
Automatic Move Pruning in General Single-Player Games

Neil Burch
Computing Science Department

University of Alberta
Edmonton, AB Canada T6G 2E8

nburch@ualberta.ca

Robert C. Holte
Computing Science Department

University of Alberta
Edmonton, AB Canada T6G 2E8

(holte@cs.ualberta.ca)

Abstract
Move pruning is a low-overhead technique for reducing the
size of a depth first search tree. The existing algorithm for
automatically discovering move pruning information is re-
stricted to games where all moves can be applied to every
state. This paper demonstrates an algorithm which handles
a general class of single player games. It gives experimental
results for our technique, demonstrating both the applicabil-
ity to a range of games, and the reduction in search tree size.
We also provide some conditions under which move pruning
is safe, and when it may interfere with other search reduction
techniques.

Introduction
Depth first search (DFS) of a tree is a common technique in
graph search. Algorithms like IDA* (Korf 1985) use it, tak-
ing advantage of the low space requirements: it is linear with
the tree depth, rather than in the number of vertices. Without
other enhancements, however, a DFS may generate the same
graph vertex multiple times. This is almost always wasted
work. The search can even require exponential time to ex-
plore a polynomial space like an m by m grid. Eliminating
duplicate states can mean very large savings.

Taylor and Korf (1992; 1993) introduce a method for au-
tomatically analysing a game to detect sequences of moves
which are guaranteed to only visit duplicate states in a DFS.
The offending move sequences are encoded in a finite state
machine (FSM) with transitions based on the moves made
during search. They use the technique in IDA* with two
variants of the N -puzzle sliding tile puzzle (15 and 24
tiles) and Rubik’s cube, getting large reductions in gener-
ated states for a very modest cost per state.

The combination of large savings, good performance, and
automated analysis make it a compelling tool for a general
single agent game system. If a description of the game is part
of the input, only a general system can be used: there is no
opportunity here for someone to hand code a game-specific
duplicate detection method.

Taylor and Korf’s algorithm (1993) works on a range of
combinatorial games, but in the context of more general
games there is an unresolved issue involving the precondi-
tions of rules. The method assumes a generic state where all

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

moves can be applied, which is not the case in many puzzles,
including the N -puzzle. Taylor (1992) uses a workaround to
this problem for the 15 and 24 puzzle (embedding them in a
much larger 7x7 sliding tile grid), but this was done by hand
and is not generalisable.

In this paper, we introduce an algorithm for automatically
detecting sequences of moves in a general class of perfect
information, non-stochastic, single player games with non-
negative move costs. Given a game description in the PSVN
language (described in the Appendix), we build and analyse
a tree of “macro-rules” which describe the preconditions and
results of sequences of multiple moves. We show that prun-
ing based on this analysis is safe in conjunction with cycle
detection and heuristic pruning, but may cause issues when
combined with a transposition table. Experimental results
are given for a range of puzzles, demonstrating both the util-
ity and the generality of our method.

State and Rule Representation
A state is a vector 〈v1, v2, ..., vN 〉 of N values, where vi is
drawn from a finite set of possible values Di (the domain for
vector position i). A move is described by a rule (operator)
that maps a state 〈v1, ..., vN 〉 to another state 〈v′1, ..., v′N 〉,
with an associated cost c. In a single-player game, all the
moves are chosen by the same player, and the objective is
to transform an initial state into a state that satisfies a set of
goal conditions.

Our running example of a single-player game is the N -
Arrow puzzle (Korf 1980). A state consists of N “arrows”,
each of which is either pointing up or down. This is repre-
sented by a vector of N values all drawn from a single binary
domain (we shall use 1 to represent “up” and 0 to represent
“down”). There are N − 1 different moves that can all be
applied to any state. Move i flips the arrows in positions i
and i + 1 (for i ∈ {1, . . . , N − 1}).

We deal with games where the rules have preconditions
of the form vi = d ∈ Di or vi = vj , and the resulting state
can be described with a set of actions where v′i = d ∈ Di

or v′i = vj . All commonly used planning and search testbed
problems can be expressed in rules of this form, although
doing so often means that several rules will be required to
express what is conceptually one move. In the N -Arrow
puzzle, for example, we described move 1 as flipping arrows
1 and 2. In our notation, the four rules shown in the Table 1

would be required to implement this move. The distinction
made here between a conceptual move and rules in a formal
game description is important, but we will henceforth only
consider the formal game in our notation, and will use the
terms rule and move interchangeably to describe a state tran-
sition governed by applying one of these formally described
rules.

Rule Preconditions Actions
R1-00 v1 = 0, v2 = 0 v′1 = 1, v′2 = 1
R1-01 v1 = 0, v2 = 1 v′1 = 1, v′2 = 1
R1-10 v1 = 1, v2 = 0 v′1 = 1, v′2 = 1
R1-11 v1 = 1, v2 = 1 v′1 = 0, v′2 = 0

Table 1: 4-Arrow puzzle, rules representing move 1.

