
State-Set Search

Bo Pang and Robert C. Holte
Computing Science Department

University of Alberta
Edmonton, AB Canada T6G 2E8

(bpang,rholte@ualberta.ca)

Abstract

State-set search is state space search when the states being
manipulated by the search algorithm are sets of states from
some underlying state space. State-set search arises com-
monly in planning and abstraction systems, but this paper
provides the first formal, general analysis of state-set search.
We show that the state-set distance computed by planning
systems is different than that computed by abstraction sys-
tems and introduce a distance in between the two, dww, the
maximum admissible distance. We introduce the concept of
a multi-abstraction, which maps a state to more than one ab-
stract state in the same abstract space, describe the first imple-
mentation of a multi-abstraction system that computes dww,
and give initial experimental evidence that it can be superior
to domain abstraction.

Introduction
This paper investigates state space search in the setting
where the states being manipulated by the search algorithm
are, in fact, sets of states from some underlying state space.
To maintain a clear distinction between these two types of
states, we always use “state” to refer to the states in the un-
derlying space and “state-set” to refer to the states the search
algorithm is manipulating. Hence we refer to this type of
state space search as state-set search.

State-set search occurs frequently in the literature. Al-
though classical planning systems search forward from a
fully-specified start state, and therefore do not do state-set
search, there are several situations in which planners do
state-set search. The first is conformant planning, which
Bonet and Geffner (2000) define as having a set of start
states instead of just one. This is supported by the SAS+ for-
malism, which allows state variables to be assigned a special
value (u) to indicate that the actual value of the variable is
not known (Bäckström 1995). Any system that fully sup-
ports SAS+ must support state-set search. Another situation
in which planners must reason about state-sets is in regres-
sion planning (Rintanen 2008). A planning goal is a set of
conditions to be satisfied; this most often defines a state-set,
not one particular state. Regression planning systems search
backwards from the goal until the start condition is satis-
fied. Even if the start condition is a fully specified state, all

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the intermediate reasoning during search involves state-sets.
If bidirectional search (Kaindl and Kainz 1997) were to be
used in a planning context, it would involve regression plan-
ning and therefore involve state-set search.

The other commonly occurring situation that involves
state-set search is search in abstract spaces. In most types
of abstraction, an abstraction of a state space S is another
state space whose individual states represent sets of states in
S (Yang et al. 2008).

Despite its being commonplace, state-set search has never
been subject to a general analysis. Our main contribution is
to give a formal definition and analysis that is not specific
to how the state-sets are represented. The most interesting
outcome of this analysis is that there are at least four natural,
distinct ways to define the notions of “path” and “distance”
in a space of state-sets. We show that planning systems use
a different notion of path and distance than abstraction sys-
tems and that Haslum and Geffner’s (2000) method for com-
puting the hm heuristic cannot be used in a forward search
setting. We show that there is an admissible abstract dis-
tance, dww, capable of returning larger values than today’s
abstraction systems, and also that dww does not permit ef-
ficiency to be gained in hierarchical search by alternating
search directions (Larsen et al. 2010). Finally, we introduce
the idea of a “multi-abstraction”, which maps a state to more
than one abstract state (state-set) in the same abstract space.

The paper ends with a description of the first implemen-
tation of a multi-abstraction system that computes dww. An
initial experiment shows that the new system is superior to
domain abstraction in terms of nodes generated and CPU
time while using no more memory.

Formal Analysis
Space precludes giving proofs for most of the formal results
in this paper. Most are straightforward applications of ele-
mentary facts about set intersection and containment.

Definition 1 (State-set) Let S be a non-empty set of states.
A state-set (with respect to S) is a non-empty subset of S.
We equate state s ∈ S with the state-set {s}.

Notationally, we allow a function f : A → B to be ap-
plied to a subset A′ ⊆ A instead of just an element of A,
with f(A′) = {f(a) | a ∈ A′}. Under this convention
f(∅) = ∅.

Definition 2 (State Multimap) Let S be a non-empty set of
states. A state multimap ω on S is a function from S to 2S,
the powerset of S. If P is a state-set, ω(P) =

⋃
s∈P ω(s).

Definition 3 (State Space, Operator) A state space is a
pair S = (S,Ω) where S is a non-empty set of states, and Ω
is a set of state multimaps on S called operators. For each
operator ω ∈ Ω the set of states to which ω can be applied
is PREω = {s ∈ S | ω(s) 6= ∅} and the set of states that
can possibly be produced by ω is POSTω = ω(S). Without
loss of generality we assume for all ω ∈ Ω that PREω is
non-empty and therefore it and POSTω are both state-sets.

By defining an operator to be a multimap, we permit one
operator to generate more than one successor of a state. This
is not to be interpreted nondeterministically—the operator
produces all the successors not just one of them.

These definitions do not allows costs to be associated with
operators. We leave this extension for future work.

Definition 4 (State Distance) Let S = (S,Ω) be a
state space. A finite sequence of operators π =
(ω1, ω2, . . . , ωz) ∈ Ω+ is applicable to state s ∈ S iff
π(s) = ωz(ωz−1...ω2(ω1(s))...) 6= ∅. π is a path from state
s ∈ S to state t ∈ S iff t ∈ π(s). The distance d(s, t) be-
tween two states is the length of the shortest path from s to t
(∞ if no such path exists).

Definition 5 (State-set Space) Let S = (S,Ω) be a state
space. The state-set space induced by S is SS = (2S ,Ω).

