Schubert, L. K. 1998. Inferring state con-
straints for domain-independent planning. In AAAI/IAAI,
905–912.
Gerevini, A., and Schubert, L. K. 2000. Discovering
state constraints in DISCOPLAN: Some new results. In
AAAI/IAAI, 761–767.
Gerevini, A.; Saetti, A.; and Serina, I. 2003. Planning
through stochastic local search and temporal action graphs
in lpg. J. Artif. Int. Res. 20:239–290.
Haslum, P.; Bonet, B.; and Geffner, H. 2005. New admissi-
ble heuristics for domain-independent planning. In Proceed-
ings of the 20th AAAI Conference on Artificial Intelligence,
1163–1168.
Haslum, P. 2006. Admissible Heuristics for Automated Plan-
ning. Linköping Studies in Science and Technology: Disser-
tations. Department of Computer and Information Science,
Linköpings Universitet.

Helmert, M., and Lasinger, H. 2010. The Scanalyzer
domain: Greenhouse logistics as a planning problem. In
ICAPS, 234–237.
Helmert, M. 2006. The Fast Downward planning system. J.
Artif. Intell. Res. (JAIR) 26:191–246.
Hernádvölgyi, I., and Holte, R. 1999. PSVN: A vector repre-
sentation for production systems. Technical Report TR-99-
04, Department of Computer Science, University of Ottawa.
Johnson, W. W., and Story, W. E. 1879. Notes on the ”15”
puzzle. American Journal of Mathematics 2(4):397–404.
Kautz, H., and Selman, B. 1996. Pushing the envelope:
Planning, propositional logic, and stochastic search. 1194–
1201. AAAI Press.
Kautz, H. A., and Selman, B. 1998. The role of domain-
specific knowledge in the planning as satisfiability frame-
work. In AIPS, 181–189.
Kautz, H. 2004. SATPLAN04: Planning as satisfiability. In
In Proceedings of IPC4, ICAPS.
McCluskey, T. L., and Porteous, J. M. 1997. Engineering
and compiling planning domain models to promote validity
and efficiency. Artif. Intell. 95(1):1–65.
Penberthy, J. S., and Weld, D. S. 1994. Temporal planning
with continuous change. In AAAI, 1010–1015.
Rintanen, J. 2000. An iterative algorithm for synthesizing
invariants. In Proceedings of the 17th National Conference
on Artificial Intelligence and 12th Conference on on Inno-
vative Applications of Artificial Intelligence, 806–811.
Scholz, U. 2000. Extracting state constraints from pddl-like
planning domains. In Proceedings of the AIPS Workshop on
Analyzing and Exploiting Domain Knowledge for Efficient
Planning, 43–48.
Solèr, M. 2012. Refining abstraction heuristics with mu-
texes, Bachelor thesis, University of Basel.
Vidal, V., and Geffner, H. 2006. Branching and pruning:
An optimal temporal POCL planner based on constraint pro-
gramming. Artif. Intell. 170:298–335.
Zilles, S., and Holte, R. C. 2010. The computational com-
plexity of avoiding spurious states in state space abstraction.
Artificial Intelligence 174:1072–1092.