A rule of this type can be represented as a cost and two
vectors of length N : ~p = 〈p1, ..., pN 〉 for the preconditions
and ~a = 〈a1, ..., aN 〉 for the actions, where each pi and ai
is either a constant d ∈ Di or a variable symbol drawn from
the set X = {x1, . . . , xN}. Variable symbol xj is asso-
ciated with domain Dj and therefore we only permit pi or
ai to be xj if Dj = Di. In this notation, the precondition
vi = d is represented by pi = d, precondition vi = vj is
represented by pi = xj , and the actions v′i = d and v′i = vj
are represented by ai = d and ai = xj , respectively. Table 2
shows the full set of rules for the 4-Arrow puzzle in this no-
tation. We think of ~p and~a as “augmented states”, since they
are precisely states over domains that have been augmented
with the appropriate variable symbols: xj is added to Di if
Dj = Di.

Rule Preconditions → Actions Cost
R1-00 〈0, 0, x3, x4〉 → 〈1, 1, x3, x4〉 c100
R1-01 〈0, 1, x3, x4〉 → 〈1, 0, x3, x4〉 c101
R1-10 〈1, 0, x3, x4〉 → 〈0, 1, x3, x4〉 c110
R1-11 〈1, 1, x3, x4〉 → 〈0, 0, x3, x4〉 c111
R2-00 〈x1, 0, 0, x4〉 → 〈x1, 1, 1, x4〉 c200
R2-01 〈x1, 0, 1, x4〉 → 〈x1, 1, 0, x4〉 c201
R2-10 〈x1, 1, 0, x4〉 → 〈x1, 0, 1, x4〉 c210
R2-11 〈x1, 1, 1, x4〉 → 〈x1, 0, 0, x4〉 c211
R3-00 〈x1, x2, 0, 0〉 → 〈x1, x2, 1, 1〉 c300
R3-01 〈x1, x2, 0, 1〉 → 〈x1, x2, 1, 0〉 c301
R3-10 〈x1, x2, 1, 0〉 → 〈x1, x2, 0, 1〉 c310
R3-11 〈x1, x2, 1, 1〉 → 〈x1, x2, 0, 0〉 c311

Table 2: Rules for the 4-Arrow puzzle in vector notation.

To summarize the notation used in the rest of this paper:
vi refers to the value in position i of the state to which a
rule is being applied, pi refers to the symbol (either a con-
stant from Di or a variable symbol from X) in position i of
a rule’s preconditions, ai refers to the symbol (either a con-
stant from Di or a variable symbol from X) in position i of a
rule’s actions, and xi is a variable symbol from X that takes
on the value vi when the rule is applied.

In this notation, there can be several different, but equiv-
alent, representations of a rule. For example, consider rule

R1-01 in Table 2. Because its precondition requires v1 = 0,
its action could be written as 〈1, x1, x3, x4〉, and because
its precondition also requires v2 = 1, there are two addi-
tional ways its action could be written: 〈x2, 0, x3, x4〉 and
〈x2, x1, x3, x4〉. We wish to have a unique canonical repre-
sentation for a rule, so whenever we have a choice between
writing an action with a variable or writing it with a con-
stant, we always choose the latter. The version of rule R1-01
shown in Table 2 is therefore the canonical representation.
If we don’t have a choice of writing an action with a con-
stant, but do have a choice of writing it with one of several
variable symbols, we choose the variable symbol with the
smallest index. By imposing these two constraints, there is
a unique canonical representation for each rule’s actions.

Similarly, there can be multiple ways to represent a rule’s
preconditions. Consider rule R1-00 in Table 2. Its precondi-
tions require both v1 and v2 to be 0. Instead of representing
this as p1 = 0 and p2 = 0, as in Table 2, it could instead
have been written as p1 = 0 and p2 = x1 or as p1 = x2 and
p2 = 0. To get a canonical representation for a rule’s pre-
conditions we impose the same constraints as for actions: if
it is possible to use a constant, do so, and if that is not pos-
sible but there is a choice of variable symbols that could be
used, use the variable symbol with the smallest index. A fact
about the canonical representation of preconditions that we
will use later is this: if pi = xj and i 6= j then it must be
true that pj = xj .

Composition of Move Sequences
Restricting rules to have the types of preconditions and ac-
tions that we are using has the useful property that the pre-
conditions required to execute an entire a sequence of rules
can described in exactly the same notation as the precondi-
tions for a single rule, and, likewise, the effects of applying
a sequence of rules can described in exactly the same no-
tation as the actions of a single rule. Hence, the collective
preconditions and net effects of a sequence of rules can be
represented as if it were one rule (called a “macro-rule”1). In
this section, we describe how to compute the preconditions
and actions for a sequence of rules.

We will proceed by induction. As the base case of
the induction, the empty sequence can be represented as
a rule with cost 0, preconditions 〈x1, ..., xN 〉 and actions
〈x1, ..., xN 〉. Now assume that any valid sequence of k rules
can be represented as a single macro-rule with cost c1, pre-
conditions ~p1, and actions ~a1 and consider how to compute
the macro-rule for the extension of this sequence by one ad-
ditional rule (the (k+ 1)st rule) , with cost c2, preconditions
~p2 and actions ~a2.

