
Abstract: Block A* and Any-angle Path-Planning

Peter Yap and Neil Burch and Robert C. Holte and Jonathan Schaeffer
Computing Science Department

University of Alberta
Edmonton, Alberta, Canada T6G 2E8

blueberrypete@gmail.com, {nburch, rholte, jonathan}@ualberta.ca

Abstract
We present three new ideas for grid-based path-planning al-
gorithms that improve the search speed and quality of the
paths found. First, we introduce a new type of database, the
Local Distance Database (LDDB), that contains distances be-
tween boundary points of a local neighborhood. Second, an
LDDB-based algorithm is introduced, called Block A*, that
calculates the optimal path between start and goal locations
given the local distances stored in the LDDB. Third, our ex-
perimental results for any-angle path planning in a wide va-
riety of test domains, including real game maps, show that
Block A* is faster than both A* and the previously best grid-
based any-angle search algorithm, Theta*.

1 Introduction
In a grid-based pathfinding problem, the search space is usu-
ally stored as a two-dimensional array, where each cell can
be accessed by its Cartesian coordinates. In the simplest
(and most common) case, each cell has a binary value: ob-
structed (value 1) or unobstructed (value 0). Traditional grid
searches using A* results in un-human-like paths that are
confined to 45◦ heading changes. The solution is to search
for paths using algorithms that find smooth paths that can be
“any-angle”. We use this grid based path planning problem
as the setting to introduce our new research ideas.

This paper summarize the results of (Yap et al. 2011)
which makes the following contributions:
1. We generalize A* so that instead of expanding a node per

iteration, we expand a block (m× n region of nodes) per
iteration. We call this new algorithm Block A*; A* is a
special case of Block A* that uses a 1× 1 block.

2. Block A* uses a new type of database, the Local Distance
Database (LDDB), that stores the all-pairs-shortest-path
information between every pair of boundary block nodes,
for every type of block pattern.

3. Block A* is data-driven in the sense that it uses the
LDDB to compute g-values. By changing the LDDB,
different types of searches can be performed (e.g., Man-
hattan, octile, or any-angle paths). Once computed, one
LDDB can solve grid-maps of every size and configura-
tion.

Copyright c⃝ 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

3 4 5

3 +1 +2

+1 4 +1

+2 +1 5

+1

+2 +3 +4

+3

+2

+1+3

+3+2+3

+2

+2+3+4

3 4 5

5 4 5

7 6 5

4

5 6 7

6

6

68

767

6

789

=

=

=

3 4 5

64

5 6 7

1) Pre-Expansion

2) LDDB loaded 3) LDDB applied

4) Post-Expansion

Figure 1: Expanding a block using the LDDB.

A* and Block A* mainly differ in how each expand a
node (A*) or a block (Block A*). Consider Figure 1, where
we expand a 2 × 2 block of unobstructed tiles. For sim-
plicity, assume 4-way vertex moves with a zero heuristic.
1) Pre-Expansion: This block’s parent is from the south.
The ingress vertices (circled) are the vertices from the par-
ent block that have a finite g-value. The egress vertices are
all the vertices on the block boundary. 2) LDDB loaded: The
LDDB entry for this block pattern is retrieved, LDDB(y, x)
returns the length of the shortest path between any ingress
y (circled) and egress x for a given block obstacle pattern.
Since we have three ingress vertices, we use the LDDB for
each. The top block is the LDDB entry for the leftmost
ingress (g=3). The middle block is the LDDB entry for the
middle ingress (g=4). The bottom block is the LDDB entry
for the rightmost ingress (g=5). 3) LDDB applied: We add
y.g and LDDB(y, x) to find the g-value of the shortest path
from start to x via y. 4) Post-Expansion: For each egress
x, its new g-value is the minimum of its old g-value and the
smallest g-value from all paths via these ingress (circled).
x′.g = miny∈Y (x.g, y.g + LDDB(y, x)). e.g., short-
est path to the top-left vertex is min(5, 7, 9) = 5. Finally,
we place the four block neighbors of the expanded block
into the open list using the minupdated s′(s