State-set Matching, Paths, and Distances
Definition 6 (Strong/Weak Match) Let S = (S,Ω) be a
state space and P and Q state-sets w.r.t. S. We say that P
strongly matches Q iff P ⊆ Q, and that P weakly matches
Q iff P ∩Q 6= ∅. We will say simply that P matchesQ where
strongly/weakly is determined by the context or where either
definition can be used.

Definition 7 Let S = (S,Ω) be a state space and P a state-
set w.r.t. S. Operator ω is strongly/weakly applicable to P
iff P strongly/weakly matches PREω .

In this and all other definitions, theorems etc.,
“strongly/weakly” means that the definition, theorem, etc.
holds whenever either one of “strongly” or “weakly” is used
throughout. For example, Definition 7 is actually two defi-
nitions: ω is strongly applicable to P iff P strongly matches
PREω , and ω is weakly applicable to P iff P weakly
matches PREω .

Definition 7 is shown graphically in Figure 1. State-sets
are depicted with circles. State-sets representing operator
preconditions are shaded. The upper part of Figure 1 shows
that operator ω’s precondition contains state-set P ; ω is
therefore strongly applicable to P . In the lower part of Fig-
ure 1 operator ω’s precondition intersects P but does not
contain it; ω is therefore only weakly applicable to P . In
both parts of the figure Q = ω(P) = ω(P ∩ PREω).

Definition 8 Let S = (S,Ω) be a state space and P a
state-set w.r.t. S. A finite sequence of operators π =
(ω1, ω2, . . . , ωz) ∈ Ω+ is strongly/weakly applicable to P
iff z = 1 and ω1 is strongly/weakly applicable toP , or z > 1,

P Q
ω

PREω

P Q
ω

PREω

Figure 1: (upper) Operator ω is strongly applicable to P .
(lower) Operator ω is weakly applicable to P .

ω1 is strongly/weakly applicable to P , and the sequence
(ω2, . . . , ωz) is strongly/weakly applicable to ω1(P).

These definitions immediately imply the following.

Corollary 1 Let S = (S,Ω) be a state space, P and Q
state-sets w.r.t. S such that P ⊇ Q, and π ∈ Ω+ a finite
sequence of operators that is strongly/weakly applicable to
both P and Q. Then π(P) ⊇ π(Q).

Corollary 2 Let S = (S,Ω) be a state space, P and Q
state-sets w.r.t. S such that P ⊇ Q, and π ∈ Ω+ a finite
sequence of operators that is weakly applicable to Q. Then
π is weakly applicable to P .

Corollary 3 Let S = (S,Ω) be a state space, P and Q
state-sets w.r.t. S such that P ⊇ Q, and π ∈ Ω+ a finite
sequence of operators that is strongly applicable to P . Then
π is strongly applicable to Q.

Definition 9 (State-set Distance) Let S = (S,Ω) be a state
space, P and Q state-sets w.r.t. S, and π ∈ Ω+ a finite
sequence of operators that is applicable to P . π is a path
from P to Q iff π(P) matches Q. The distance from P to Q,
denoted d(P,Q), is the length of the shortest path from P
to Q (∞ if no such path exists). We say that Q is reachable
from P if there exists a path from P to Q.

There are actually four different definitions of path, dis-
tance, and reachable here, depending on whether strong or
weak matching is used to test if π is applicable to P and
whether strong or weak matching is used to test if π(P)
matches Q. The two definitions we will focus on are:

• When strong matching is used throughout Definition 9,
a path from P to Q is applicable to all states in P and
guaranteed to map each state in P to a state in Q. We call
such paths “strong paths” and denote the corresponding
distance as dss(P,Q).

• When weak matching is used throughout Definition 9, a
path from P to Q maps at least one state in P to a state
in Q. We call such paths “weak paths” and denote the
corresponding distance as dww(P,Q).

Figure 2 depicts these two definitions, with the upper part
showing a strong path from P to Q and the lower part show-
ing a weak path from P to Q. Because every strong path

is also a weak path, dww(P,Q) ≤ dss(P,Q). It can eas-
ily happen that dss(P,Q) is infinite but dww(P,Q) is finite.
For example, this would happen with the sliding tile puz-
zle if P contained states in which the blank was in different
locations.

P

ω1
PREω1

P

P1
ω1

PREω1

P1

PREω2

ω2 Q

P2

PREω2 Q

P2ω2

Figure 2: Strong (upper) and weak (lower) paths from P to
Q.

Properties of Weak/Strong Paths and Distances
Theorem 4 Let S = (S,Ω) be a state space, P , Q, and R
state-sets w.r.t. S such that R ⊇ Q, and π a weak/strong
path from P to Q. Then π is a weak/strong path from P to
R and dww/ss(P,R) ≤ dww/ss(P,Q).

It is because of Theorem 4 that the hm method can be
applied in backwards search. See Corollary 16.

Theorem 5 Let S = (S,Ω) be a state space, P , Q, and
R state-sets w.r.t. S such that R ⊇ P , and π a weak path
from P to Q. Then π is a weak path from R to Q and
dww(R,Q) ≤ dww(P,Q).

The preceding two theorems show that if we have two
state-sets, P and Q, and “abstract” them to supersets P ′ ⊇
P and Q′ ⊇ Q, then the “abstract” distance dww(P ′, Q′)
is a lower bound on dww(P,Q). This is not true for dss,
since Theorem 5 does not hold for strong paths. Indeed, as
the next theorem shows, the opposite holds. It immediately
follows that dss cannot, in general, be used in abstraction
systems.