The cost of the extended sequence is simply c1 + c2. The
preconditions and actions of the extended sequence, ~p∗ and
~a∗, are constructed as follows. We start by setting ~p∗ = ~p1

and~a∗ = ~a1. The next step is to update ~p∗ and~a∗ to take into
account the preconditions of the (k + 1)st rule. We consider

1Our usage of this term is the same as in the literature on learn-
ing macro-rules (Finkelstein and Markovitch 1998), but in this pa-
per, macro-rules are used only for analysis, not as new move op-
tions that are available at run time.

the preconditions one at a time. For each precondition, p2i ,
there are two main cases, depending on whether the effect of
the first k rules on position i (a1i) is a constant or a variable
symbol; each case has several subcases.

1. a1i is a constant.
(a) p2

i is a constant. If the two constants (a1i and p2i) are
not the same, the extended sequence is not valid: the
ith precondition of the (k + 1)st rule is guaranteed not
to be satisfied after executing the first k rules. If the two
constants are the same, the ith precondition of the (k+
1)st rule is guaranteed to be satisfied after executing the
first k rules so no update to ~p∗ or ~a∗ is required.

(b) p2
i = xj and a1j is a constant. p2i = xj means the

ith and jth positions must be the same, i.e., the two
constants (a1i and a1j) must be the same. This case is
therefore the same as the previous case: if the two con-
stants are not the same it is invalid to apply the (k+1)st

rule after executing the first k rules, and if they are the
same no update to ~p∗ or ~a∗ is required.

(c) p2
i = xj and a1j = xk. Again, p2i = xj means the ith

and jth positions must be the same, so for the sequence
to be valid, xk must equal the constant in a1i . All oc-
currences of xk in ~p∗ and ~a∗ are replaced with this con-
stant.

2. a1i = xj.

(a) p2
i is a constant. All occurrences of xj in ~p∗ and ~a∗

are replaced with the constant (p2i).
(b) p2

i = xj. In this case the ith precondition of the (k +
1)st rule is guaranteed to be satisfied after executing the
first k rules, so no update to ~p∗ or ~a∗ is required.

(c) p2
i = xk for some k 6= j and a1k is a constant. All

occurrences of xj in ~p∗ and ~a∗ are replaced with the
constant (a1k).

(d) p2
i = xk for some k 6= j and a1k = xt. Let y =

min(j, t), and z = max(j, t). All occurrences of xz in
~p∗ and ~a∗ are replaced with xy .

At this point, the validity of adding the (k + 1)st rule has
been determined and ~p∗ represents the preconditions neces-
sary to apply the entire sequence of k + 1 moves. ~a∗ only
describes how these states would be modified by the first k
moves. We must modify ~a∗ by applying ~a2 to it. This re-
quires another copy of ~acopy = ~a∗. If a2i is a constant d,
we set a∗i = d. Otherwise, a2i = xj for some j and we set
a∗i = acopyj .

~p∗, ~a∗, and cost c1 + c2 are now a rule with the precondi-
tions and effects of the entire length k + 1 move sequence.
This completes the inductive proof that any valid sequence
or rules of any length can be represented by a single macro-
rule. The proof was constructive, and indeed, describes ex-
actly how our algorithm for enumerating sequences oper-
ates.

To illustrate this process, consider computing a macro-
rule for the 4-Arrow puzzle to represent the sequence in
which rule R1-00 is followed by rule R2-11. ~p∗ and ~a∗ for
this macro-rule are initialized to be the precondition vec-
tor and action vector for R1-00, respectively, i.e., ~p∗ =

〈0, 0, x3, x4〉 and ~a∗ = 〈1, 1, x3, x4〉. Next, we go through
the precondition vector for R2-11 (〈x1, 1, 1, x4〉) one posi-
tion at a time and update ~p∗ and~a∗ according to which of the
seven subcases above applies. For the first position, i = 1,
case 1(b) applies, because position 1 of R1-00’s action vec-
tor is a constant (0) but position 1 of R2-11’s precondition
vector is a variable symbol (x1). The conditions for validity
are satisfied and no updates to ~p∗ and ~a∗ are made. For the
next position (i = 2), case 1(a) applies because position 2 of
R1-00’s action vector and R2-11’s precondition vector are
both constants. They are the same constant (1) so the condi-
tions for validity are satisfied and again no updates to ~p∗ and
~a∗ are made. For i = 3 case 2(a) applies because position 3
of R1-00’s action vector is a variable symbol (x3) but posi-
tion 1 of R2-11’s precondition vector is a constant (1). All
occurrences of x3 in ~p∗ and ~a∗ are changed to the constant
1 making ~p∗ = 〈0, 0, 1, x4〉 and ~a∗ = 〈1, 1, 1, x4〉. Finally,
for i = 4 case 2(b) applies, leaving ~p∗ and ~a∗ unchanged.
~p∗ = 〈0, 0, 1, x4〉 is the precondition for the sequence but
there is one last step to derive the final ~a∗—it must be rec-
onciled against the action vector for R2-11.

The final step in calculating ~a∗ is shown in Table 3. As
described above, all the constants in R2-11’s action vector
(positions 2 and 3) are directly copied into the same posi-
tions in ~a∗, and, if position i of R2-11’s action vector is the
variable symbol xj , position i in ~a∗ is to be whatever was
in position j of ~a∗ before this last round of alterations be-
gan (this sets position 1 to be the constant 1 and position 4
to be the variable symbol x4). The final macro-rule in this
example is thus 〈0, 0, 1, x4〉 → 〈1, 0, 0, x4〉.