′.g + s′.h) as its
heap value, where s′ are the boundary vertices shared by the



Data Set Algorithm Distance Time (s)
Random A* 274.7 0.00481

0% Theta* 260.8 0.00650
Block A* 261.8 0.00103

Random A* 275.3 0.00489
10% Theta* 261.6 0.00417

Block A* 262.5 0.00140
Random A* 276.4 0.00499

20 % Theta* 263.3 0.00494
Block A* 264.3 0.00185

Random A* 277.5 0.00518
30% Theta* 265.4 0.00632

Block A* 266.6 0.00240
Random A* 282.7 0.00584

40% Theta* 271.5 0.00904
Block A* 273.0 0.00315

Random A* 296.9 0.00825
50% Theta* 286.2 0.01484

Block A* 287.8 0.00468
Starcraft A* 300.2 0.01268
(random) Theta* 285.7 0.11304

Block A* 286.8 0.00506
Baldur’s A* 248.7 0.00334
Gate 2 Theta* 237.2 0.01796

(scenarios) Block A* 238.0 0.00147
Dragon Age A* 409.0 0.00478
(scenarios) Theta* 392.3 0.02697

Block A* 393.9 0.00226

Table 1: Comparing algorithm performance

neighboring block and the expanded block.
In the domain of any-angle search, paths are not confined

to 45◦ heading changes and are “any-angle”. Both Theta*
(Daniel et al. 2010) and Block A* do not guarantee the
ground-truth optimal path, however their solutions are al-
ways better than or equal to A*’s path. Theta* is exactly the
same as A* except it does an extra line of sight (LOS) check
per node expansion. Thus it is always slower than A* per
expansion. Block A* avoids this expensive LOS check by
relying on its LDDB.

2 Experimental Results
We start experimenting on a 500 × 500 grid filled with ran-
domly placed obstacles, with the probability of a cell being
an obstacle ranging from 0% to 50%. In all our experiments,
Block A* used the same 5 × 5 vertex block LDDB (1.2s
to compute; size 60MB). All algorithms used the Euclidean
distance heuristic.

All entries in the top part of Table 1 are averaged over
500 randomly generated obstacle maps, each with 100 path-
planning problems based on random start and goal vertices,
for a total of 50,000 data points. The bottom part of Table 1
is based on game maps. All results were obtained on a Core
2 2.8 GHz computer with 8 GB of memory. The time results
are statistically significant at 99% confidence.

For random maps, Block A* gives the best trade-off be-
tween path quality and runtime. In path quality, Theta* gives
the shortest paths, but is at best only 0.5% better than Block
A*. In runtime, Block A* is always the fastest algorithm, it

Map (size) Algorithm Distance Expanded Time (s)
1000x1000 A* 518.3 478457 0.38

Theta* 491.3 478096 22.57
Block A* 493.1 30032 0.04

Table 2: Using a zero heuristic in a large unobstructed area.

is always faster than A*, at least twice as fast. In contrast,
Theta*’s runtime significantly degrades as the number of
obstacles increases, particular after the 30% obstacle range
which reduces the effectiveness of the Euclidean heuristic.
As Theta* is slower per expansion than A*, its performance
diminishes when a poor heuristic causes it to search more
nodes. In particular, consider the case of a large random
map while searching with a zero heuristic. Table 2 compares
the algorithms on a 1000× 1000 grid using a zero heuristic
with 100 random start/goal pairs. Block A* is fastest, over
560 times faster than Theta* while giving path solutions of
comparable quality. Block A* has the benefit of being less
sensitive to a bad heuristic compared to A* and Theta*.

Finally, Block A* has also been applied to traditional tile
(4-way) and octile (8-way) pathfinding on game maps. By
changing the LDDB pre-computation, different constraints
are encoded into the search. In these experiments (not
shown), Block A* was consistently 2-3-fold faster than A*.

3 Conclusions
Block A* is a generalization of A* such that it expands a
block of nodes, instead of one node, per iteration. Its speed
gain derives from its smaller search tree using blocks and
pre-computed information stored in its LDDB.

From our experiments using real maps used in commer-
cial games, Block A* is consistently faster than both A* and
Theta* in both clogged and open areas. The real-time nature
of games demand a fast path planning algorithm; in the in-
dustry A* is considered too slow. Theta* is always slower
than A* per expansion, and much slower than A* when the
heuristic is bad, when the map is open or both. In contrast,
Block A* is always faster than A*. For all these criteria that
make path planning difficult in games—poor heuristics, and
real-time constraints—Block A* is always faster than both
Theta* and A*. As well, Block A* will always find shorter
and more realistic paths compared to A*; paths comparable
to the slower Theta*.

4 Acknowledgments
We thank the reviewers for their comments; and Nathan
Sturtevant and Dave Churchill for the game maps. This re-
search was funded by NSERC and iCORE.

References
Daniel, K.; Nash, A.; Koenig, S.; and Felner, A. 2010.
Theta*: Any-angle path planning on grids. JAIR 39:533–
579.
Yap, P.; Burch, N.; Holte, R.; and Schaeffer, J. 2011. Block
A*: Database-driven search with applications in any-angle
path-planning. In AAAI.