Theorem 6 Let S = (S,Ω) be a state space, P , Q, and
R state-sets w.r.t. S such that R ⊆ P , and π a strong path
from P to Q. Then π is a strong path from R to Q and
dss(R,Q) ≤ dss(P,Q).

It is because of Theorem 6 that the hm method cannot be
applied in forward search. But to prove that we also need
to prove that hm is based on strong paths/distances. This is
Corollary 16 below.

Theorem 7 dww(P,Q) = min
p∈P,q∈Q

d(p, q).

This theorem shows that dww has the property that is
needed to guarantee that “abstracting” states (or state-sets)

by mapping them to supersets and using the distances be-
tween supersets as an estimate of the distances between the
original states (or state-sets) will be an admissible heuris-
tic. The other distance measures defined in Definition 9 do
not have this property, so a general-purpose abstraction sys-
tem cannot use them if admissibility is required. Moreover,
dww(P,Q) is the largest distance from P to Q that is guar-
anteed to be an admissible estimate of the distance between
a subset of P and a subset of Q.

The following shows that dss obeys the triangle inequal-
ity.

Lemma 8 Let S = (S,Ω) be a state space, and P ,Q andR
state-sets w.r.t. S, Then dss(P,Q) ≤ dss(P,R)+dss(R,Q).

The same is not true of dww, and therefore it is not a
true distance metric. Figure 3 shows an example in which
dwwviolates the triangle inequality. dww(P,Q) = 1 (using
operator ω) but dww(P,R) = 0 because P ∩ R 6= ∅ and
dww(R,Q) = 0 as well. Hence dww(P,Q) > dww(P,R) +
dww(R,Q). Since the standard proof of the consistency of
heuristics defined by distances in an abstract space relies on
the abstract distances obeying the triangle inequality, the fact
that dww does not obey the triangle inequality raises doubts
about the consistency of heuristics based on computing dww

in an abstract space. We return to this issue later.

P

ωPREω

Q

R

Figure 3: Example of dwwviolating the triangle inequality.

Theorem 9 Let S = (S,Ω) be a state space, P and Q
state-sets w.r.t. S, π = (ω1, ω2, . . . , ωz) ∈ Ω+ a shortest
weak/strong path from P to Q, and Ri the ith intermedi-
ate state-set along the path (i.e., Ri = (ω1, ω2, . . . , ωi)(P)
for i ∈ {1, . . . , z − 1}). Then dww/ss(Ri, Q) = z − i,
dss(P,Ri,) = i, and dww(P,Ri,) ≤ i.

The surprising part of Theorem 9 is the last part, that
dww(P,Ri) can be less than i. Figure 4 illustrates how this
can happen. The shortest weak path from P to Q passes
through R1 and then R2 but there is weak path directly from
P to R2 so dww(P,R2) = 1 even though R2 is distance two
from P on the shortest path to Q. As the figure shows, this
happens because the path directly from P to R2 intersects
with R2 in a state-set (X) from which Q cannot be reached.

Because dww/ss(Ri, Q) = z − i, systems like
HIDA* (Holte, Grajkowski, and Tanner 2005) and Hier-
archical A* (Holte et al. 1996), which compute abstract
distances by searching in the forward direction (from start
to goal), will work correctly for any method that abstracts
states (or state-sets) by mapping them to supersets. By con-
trast, because dww(P,Ri) might be less than i, systems that

P

ω1

PREω1
R1

PREω2

ω2

R2

PREω3

Q

R3

ω3

PREω4

X
ω4

Figure 4: The shortest weak path from P to R2 on the way
to Q is not necessarily the shortest weak path from P to R2.

compute abstract distances by searching backwards in the
abstract space, such as Switchback (Larsen et al. 2010), can-
not, in general, be used in conjunction with dww because the
weak distances-from-goal they cache for intermediate state-
sets along the paths they find, such as R2 in Figure 4,1 may
be larger than the actual weak distance from the goal. How-
ever, there are special circumstances that permit these effi-
ciencies to be obtained even though weak distances are be-
ing computed. These are captured in the next definition and
theorem.

Definition 10 (Simple Space) Let S = (S,Ω) be a state
space and SS = (2S ,Ω) the state-set space induced by S.
State-set P ∈ SS is “simple” if for all state-sets Q and R
reachable from P , eitherQ = R orQ∩R = ∅. SS is simple
if all state-sets P ∈ SS are simple.

Theorem 10 Let S = (S,Ω) be a state space, P
and Q state-sets w.r.t. S, P a simple state-set, π =
(ω1, ω2, . . . , ωz) ∈ Ω+ a weak path from P to Q, and Ri

the ith intermediate state-set along the path (i.e., Ri =
(ω1, ω2, . . . , ωi)(P) for i ∈ {1, . . . , z − 1}). Then
dww(P,Ri,) = i.

Inverting Operators and Paths
Definition 11 (Inverse Operator) Let S = (S,Ω) be a
state space and ω ∈ Ω an operator. The inverse of ω, de-
noted ω−1, is defined to be the state multimapping, ω−1 :
POSTω → PREω , such that, for any state r ∈ POSTω ,
ω−1(r) is defined to be {s ∈ PREω | r ∈ ω(s)}. If
r /∈ POSTω then ω−1(r) = ∅.

The definition immediately implies the following.