~a∗ (before) = 〈 1, 1, 1, x4〉
R2-11 actions = 〈x1, 0, 0, x4〉

↓ ↓
~a∗ (after) = 〈1, 0, 0, x4〉

Table 3: Applying rule R2-11 after rule R1-00.

Move Pruning
Move composition, described above, lets us build a tree of
valid move sequences, with a compact macro-rule represen-
tation of the preconditions and effects of each sequence. The
root of the tree is the empty move sequence, and each child
adds one move to the move sequence of the parent. This tree
gives us the set of potential move sequences to prune. We
chose to build a tree containing all move sequences of up to l
moves, but there are many other ways to select a set of move
sequences of interest.

We can prune a move sequence B if we can always
use move sequence A instead to reach the same state at
no additional cost. More formally, following Taylor and
Korf (1993) we can prune move sequence B if there exists
a move sequence A such that (i) the cost of A is no greater
than the cost of B, and, for any state s that satisfies the pre-
conditions of B, both of the following hold: (ii) s satisfies
the preconditions of A, and (iii) applying A and B to s leads
to the same end state.

Condition (i) is trivial to check since the cost of each se-
quence is calculated by the move composition process.

Because we have a unique macro-rule representation for
each sequence, checking condition (ii) is a straightforward
comparison of ~pA and ~pB , the precondition vectors for se-
quences A and B, on a position-by-position basis. If pAi =
d ∈ Di, we require pBi = d. If pAi = xj 6=i, we require
pBi = pBj . Finally, if pAi = xi, then pBi can have any
value. Condition (ii) is satisfied if we pass these tests for
all i ∈ {1, . . . , N}.

Because we can treat precondition and action vectors as
augmented states, checking condition (iii) is also straight-
forward: we can simply apply the actions ~aA to the precon-
ditions ~pB . Condition (iii) holds if and only if the resulting
augmented state is identical to ~aB .

These conditions are asymmetric: move sequences A and
B might be exactly equivalent so that either could be pruned,
but it can be the case that A lets us prune B, but B does
not let us prune A. For example, move sequences A and B
might both swap two variables and have the same cost, but A
has no preconditions while B requires that the first variable
be 1. Only B can be pruned.

As another example, consider another pair of move se-
quences with the same cost. A swaps the first two variables.
B turns 〈1, 2, 1, . . .〉 into 〈2, 1, 1, . . .〉. A does not, in gen-
eral, always produce 〈2, 1, 1, . . .〉, but it will do so for any
state that matches the preconditions of B, so we can again
prune B. A is more general, and cannot be pruned. Note
that if A happened to cost more than B, we could not prune
either A or B, even though we know that A will generate
duplicate children if the parent happens to match the pre-
conditions of B.

There are a number of implementation details to consider.
We must check each sequence against all other sequences,
which is Θ(N2) for N sequences. A quadratic algorithm is
not unreasonable, but because N here grows exponentially
in the depth of the tree, and the branching factor of the tree
can be large (over 100 in many games), we are limited to
fairly shallow trees (two or three moves).

Even with small trees, in the interest of efficiency, it is
best to prune move sequences as soon as possible. As Tay-
lor and Korf (1993) noted, sequences should be checked
as the tree is built, rather than waiting to generate all se-
quences, and it is worthwhile building the tree in a breadth-
first fashion. That way, if we find any short move se-
quences that can be pruned, we can use this information to
immediately prune any longer move sequences that include
the shorter sequences we have previously pruned. Using
breadth-first search also avoids a potential problem when
combining move pruning with a separate cycle detection
system in games with moves with cost 0 (see below).

Taylor and Korf (1993) encode the list of pruned move se-
quences in a compact FSM, with transitions between states
based on the last move made. The same algorithm could be
used to generate a compact FSM for the move pruning in-
formation we generate, but because our trees are generally
not as large, our implementation used a simple table-based
method which generates a larger FSM. We start by assigning
a unique integer tag to each un-pruned move sequence in the

interior of the tree. In our implementation, where we con-
sider all sequences up to length l, this is all move sequences
of length l−1 that were not discovered to be redundant. This
tag corresponds to the FSM state. If there are M moves de-
fined in the game, and we used T tags, we construct a table
with M entries for each of the T tags. The entry for a move
sequence s and subsequent move m is set to −1 if the new
move sequence s + m is pruned. Otherwise, the entry is
the tag of the last l − 1 moves of s + m. This encodes the
transition rules between FSM states.

Mixing with Cycle Detection
Pruning move sequences up to length l does not guarantee
that there will be no cycles. There may be cycles longer
than l, which the move pruning will necessarily be unable to
detect. There may also be cycles of length l or less which are
not pruned because they only occur in certain circumstances.
For example, consider a move that swaps two variables (i.e.,
〈x1, x2〉 becomes 〈x2, x1〉). There are some states, such as
〈1, 1〉, for which this move is an identity operator (1-cycle).
For arbitrary states, of course, this move is not an identity
operator, so we cannot prune away all occurrences of it. It is
possible, using a slight variant of our Move Composition al-
gorithm, to derive the special conditions under which a move
sequence is a cycle or is equivalent to another sequence, but
doing so quickly generates an impracticably large number
of special conditions. We therefore only prune a move se-
quence that is universally redundant with another move se-
quence, as defined by the three conditions for pruning identi-
fied by Taylor and Korf (1993) and reiterated in the previous
section. We refer to move sequences that create cycles, or
are redundant with other move sequences, under special cir-
cumstances that are not detected by our generic move prun-
ing system as serendipitous cycles and redundancies.