Lemma 11 Let S = (S,Ω) be a state space and ω ∈ Ω an
operator. Then:

1. ω−1 is an operator in the sense of Definition 3.
2. (ω−1)−1 = ω, the inverse of ω−1, is ω.

1In this example, Switchback is searching backwards from the
goal, P , towards Q, so the distance from P to R2 is R2’s distance
to goal.

3. For any state s ∈ PREω and any state t ∈ ω(s), s ∈
ω−1(t).

4. PREω−1 = POSTω .
5. POSTω−1 = PREω .
6. For any state-set P to which ω is strongly/weakly ap-

plicable, ω−1 is strongly applicable to ω(P) and (P ∩
PREω) ⊆ ω−1(ω(P)).

7. For any state-set P to which ω−1 is strongly/weakly ap-
plicable, ω is strongly applicable to ω−1(P) and (P ∩
POSTω) ⊆ ω(ω−1(P)).

The last two parts of Lemma 11 show that ω−1 in not
guaranteed to be a true inverse of ω and that neither is
ω guaranteed to be a true inverse of ω−1. To be true
inverses they should exactly reverse each other’s actions,
which would require (P ∩ PREω) = ω−1(ω(P)) and
(P ∩ POSTω) = ω(ω−1(P)).

Theorem 12 (Inverses of Weak Paths) Let S = (S,Ω) be
a state space, P a state-set, O = 〈ω1, . . . , ωk〉 an operator
sequence that is weakly applicable to P , andQ any state-set
such that Q ∩ O(P) 6= ∅. Then O−1 = 〈ω−1

k , . . . , ω−1
1 〉 is

weakly applicable to Q and P ∩O−1(Q) 6= ∅.

Planning as State-Set Search
Backstrom (1995) describes two planning formalisms that
explicitly support reasoning about state-sets (called partial
states by Backstrom), Grounded TWEAK and SAS+. Al-
though these are planning formalisms, and not planning sys-
tems, they formally define the semantics of operator applica-
bility and goal testing. The following theorems show that in
both formalisms strong matching is used for both operator
applicability and goal testing, and therefore systems based
on these formalisms will be computing strong paths.

Theorem 13 Grounded TWEAK, as described by Back-
strom (1995), uses strong matching for testing operator ap-
plicability and goal satisfaction.

Proof Sketch. In Grounded TWEAK a state is a set of liter-
als, positive or negative facts that are known to hold in the
state. Atoms that have no corresponding literal in a state
may be either true or false. Hence, every “state” s in the
Grounded TWEAK parlance represents the set of states, in
our parlance, for which the literals in s are true and the atoms
having no corresponding literal in s have all possible combi-
nations of truth value assignments. Operator preconditions
are also sets of literals, and precondition p is satisfied by
state s if s contains all the literals in p. From a state-set
point of view, this means that smust be a subset of p (having
all the literals in p, and possibly more, means that s repre-
sents a subset of the states that p represents). In other words,
Grounded TWEAK does strong matching to determine if an
operator applies to a state. The goal is also a set of literals,
and state s satisfies the goal if s contains all the literals in the
goal. Again, this is strong matching. The only point that re-
mains to be proved to finish the proof of the theorem is that
the action of operators on a “state” (state-set) in Grounded
TWEAK is exactly as defined for state-sets in Definition 3.
This is true, but we omit the proof. �

Theorem 14 SAS+, as described by Backstrom (1995), uses
strong matching for testing operator applicability and goal
satisfaction.

Proof Sketch. States in SAS+ are exactly as we define states
in Definition 12 below: vectors of a fixed length, with each
position in the vector having its value drawn from a finite set
of possible values. In addition, SAS+ has a special symbol
(u) that allows a state to specify that the value in one or more
of its positions is unknown. An SAS+ state with one or more
u values therefore represents the set of states which agree
on the known values and have all possible combinations of
values for the unknown positions.

Operator preconditions, in our sense, are divided into pre-
conditions and prevail conditions in SAS+, but here we will
call them all preconditions. An SAS+ state s satisfies the
preconditions p of an operator if the values specified by p are
known in s. From a state-set point of view, this means that s
must be a subset of p (having known values that agree with
those specified in p, and possibly more known values, means
that s represents a subset of the states that p represents).
Hence, SAS+ does strong matching to determine if an op-
erator applies to a state. The goal is defined exactly like a
precondition, and matching a state to the goal is done exactly
as matching a state to a precondition is done, hence SAS+
also does strong matching to determine if a state matches
the goal. The only point that remains to be proved to finish
the proof of the theorem is that the action of operators on a
“state” (state-set) in SAS+ is exactly as defined for state-sets
in Definition 3. This is true, but we omit the proof. �

In regression planning, as defined by Haslum and
Geffner (2000), a path (and distance) from state-set P to
state-set Q is computed by searching backwards, with re-
verse operators, from Q until a superset of P is reached. We
call them reverse operators, not inverses, because they be-
have slightly differently than the inverse operators of Defini-
tion 11. In particular, if ωr is the reverse of operator ω, then
PREωr ⊇ POSTω

2 and POSTωr ⊆ PREω ,3 whereas
equality is required in these equations for inverse operators.
These properties of reverse operators are sufficient to prove
the following.

Theorem 15 The length of the shortest path from P to Q
found by regression planning, as defined by Haslum and
Geffner (2000), is dss(P,Q).