If someone expected there to be many serendipitous cy-
cles, they might wish to use run-time cycle detection in ad-
dition to move pruning, to terminate those cycles.2 As we
shall show below, in general, combining search reduction
techniques is unsafe, even if one of them is as seemingly
innocuous as cycle detection (Akagi, Kishimoto, and Fuku-
naga 2010). We now prove that it is safe to use both move
pruning and cycle detection, first considering the case where
there are no moves with a cost of 0.

We introduce some new notation for the proof. Tree(S, b)
is the set of all paths which are taken during a tree traver-
sal starting at state S with an upper bound b on path cost.
V isited(S, b) is the set of states which are visited on this
same traversal.

Move pruning has the property that V isitedMP (S, b) =
V isited(S, b), and for all T in V isited(S, b) the least cost
path to T in TreeMP (S, b) is no more expensive than the
least cost path to T in Tree(S, b). We would like to show
something similar for move pruning and cycle detection.

2Another option in this situation is for the person to “split” (re-
formulate) the general rules in which cycles sometimes occur into
more specialized rules so that the exact conditions under which the
cycles occur are preconditions of sequences involving the special-
ized rules.

V isitedMP+cycle(S, b) ⊂ V isitedMP (S, b) is trivially
true: we are only removing more nodes from the tra-
versed tree by adding a second pruning method. To show
the other direction and the cost constraint, consider T ∈
V isitedMP (S, b). There is some minimum cost path p in
TreeMP (S, b) which leads to T . p must contain no cycles:
otherwise, there would be some shorter path in Tree(S, b)
which removes the cycle, contradicting the assumption that
p has minimum cost.

Because there are no cycles in p, cycle detection does
not remove it, p is in TreeMP+cycle(S, b) and T is in
V isitedMP+cycle(S, b). Therefore, the least cost path to T
is preserved, V isitedMP (S, b) ⊂ V isitedMP+cycle(S, b)
and we are finished.

If there are moves with a cost of 0, the assumption that
a minimum cost path p in TreeMP (S, b) must have no cy-
cles may not be true. We must use the fact that we gen-
erate move sequences in a breadth-first fashion, or other-
wise consider modifying the cost test so that p1 is consid-
ered to have lower cost than p2 if cost(p1) < cost(p2), or
if cost(p1) = cost(p2) and length(p1) < length(p2). In
either case, we have the property that p must have no cycles,
and the proof continues as before.

Mixing with Heuristic Cutoffs
Using a heuristic to do cutoffs during search with move
pruning is safe. In this context, we have a more specific tree
traversal: we are looking for goal states. If we are at state T
with a path of cost c, an admissible heuristic value h and a
bound b < c+h, we have a guarantee that V isited(T, b−c)
does not contain any goal states. If we cut off search at T ,
we have not explicitly performed the search below T , but
we can reason about every state we would have visited in an
un-pruned tree and say that they would not have been goal
states. Neither move pruning, cycle detection, transposition
tables, nor the search for a goal itself require that we explic-
itly visit these states. Even if we haven’t done so by visiting
the states, we have effectively done the entire search below
T , just as if we had not done the cutoff.

Mixing with Transposition Tables
If we use a transposition table (TT) (Reinefeld and Mars-
land 1994) and move pruning, IDA* may run into the graph
history interaction (GHI) problem (Akagi, Kishimoto, and
Fukunaga 2010). The TT assumes that everything is de-
scribed by the state. This assumption is false when there is
additional information, like the current history, which may
affect the search result.

Figures 1(a) to 1(c) demonstrate an example of this. To
keep the example as simple as possible, we are using a con-
trived game, described by the rules in Figure 1(a). All moves
have unit cost, and the goal state is 〈1, 1, 0, 1〉. The vector
before the arrow is the augmented state giving the precondi-
tions, and the augmented state after the arrow describes the
actions.

Building a length 2 move sequence tree, we create
two new macro-rules by appending R3 to R1 and R2.
R3(R2(s)) cannot be pruned: it can be applied to the state

〈0, 1, 0, 0〉 to get 〈1, 1, 0, 1〉, which does not hold for any
of the other move sequences. We can, however, prune
R3(R1(s)). Both sequences have a cost of 2. The only state
we can use for R3(R1(s)) is 〈0, 0, 0, 0〉, which can be used
for R3(R2(s)). Finally, R3(R2(〈0, 0, 0, 0〉)) produces the
same result as R3(R1(〈0, 0, 0, 0〉)).

Rule R1: <x1 x2 0 0> < x2 x1 1 0>

Rule R2: <x1 x2 0 0> <x1 x1 1 0>

Rule R3: < 0 0 1 0 > < 1 1 0 1 >

Macro-rules:

• R3(R1(s)): <0 0 0 0> <1 1 0 1>

• R3(R2(s)): <0 x2 0 0> <1 1 0 1>

(a) Game rules
IDA*, d=2, No Transposition Table

0 0 0 0

0 0 1 0 0 0 1 0

1 1 0 1

R1 R2

R3R3

(b) Depth 2 IDA* tree, without TT
IDA*, d=2, with Transposition Table

0 0 0 0

0 0 1 0 0 0 1 0

R1 R2

R3R3
TT records for state 0010:

goal unreachable
with d=2 and g=1

Pruned by TT

(c) Depth 2 IDA* tree, with TT

Figure 1: GHI example

Figure 1(b) shows the behaviour of IDA* with a start state
of 〈0, 0, 0, 0〉 when the maximum depth is 2. At depth 0, we
apply R1. After this, the only applicable rule is R3, but we
have pruned R3(R1(s)). With no valid children, we return
failure back up to the root of the tree. Back at depth 0, we
now apply R2. From here, the only applicable rule is R3.
R3(R2(s)) is valid, so we reach the goal and return a length
2 path.

Figure 1(c) shows the IDA* behaviour if we use a TT. Af-
ter making move R1 we first check if the state is in the TT. It
is not, so we proceed and find no valid children. We note the
depth information and failure to find a goal in the TT, using
the current state 〈0, 0, 1, 0〉 as a key. We then return failure.
Back at the root, we try R2 and get the state 〈0, 0, 1, 0〉. We
look in the TT for this state and discover an entry. The depth
information is valid, so we re-use the entry and return fail-

ure. We get back to the root, where there are no moves. The
iteration has finished, and we have failed to find a legitimate
path to the goal.

Experimental Results
Our algorithm applies to general single player games. To test
it, we implemented the move pruning algorithm in a PSVN
programming environment that we have developed. This
tool kit takes a game description in the PSVN language (de-
scribed in the Appendix), and generates C code for state ma-
nipulation. We modified the code generator to build a move
sequence tree and print out a table of pruning information
(functionally similar to the FSM of Taylor and Korf (1993)).
We then modified the provided generic DFS code to use this
pruning information.

We used 7 different puzzles: the N -arrow puz-
zle (Korf 1980) with 16 arrows, the blocks world (Slaney
and Thiébaux 2001) with 10 blocks, 4-peg Towers of
Hanoi (Hinz 1997) with 8 disks, the pancake puz-
zle (Dweighter 1975) with 9 pancakes, the 8-puzzle sliding
tile puzzle (Slocum and Sonneveld 2006), 2x2x2 Rubik’s
cube (Taylor and Korf 1993), TopSpin (Chen and Skiena
1996) with 14 tiles and a 3 tile turnstile, and the Work or
Golf puzzle, which is a sliding tile puzzle variant with some
irregular pieces, described by Figure 2. In our PSVN game
descriptions, the arrow puzzle had 60 rules, blocks world
had 200 rules, Towers of Hanoi had 96 rules, the pancake
puzzle had 8 rules, the 8-puzzle had 24 rules, the small Ru-
bik’s cube puzzle had 18 rules, TopSpin had 14 rules, and
Work or Golf had 93 rules.

W O R K

G O L F

Figure 2: The Work or Golf puzzle. It has eight 1x1 pieces
with letters and two irregularly shaped pieces, shown in
black. All ten pieces are movable. There are 4 empty 1x1
locations.

As written in PSVN, the arrow puzzle, blocks world,
Towers of Hanoi, the 8-puzzle and the Work or Golf puz-
zle had rules with preconditions, which precludes using the
method of Taylor and Korf (Taylor and Korf 1993). While
there may be other formulations of a game or game-specific
workarounds that get around this for the arrow puzzle and
8-puzzle, this is not possible in a general framework, and
blocks world and Towers of Hanoi will always have rules
with preconditions.

For each puzzle, we ran three searches: (1) DFS with par-
ent pruning (length 2 cycle detection), (2) DFS using a move
sequence tree limited to sequences of length 2, and (3) DFS
with a length 3 move sequence tree. The games have differ-
ent branching factors, so we used a different depth limit for
the DFS in each puzzle.

All length 2 move sequence trees took a few seconds to
build: the slowest game was blocks world, at 3 seconds.
Blocks world was also the slowest game for the length 3
tree, taking 13 minutes. The 8-puzzle took less than a sec-
ond for both trees. This is a one time cost: once the tree is
built and the table has been output, the generated code has
all necessary information and we do not need to analyse the
game again.

The results are given in Table 4. All experiments were run
on a machine with a 2.83GHz Core2 Q9550 CPU and 8GB
of RAM. Node counts (in thousands of nodes) and compu-
tation times are totals across 100 randomly generated start
states.

Game d DFS+PP DFS+MP DFS+MP
l=2 l=3

16 arrow 15 ? 3,277 3,277
puzzle >3600s 0.39s 0.39s

10 blocks 11 594,371 594,371 594,371
world 43.10s 22.22s 22.53s

Towers of 10 1,423,401 31,652 9,041
Hanoi 97.05s 1.52s 0.51s

pancake 9 5,380,481 5,380,481 5,288,231
puzzle 251.11s 66.10s 65.24s

8-puzzle 25 359,254 359,254 359,254
23.70s 10.49s 10.49s

Rubik’s 6 2,715,477 833,111 515,614
cube 2x2x2 136.58s 20.32s 13.58s

TopSpin 9 ? 2,165,977 316,437
>3600s 53.60s 9.96s

Work or 13 ? 232,524 59,905
Golf >3600s 19.76s 5.70s

Table 4: Total work, in thousands of generated nodes and
seconds, to search 100 random problem instances to the
given depth d.