The hm distance from P to Q defined by Haslum and
Geffner (2000) is a variation on regression planning in
which, under certain circumstances, a state-set R reached
during the regression search from Q to P is replaced by a
superset R′ ⊇ R.4

2states in POSTω contain all of the atoms in Add(ω) and none
of the atoms in Del(ω) but a state can be regressed through ω as
long as it has none of the atoms in Del(ω) and at least one of the
atoms in Add(ω). Hence ωr can be applied to states that do not
contain all the atoms in Add(ω) and are therefore not in POSTω .

3The states that are in PREω but not in POSTωr are those that
contain all the atoms in Add(ω).

4Haslum and Geffner’s paper is written in the classical planning
setting, which assumes the start state (P here, s0 in their notation)

Corollary 16 hm(P,Q), as defined by Haslum and
Geffner (2000), is a lower bound on dss(P,Q).

Proof. This follows immediately from Theorem 15 and The-
orem 4. �

If the same idea was used in forward planning, i.e., replac-
ing a state R reached while searching forward from P to Q
with a superset R′ ⊇ R, the distance calculated would be
an upper bound on dss(P,Q), not a lower bound (cf. Theo-
rem 6).

The State-Set View of Abstraction
In order to formally analyze existing abstraction systems,
we first need to formally define them. Our formalization is
a blend of ideas from Zilles and Holte (2010) and Yang et
al. (2008).

Definition 12 A vector state space is a triple S =
(n, {D1, D2, . . . , Dn},Ω) where n ∈ N, each Di is a fi-
nite set called a “domain”, and Ω is a set of operators. The
set of states in S is S = D1 ×D2 × . . .×Dn.

We consider two types of abstraction of vector state
spaces.

Domain abstraction. A domain abstraction ψ of vec-
tor state space S = (n, {D1, D2, . . . , Dn},Ω) is de-
fined by a set {ψ1, ψ2, . . . , ψn} of mappingsψi : Di →
Ei where Ei ⊆ Di and, for at least one i, Ei 6= Di.
State 〈σ1, . . . , σn〉 ∈ D1 ×D2 × . . . ×Dn is mapped
by ψ to abstract state 〈ψ1(σ1), . . . , ψn(σn)〉.
Projection. A projection abstraction ψ of vector
state space S = (n, {D1, D2, . . . , Dn},Ω) is de-
fined by a subset {i1, . . . , im} ⊂ {1, . . . , n}. State
〈σ1, . . . , σn〉 ∈ D1 × D2 × . . . × Dn is mapped by
ψ to abstract state 〈σi1 , . . . , σim

〉.
In both types of abstraction, each abstract state represents

a set of states, i.e., is a state-set over D1 ×D2 × . . . ×Dn.
The abstract state spaces created by both types of abstrac-
tion are simple. For projection this follows from the fact
that if two abstract states are not the same, they must differ
in the value of at least one variable. No state can have two
different values for the same variable and therefore two dif-
ferent state-sets created by projection cannot have any state
in common.

The abstract state spaces created by domain abstraction
are also simple, for a similar reason. Two different abstract
states, α1 and α2, created by the same domain abstraction
ψ must differ in at least one position. Let i be a position in
which they differ (α1[i] 6= α2[i]). Because ψi maps each
value in the original domain Di to one value in the abstract
domain Ei, α1[i] 6= α2[i] implies that there cannot exist
a state s such that ψi(s[i]) = α1[i] and ψi(s[i]) = α2[i].
Therefore there is no s mapped to both α1 and α2, so α1 ∩
α2 = ∅.

is a fully specified state, but their definition and proof that it is a
lower bound have no reliance on this assumption and so can be
applied without modification to the more general setting where P
is a state-set.

If ψ is any abstraction mapping of state space S, and ω is
an operator that can be applied to state s, then it is required
by the definition of an abstraction that ω be applicable to
ψ(s), the abstract state corresponding to s. This immedi-
ately implies that abstraction systems use weak matching to
define if an operator is applicable, since there may be an-
other state, t, such that ψ(t) = ψ(s) but ω is not applicable
to t.

A path from P to Q in an abstract space is a sequence of
operators π such that π(P) = Q. This requirement for exact
matching is more demanding than strong matching. How-
ever, for the types of abstraction we are considering (projec-
tion and domain abstraction) exact matching, strong match-
ing, and weak matching are all equivalent when used to test
if π(P) matches Q.

Having concluded that projection and domain abstraction
systems use weak matching to test operator applicability and
the equivalent of weak matching to test if π(P) matches Q,
one is tempted to conclude that these systems compute dww.
This is not true: dabs(P,Q), the distance from P to Q com-
puted by a projection or domain abstraction system, can be
strictly smaller than dww, as the following example illus-
trates.
Example 17 A state is a 3-tuple of binary variables and
there are only two operators, ω1 : 〈1, 1, 1〉 → 〈0, 0, 1〉
and ω2 : 〈1, 0, 1〉 → 〈1, 0, 0〉. If the first state variable
is projected out, states 〈0, 0, 1〉 and 〈1, 0, 1〉 are mapped to
the same abstract state, 〈0, 1〉, creating a path of length 2
from abstract state 〈1, 1〉 to 〈0, 0〉: ω1(〈1, 1〉) = 〈0, 1〉 and
ω2(〈0, 1〉) = 〈0, 0〉. Thus dabs(〈1, 1〉, 〈0, 0〉) = 2. How-
ever, dww(〈1, 1〉, 〈0, 0〉) = ∞. The difference in distances
is because of a subtle difference between how ω1(〈1, 1〉) is
defined in the projected space and how it is defined from a
state-set point of view. In the latter, ω1(〈1, 1〉) is not 〈0, 1〉,
it is 〈0, 0, 1〉. This is because 〈1, 1〉 denotes the state-set
{〈0, 1, 1〉, 〈1, 1, 1〉} and ω1 maps that state-set to the state-
set {〈0, 0, 1〉}. No operator is applicable to {〈0, 0, 1〉},
hence dww(〈1, 1〉, 〈0, 0〉) =∞.

An analogous example can be given to show that the
distances computed by domain abstraction systems can be
strictly less than dww. We record these observations in the
following theorem.
Theorem 18 Let dabs(P,Q) be the distance from P to
Q computed by a projection or domain abstraction sys-
tem. Then dabs(P,Q) ≤ dww(P,Q) and there exist pro-
jections and domain abstractions such that dabs(P,Q) <
dww(P,Q) for some P and Q.
Proof. dabs(P,Q) > dww(P,Q) is impossible because dabs

is admissible and Theorem 7 established that dww is the
largest distance that is guaranteed to be admissible. Exam-
ple 17, along with its analog for domain abstraction, proves
the second part of the theorem. �

The reasoning underlying Example 17 applies broadly:
any state-set space that imposes constraints on state-set
reachability beyond those implied by the operator precon-
ditions themselves runs the risk of having to approximate
the state-set produced by applying an operator with a super-
set in order to enforce the extra constraints. Doing this can

create paths that would not otherwise exist, which can re-
duce distances and make state-sets reachable that would not
be reachable otherwise (“spurious states” (Zilles and Holte
2010)).

On the other hand, abstraction systems that exactly com-
pute dww run a different risk: if operators are able to reduce
the cardinality of a state-set, as happens in Example 17, the
number of reachable state sets might become very large. In
the worst case, a sequence of operator applications might
lead to a state in the original state space making the reach-
able portion of the abstract space a superset of the original
space. This can be viewed as the “problem” that hm solves
in the context of regression planning: when the cardinal-
ity of a state-set gets too small, its cardinality is increased
artificially by replacing it by a superset (actually, several
supersets—see the next paragraph). Here we see that the
same “problem” may occur in any abstraction system that
attempts to compute dww.

The analogy with hm leads to a final point that may give
an advantage to abstraction systems that exactly compute
dww over existing abstraction systems. When hm reaches
a state-set P whose cardinality is too small, it does not re-
place it with just one superset of a sufficiently large cardi-
nality. It enumerates all supersets of P having a sufficiently
large cardinality and uses the maximum of their distances
to Q as a lower bound estimate for P ’s distance to Q. An
abstraction system could do exactly the same: instead of
computing one superset (abstraction) of the given state-set
P , several could be computed and the maximum taken over
all the distances thus computed. When the abstract state
spaces are simple, this idea is exactly equal to using multi-
ple abstractions (Holte et al. 2006). However, in non-simple
abstract spaces, a given state (or state-set) could have mul-
tiple abstract images that are reachable from one another.
We call such an abstraction mapping a “multi-abstraction”.
Multi-abstractions might result in memory savings over hav-
ing multiple non-overlapping abstract spaces.

There is an additional reason to consider looking up sev-
eral supersets of a given state (or state-set). If a consistent
heuristic is desired (e.g., if A* search is being done) doing
just one lookup is more likely to result in inconsistency than
if several lookups are done. Figure 5 illustrates this. Sup-
pose a and b are two states and ω1(a)=b. h(a) is computed
as dww(A,G) = 3 (the operator sequence is ω1, ω2, ω3),
where A is a state-set containing a and G is the goal state-
set. If h(b) is computed as dww(B2, G) = 1, an incon-
sistency in the heuristic values will occur. If it were com-
puted as dww(B1, G) or max(dww(B1, G), dww(B2, G))
the heuristic values would be consistent. If the max was
taken over all state-sets containing b, consistency would be
guaranteed.

We now report on our first efforts to implement multi-
abstractions that compute dww exactly.

An Implementation of dww Multi-abstraction
In this section we describe an initial implementation of a
multi-abstraction system for a vector state space S (cf. Def-
inition 12) in which all n state variables have the same do-
main D and there is a set X of variable symbols distinct

A

ω1

PREω1
PREω2

ω2

PREω3

G

ω3
B2

PREω4

ω4

a b

B1

Figure 5: Potential for dwwto produce an inconsistent
heuristic.

from the values in D. Any vector V defined over D ∪ X
in which no x ∈ X occurs twice denotes the set of states s
such that if Vi ∈ D then si = Vi (i.e., s agrees with V wher-
ever V specifies a constant). If we replace any constant in V
by a variable symbol not already in V , the resulting vector
defines a superset of V . This is the how we will define an
abstraction of a state-set in our implementation.

An operator is defined as a pair 〈L,R〉, where each
of L and R is, like the vector V just described, a vec-
tor of length n over D ∪ X in which no x ∈ X oc-
curs twice. L is the operator’s preconditions. The set of
states defined by L for operator ω is, by definition, PREω .
R defines POSTω . In the PSVN language we are us-
ing for our implementation (Hernádvölgyi and Holte 1999;
Zilles and Holte 2010) vectors L and R also define how an
operator acts on a state.