As was seen by Taylor and Korf (1993), we see here that
using DFS with move pruning results can result in much
smaller search trees than DFS with parent pruning. Even
with shallow move pruning trees, we can do at least as
well parent pruning, and in those cases where the tree is no
smaller, move pruning requires less time than parent prun-
ing. This holds across a broad range of puzzles.

The N -arrow puzzle, which we have been using as a run-
ning example, has an interesting property. Any move se-
quence i, j has the same result as j, i, and i, i has no effect.
If we build a move sequence tree with 2 move sequences,
the move pruning algorithm will enforce an ordering on the
moves. That is, if we just made move i, all moves 1 to i− 1
are pruned by our system. In this special case, we have re-
moved all duplicate states from the search tree. It is easy
to see this: consider an arbitrary path between two states.
Because the moves commute and a move is its own inverse,
we can sort the moves by index and remove pairs of identi-
cal moves. The resulting path is unique, and is not pruned
by our system. Strictly ordering the moves also means the
depth 15 searches we used explore the entire reachable space
of the 16-arrow puzzle.

We can see related behaviour with the blocks world puz-
zle and the 8-puzzle: increasing the maximum length in the
move sequence tree may not discover additional duplicates.
In this case, there are no transpositions using paths of length
3 which are not found by looking at paths of length 2. Unlike
the N -arrow puzzle, these puzzles will eventually find addi-
tional duplicate states with larger trees. In the 8-puzzle we
will see additional pruning if we consider move sequences
of length 6.

In blocks world, the pancake puzzle, and the 8-puzzle, we
see that the number of generated nodes is the same whether
we use parent pruning or our move pruning system with a
length 2 move sequence tree. In these puzzles, the only
transpositions that occur within a sequence of two moves
are cycles of length 2. Looking at the total time, we see
that parent pruning is more expensive. Our move pruning
system only needs to look up a single integer in a table.
DFS with parent pruning is more than twice as slow because
in the general case it requires that we compare two states,
which is much more expensive. For exactly this reason,
hand-implemented systems for a specific puzzle generally
do parent pruning by skipping moves which undo the previ-
ous action (a form of move pruning) if the domain supports
this.

The blocks world results have one final strange feature:
the total time for the length 3 tree is larger than for the length
2 tree. Ideally, we would expect this to be the same. In this
case, because we did not implement the FSM of Taylor and
Korf (1993), the move pruning table grows as O(Rl), where
R is the number of rules and l is the maximum sequence
length in the tree. The blocks world puzzle had 200 rules,
so the l = 3 table was fairly large (around 30MB) and we
suspect cache performance suffered when using this larger
table.

Readers looking at Taylor and Korf’s work (1993) will
notice that we used smaller trees. They build a depth 7 tree
for the 2x2x2 Rubik’s cube puzzle, and a depth 14 tree for
the 15-puzzle. There are two factors which affect us, related
to the size of the move sequence tree. A length l move se-
quence tree will have at most

∑l
i=0 R

i move sequences. We
must generate all of these sequences, barring any sequences
which contain subsequences we have already pruned. This
is the same in Taylor and Korf’s work.

The first difference is that Taylor and Korf (1993) had 4
rules for both the 8-puzzle and 15-puzzle. The PSVN de-
scription of the 8-puzzle has 24 rules. This explains the es-
pecially large discrepancy for the 8-puzzle: 2414 is many
orders of magnitude larger than 414.

The second difference is that by keeping track of a state,
Taylor and Korf (1993) were able to speed up duplicate de-
tection by sorting generated states. Within our environment
of general games, we must generate macro-rules, and the
pruning check is more complicated than a simple state com-
parison. This precludes the same sorting technique, and we
are reduced to comparing each newly generated macro-rule
against all previously generated macro-rules. Ignoring the
move sequences that get pruned, the 2x2x2 Rubik’s cube
puzzle has around 650M move sequences in a length 7 move
sequence tree. Doing on the order of 650M ∗ log2(650M)

comparisons by using a sorted list is reasonable, but doing
around 650M2 comparisons is not. As is often the case,
there is a cost to handling a more generic class of problems.

Conclusions
In this paper, we introduced an algorithm for automatically
analysing a general single player game and detecting se-
quences of moves which lead to duplicate states in DFS.
We applied the algorithm to a number of domains which are
not handled by the existing move pruning algorithm, and ex-
perimentally demonstrated speedups in these games ranging
from two to hundreds of times faster than using parent prun-
ing. Comparing the one-time analysis cost to the existing
method, we are asymptotically slower. Looking at ways to
improve this cost is an area for future work.