Given a state-set P defined as a vector of length n over
D∪X in which no x ∈ X occurs twice, operator ω = 〈L,R〉
is strongly applicable to P iff Li ∈ D =⇒ Pi = Li

(for all i) and is weakly applicable to P iff Li ∈ D and
Pi ∈ D =⇒ Pi = Li (for all i).

Our abstraction method assumes that, in any set of state
vectors reachable from one other, each value dj ∈ D oc-
curs the same number of times, nj . An abstraction is spec-
ified by a vector 〈m1, . . . ,m|D|〉 with 0 ≤ mj ≤ nj for
j ∈ {1, . . . , |D|}. mj specifies how many occurrences of
value aj are to be replaced by a variable symbol. This is a
multi-abstraction because, in general, there will be several
ways to choose mj of the nj occurrences of dj . For exam-
ple, suppose D = {1, 2, 3}, the state is 〈1, 1, 1, 2, 3, 3〉 and
the abstraction is 〈2, 0, 1〉. There are three ways to choose
two of the three 1’s and two ways to choose one of the two
3’s, so this abstraction maps 〈1, 1, 1, 2, 3, 3〉 to six differ-
ent abstract states (〈1, x1, x2, 2, 3, x3〉, 〈x1, 1, x2, 2, 3, x3〉,
〈1, x1, x2, 2, x3, 3〉, etc.). By construction, all of them con-
tain the state 〈1, 1, 1, 2, 3, 3〉.

As an initial evaluation of this state-set abstraction
method we have compared it with domain abstraction on the
8-puzzle. We use HIDA* (Holte, Grajkowski, and Tanner
2005) as our search algorithm for the reasons given in the
discussion of Theorem 9. See Algorithms 1-2. In these al-
gorithms there is a cache that contains two values for each

state vector x. cache[x].dist is the best known estimate of
the distance from x to the goal state, Goal. If this dis-
tance is known to be an exact distance, and not just a lower
bound, cache[x].exact is true. cache[x].dist is initialized to
0, cache[x].exact to false. The same cache is used for all
levels of abstraction. Algorithms 1 and 2 are almost identi-
cal to normal HIDA* in their overall structure, but there are
two subtleties in Algorithm 2 that cause it to compute dww:
line 1 tests if the goal has been reached by intersecting the
current state-set with the goal, and in computing the succes-
sors of state-set s (line 7) weak matching is used to test if
an operator applies to s.

Algorithm 1 HIDA*(Start, Goal)
1: bound← h(Start, Goal)
2: while Goal not found do
3: bound← DFS(Start, Goal, 0, bound)
4: end while

Algorithm 2 DFS(Start, Goal, g, bound)
1: if Start ∩Goal 6= ∅ then
2: cache[Start].dist← 0
3: cache[Start].exact← true
4: return cache[Start].dist and success // goal found
5: end if
6: newbound←∞
7: for each x ∈ successors(s) do
8: //P-g caching
9: cache[x].dist ← max(cache[x].dist, bound - g,

h(x,Goal))
10: f← g + cache[x].dist
11: // Optimal path caching
12: if (f == bound) and (cache[x].exact == true) then
13: cache[Start].dist← cache[x].dist + 1
14: cache[Start].exact← true
15: return cache[Start].dist and success
16: end if
17: if f ≤ bound then
18: f← DFS(x,Goal,g+1,bound)
19: end if
20: if Goal is found then
21: cache[Start].dist← f + 1
22: cache[Start].exact← true
23: return cache[Start].dist and success
24: end if
25: if f < newbound then
26: newbound← f
27: end if
28: end for
29: return newbound and failure

Three points in Algorithm 3 are unique to state-set multi-
abstraction and dww. Line 8 looks in the cache for all entries
that are supersets of the given state-set (x); each of these
gives a lower bound on the (weak) distance from x to Goal
so the maximum such distance can be returned (line 9). Line
4 represents a new implementation decision that arises with

multi-abstractions: how many, and which, of the abstrac-
tions of a state-set, should have exact distances to Goal com-
puted? In our implementation, we compute an exact distance
to Goal for just one abstraction of state-set x; given the ab-
straction 〈m1, . . . ,m|D|〉 abstract(x) returns the abstraction
of x in which the rightmost mj occurrences of dj have been
replaced by variable symbols. Finally, note that Goal is not
abstracted: exactly the same Goal is used at every abstrac-
tion level.

Algorithm 3 h(x, Goal)
1: if at top abstraction level then
2: return 0
3: end if
4: absStart← abstract(x)
5: if cache[absStart].exact == false then
6: HIDA*(absStart, Goal)
7: end if
8: hSet← { cache[y].dist | x ⊆ y }
9: return max

v∈hSet
v

We use a state space as small as the 8-puzzle so that
we can evaluate all possible state-set abstractions and do-
main abstractions of a particular granularity in a reasonable
amount of time. This experiment is a proof-of-principle, not
a thorough empirical study.

In order to fairly compare our state-set method with do-
main abstraction, we carefully chose state-set abstractions
and domain abstractions so that the abstract space at each
level is the same size in both cases. Level 1 is always de-
fined by the domain abstraction that maps tiles 1-4 to 1. The
mapping from Level 2 to Level 3 is chosen so that Level 3
is also always the same. For domain abstraction we con-
sider six alternative abstractions of the same granularity to
map Level 1 to Level 2 and two alternative abstractions to
map from Level 3 to Level 4, giving a total of 12 combina-
tions. We do the same for state-set abstraction: 6 different
alternative for mapping Level 1 to Level 2 and two different
alternatives for mapping from Level 3 to Level 4.

The 12 abstraction hierarchies of each type are evaluated
by using each to solve 1000 randomly generated solvable
start states. The experiment were run on an 2.5 GHz Intel
E5200 with 6GB of RAM. We recorded the average number
of nodes generated to solve each start state (total over all
abstraction levels and the “base level” 8-puzzle space), the
average CPU time, and the number of entries stored in the
caches at all levels.

Figure 6 shows the average number of nodes generated
(y-axis) for each of the 1000 instances (the x-axis). There
are two data points for each instance; a black circle showing
the average number of nodes generated over the 12 alterna-
tive state-set abstractions and a grey cross showing the av-
erage number of nodes generated over the 12 alternative do-
main abstractions. The instances are ordered on the x-axis
according to their state-set average. We see that state-set
abstraction generates fewer nodes than domain abstraction,
with the advantage increasing as problems become more dif-
ficult. The CPU time plot had the same qualitative character-

istics. The number of nodes cached using state-set abstrac-
tion was the same as, or smaller than, the number cached
using domain abstraction.

0 200 400 600 800 1000
Test cases

0.

20,000.

40,000.

60,000.

80,000.

100,000.

120,000.

140,000.

N
o
d
e
s
 G

e
n
e
ra

te
d

State-set Abstraction

Domain Abstraction

Figure 6: Average Nodes Generated.

Figure 7 plots the number of nodes generated for the worst
and best abstractions of each type, where ”worst” means the
abstraction that resulted in the most nodes generated. The
plots for state-set abstraction are shown with black, and the
plots for domain abstraction are shown in grey. For the eas-
iest problems, there is no difference between the two types
of abstraction: their best abstractions are equally good and
their worst abstractions are equally bad. As the problems
get harder, the plots for domain abstraction rise more quickly
than the corresponding plots for state-set abstraction. For the
hardest problems the worst state-set abstraction outperforms
the best domain abstraction. The superior performance of
state-set abstraction in this experiment is not due to dww re-
turning larger heuristic values than dabs: the state-set ab-
straction at Level 2 actually returns slightly smaller values,
on average, than the domain abstraction, resulting in more
nodes being generated at Level 1. However, the number of
nodes generated at Level 2 is much smaller for state-set ab-
straction, resulting in an overall reduction in nodes gener-
ated when all levels are considered.

0 200 400 600 800 1000
Test cases

0.

20,000.

40,000.

60,000.

80,000.

100,000.

120,000.

140,000.

160,000.

N
o
d
e
s
 G

e
n
e
ra

te
d

State-set Abstraction

Domain Abstraction

Figure 7: Best and Worst Abstractions of each type.

Conclusions
The formal, general analysis of state-set search in this paper
highlights the similarities and differences between the paths
and distances computed by planning systems and abstraction
systems, exposes both limitations and special, advantageous
properties of current techniques, and suggests new, poten-
tially powerful techniques such as multi-abstraction and the
dww distance.

Acknowledgements
The authors thank the reviewers for their comments on the
submitted version and gratefully acknowledge the research
support provided by Canada’s Natural Sciences and Engi-
neering Research Council (NSERC).

References
Bäckström, C. 1995. Expressive equivalence of planning
formalisms. Artif. Intell. 76(1-2):17–34.
Bonet, B., and Geffner, H. 2000. Planning with incomplete
information as heuristic search in belief space. In AIPS, 52–
61.
Haslum, P., and Geffner, H. 2000. Admissible heuristics
for optimal planning. In Proceedings of the 5th Interna-
tional Conference on Artificial Intelligence Planning Sys-
tems, 140–149.
Hernádvölgyi, I., and Holte, R. 1999. PSVN: A vector repre-
sentation for production systems. Technical Report TR-99-
04, Department of Computer Science, University of Ottawa.
Holte, R. C.; Perez, M. B.; Zimmer, R. M.; and MacDon-
ald, A. J. 1996. Hierarchical A*: Searching abstraction
hierarchies efficiently. In National Conference on Artificial
Intelligence (AAAI-96), 530–535.
Holte, R. C.; Felner, A.; Newton, J.; Meshulam, R.; and
Furcy, D. 2006. Maximizing over multiple pattern databases
speeds up heuristic search. Artificial Intelligence 170:1123–
1136.
Holte, R. C.; Grajkowski, J.; and Tanner, B. 2005. Hierarchi-
cal heuristic search revisited. In Proceedings of the 6th In-
ternational Symposium on Abstraction, Reformulation and
Approximation (SARA 2005), volume 3607 of LNAI, 121–
133. Springer.
Kaindl, H., and Kainz, G. 1997. Bidirectional heuristic
search reconsidered. Journal of Artificial Intelligence Re-
search 7:283–317.
Larsen, B. J.; Burns, E.; Ruml, W.; and Holte, R. 2010.
Searching without a heuristic: Efficient use of abstraction.
In AAAI.
Rintanen, J. 2008. Regression for classical and nondeter-
ministic planning. In Proceeding of the 18th European Con-
ference on Artificial Intelligence, 568–572. IOS Press.
Yang, F.; Culberson, J.; Holte, R.; Zahavi, U.; and Felner, A.
2008. A general theory of additive state space abstractions.
Journal of Artificial Intelligence Research 32:631–662.
Zilles, S., and Holte, R. C. 2010. The computational com-
plexity of avoiding spurious states in state space abstraction.
Artificial Intelligence 174(14):1072–1092.