Mixing multiple techniques which prune nodes is poten-
tially unsafe, in the sense that minimum cost paths between
states may not be discovered. Using cycle detection and a
TT is known to be unsafe, and we give an example showing
that using move pruning and a TT is unsafe as well. We
prove that in DFS, move pruning is safe when combined
with cycle detection of any length, and that adding pruning
based on a heuristic is safe.

Acknowledgements
We gratefully acknowledge the funding sources whose sup-
port has made this research possible: the Alberta Ingenuity
Centre for Machine Learning (AICML), Alberta’s Informat-
ics Circle of Research Excellence (iCORE), and the Natu-
ral Sciences and Engineering Research Council of Canada
(NSERC).

References
Akagi, Y.; Kishimoto, A.; and Fukunaga, A. 2010. On trans-
position tables for single-agent search and planning: Sum-
mary of results. In Proceeding of the Third Annual Sympo-
sium on Combinatorial Search (SOCS-10).
Chen, T., and Skiena, S. S. 1996. Sorting with fixed-length
reversals. Discrete Applied Mathematics 71:269–295.
Dweighter, H. 1975. Problem E2569. American Mathemat-
ical Monthly 82:1010.
Finkelstein, L., and Markovitch, S. 1998. A selective macro-
learning algorithm and its application to the nxn sliding-tile
puzzle. Journal of Artificial Intelligence Research 8:223–
263.
Hernádvölgyi, I., and Holte, R. 1999. PSVN: A vector repre-
sentation for production systems. Technical Report TR-99-
04, Department of Computer Science, University of Ottawa.
Hinz, A. M. 1997. The tower of hanoi. In Algebras and
Combinatorics: Proceedings of ICAC97, 277289. Hong
Kong: Springer-Verlag.
Korf, R. E. 1980. Towards a model of representation
changes. Artificial Intelligence 14(1):41–78.
Korf, R. E. 1985. Depth-first iterative-deepening: An opti-
mal admissible tree search. Artificial Intelligence 27(1):97–
109.

Reinefeld, A., and Marsland, T. A. 1994. Enhanced
iterative-deepening search. IEEE Trans. Pattern Anal. Mach.
Intell. 16(7):701–710.
Slaney, J., and Thiébaux, S. 2001. Blocks world revisited.
Artificial Intelligence 125:119–153.
Slocum, J., and Sonneveld, D. 2006. The 15 Puzzle. Slocum
Puzzle Foundation.
Taylor, L. A., and Korf, R. E. 1993. Pruning duplicate nodes
in depth-first search. In AAAI, 756–761.
Taylor, L. A. 1992. Pruning duplicate nodes in depth-first
search. Technical Report CSD-920049, UCLA Computer
Science Department.

Appendix: The PSVN Language.
Our PSVN is a slight extension of the language with the
same name introduced by Hernádvölgyi and Holte (1999).
It very directly implements the state and rule representations
described above.

A state is a vector of fixed length, n. The entry in position
i is drawn from a finite set of possible values called its do-
main, Di. In many state spaces every position of the vector
has the same domain, but in principle they could all be dif-
ferent. Different domains in PSVN are entirely distinct; the
same symbols can appear in different domains for user con-
venience, but our PSVN compiler will internally treat them
as distinct

The transitions in the state space are specified by a set
of rules. Each rule has a left-hand side (LHS) specifying
its preconditions and a right-hand side (RHS) specifying its
effects. The LHS and RHS are each a vector of length n.
In both the LHS and the RHS, position i is either a constant
from Di or a variable symbol. Any number of positions in
these vectors (LHS and RHS) can contain the same variable
symbol as long as their domains are all the same.

State s = 〈s1...sn〉 matches LHS = 〈L1...Ln〉 if and
only if si=Li for every Li that is a constant and si=sj for
every i and j such that Li and Lj are the same variable sym-
bol.

A rule is “deterministic” if every variable symbol in its
RHS is also in its LHS. The effect of a deterministic rule
when it is applied to state s = 〈s1...sn〉 matching its LHS is
to create a state s′ = 〈s′1...s′n〉 such that: (i) if position j of
the RHS is the constant c ∈ Dj then s′j=c; (ii) if position j
of the RHS is the variable symbol that occurs in the position
i of the LHS then s′j=si.

A rule is “non-deterministic” if one or more of the vari-
able symbols in its RHS do not occur in its LHS. We call
such variable symbols “unbound”. A non-deterministic rule
applied to state s = 〈s1...sn〉 creates a set of states, with
one successor for every possible combination of values for
unbound variables (if the unbound variable is in position
i, its values are drawn from Di). Each of the other posi-
tions of these successors will be the same in all the suc-
cessors and are determined by the rules for calculating the
effects of deterministic rules. For example, if n=4 and all
positions have domain {1, 2} then the rule 〈1, A,B,C〉 →
〈E, 1, D,E〉 would create four successors when applied to

state 〈1, 2, 1, 2〉, namely, 〈1, 1, 1, 1〉, 〈2, 1, 1, 2〉, 〈1, 1, 2, 1〉,
and 〈2, 1, 2, 2〉.

The final feature of PSVN is that the goal of a search is
not required to be a single state. Goal conditions are spec-
ified by writing one or more special operators of the form
“GOAL Condition”, where Condition takes the same
form as the LHS of a normal operator. If there are several
such operators they are interpreted disjunctively.

