
The Spurious Path Problem in Abstraction

Gaojian Fan and Robert C. Holte
University of Alberta, Edmonton, Alberta, Canada

{gaojian, rholte}@ualberta.ca

Abstract

Abstraction is a powerful technique in search and plan-
ning. A fundamental problem of abstraction is that it
can create spurious paths, i.e., abstract paths that do
not correspond to valid concrete paths. In this paper,
we define spurious paths as a generalization of spuri-
ous states. We show that spurious paths can be catego-
rized into two types: state-independent spurious paths
and state-specific spurious paths. We present a prac-
tical method that eliminates state-independent spuri-
ous paths, as well as state-specific spurious paths when
integrated with mutex detection methods. We provide
syntactical conditions under which our method can re-
move state-independent spurious paths completely. We
demonstrate that eliminating spurious paths can im-
prove a heuristic substantially, even in abstract spaces
that are free of spurious states and edges.

Introduction
Abstraction is a powerful technique in search and planning.
The main applications of abstraction include plan refinement
(Sacerdoti 1974; Bacchus and Yang 1994; Knoblock 1994;
Seipp and Helmert 2013) and abstraction-based heuristics
(Culberson and Schaeffer 1998; Hernádvölgyi and Holte
2000; Edelkamp 2001; Seipp and Helmert 2013; Helmert
et al. 2014). Plan refinement first solves the problem in the
abstract space and then uses the abstract plan as a skeleton to
find a concrete plan. Heuristic search methods use the costs
of abstract solutions as a heuristic to guide search.

A fundamental problem of abstraction is that it may cre-
ate spurious paths. A spurious path is an abstract path that
has no valid pre-image path. For plan refinement, spurious
paths cause backtracking, i.e., re-planning in the abstract
space (Bacchus and Yang 1994). For abstraction heuristics,
spurious paths introduce short-cuts in the abstract space and
produce heuristics that underestimate the true costs.

In this paper, we give a formal definition of spurious path.
Our definition generalizes the definition of spurious states
(Hernádvölgyi and Holte 1999; Zilles and Holte 2010). We
introduce the concept of an operator chain, i.e., a sequence
of operators that can be executed consecutively in the con-
crete space. Operator chains underlie our practical method,

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

which we call SPECO (for Spurious Path Elimination with
Chains of Operators), for eliminating spurious paths. To un-
derstand how effective SPECO could be, we analyze key
properties of operator chains and derive the syntactical con-
ditions under which SPECO can eliminate all spurious paths
of a certain type, called state-independent spurious paths.
After the formal analysis, we present SPECO and describe
its integration into a heuristic search method. We demon-
strate that spurious paths may exist in abstract spaces of typ-
ical search domains such as the Sliding Tile Puzzle. We test
our method on the 8-Puzzle as a case study. The experimen-
tal results show that spurious paths are harmful and remov-
ing them substantially increases the heuristic quality, even in
abstract spaces that are free of spurious states and edges.

State Spaces and Abstractions
A state space is a 4-tuple S = (S,L, c,Π). S is a set of
states, L is a set of labels, c :L 7→R+

0 is a function giving
the cost of a label, and Π⊆ S ×L× S is a set of labelled
edges. Each (s, l, s′)∈Π is a directed edge from state s to
state s′ with label l. As a more intuitive notation, we use
s→l s′ to denote (s, l, s′). A label l is non-deterministic in S
if there are two edges s→l s′ and s→l s′′ such that s′ 6= s′′.
Otherwise, the label is deterministic in S . In the rest of the
paper “s.t.” stands for “such that.”

A path w of length k ∈N0 in state space S = (S,L, c,Π)
is a sequence of states (s0, s1, ..., sk) s.t. for each
i ∈ {1, 2, ..., k} there exists a label li s.t. si−1→li si ∈Π.
Since there might be several transitions (with different la-
bels and costs) from s to s′ we define c(s, s′), the cost of the
edge from s to s′, as the minimum cost c(l) over all labels l
s.t. s→l s′ ∈Π. The cost of path w is then

∑k
i=1 c(si−1, si).

In a path the same state can appear more than once and self-
loops are allowed, i.e., si = si+1 is allowed if there exists
a label l s.t. si→l si+1 ∈Π. For states s, s′ ∈ S, we say s′ is
reachable from s if there exists a path (s0, s1, ..., sk) such
that s= s0 and s′ = sk for some k ∈N0.

An abstraction of state space S = (S,L, c,Π) is a sur-
jective mapping of states in S, ψ: S 7→ S′ that in-
duces an abstract state space S ′ = (S′, L, c,Π′) where
S′ = {ψ(s) | s∈ S} is the set of abstract states, and
Π′ = {ψ(s)→l ψ(s′) | s→l s′ ∈Π} is the set of abstract edges.
We call the state space S the concrete state space, and the

states/edges/paths in S the concrete states/edges/paths. This
definition corresponds to what Clarke et al. (1994) call the
“minimal” abstraction of S, since Π′ only contains edges
that are the images of the edges in Π.1 If Π′ were allowed to
contain additional edges, it would be non-minimal in Clarke
et al.’s terminology. We focus on minimal abstractions for
two reasons. The first is to emphasize that spurious paths
can arise even when every individual edge in Π′ has a pre-
image2 in Π. The second reason is that the commonly used
abstraction techniques, such as merge-and-shrink (Helmert
et al. 2014), projection (Edelkamp 2001), and domain ab-
straction (Hernádvölgyi and Holte 2000), all produce mini-
mal abstractions.

Spurious Paths
In this section, we formally define spurious paths as well as
the special type of spurious path we focus on in this paper.
In this paper “w.r.t.” stands for “with respect to.”
Definition 1. For s∈ S, k ∈N0 and abstraction ψ, an ab-
stract path (t0, t1, ..., tk) is a spurious path w.r.t. s if
1. t0 is reachable from ψ(s);
2. there is no concrete path (s0, s1, ..., sk) s.t. ψ(si) = ti for

all i ∈ {0, 1, ..., k} with s0 reachable from s;
In Definition 1, the first condition excludes abstract paths

that are unreachable by forward search in the abstract space
as we are only interested in spurious paths reachable in the
abstract space. The second condition defines the key charac-
teristic of a spurious path: it has no reachable concrete path
pre-image.

Spurious paths of length 0 w.r.t. some s∈ S coincide
with spurious states w.r.t. s, whose existence has been noted
by several authors (e.g. (Hernádvölgyi and Holte 1999;
Haslum, Bonet, and Geffner 2005)) and studied in depth by
Zilles and Holte (2010) and Sadeqi (2014). Note that spu-
rious states, as defined here, are entirely different from the
“spurious states” that are often generated during regression
search (Bonet and Geffner 2001; Alcázar et al. 2013).

Spurious paths of length 1 (spurious edges) w.r.t. some
s∈ S have also been noted by previous authors (e.g. (Clarke,
Grumberg, and Long 1994; Sharygina, Tonetta, and Tsi-
tovich 2009)) and studied in some depth by Sadeqi (2014).

Spurious paths of length greater than 1 w.r.t. some s∈ S
have been explicitly distinguished from paths containing a
spurious edge by a few authors in the past (e.g. (Clarke et al.
2002; Qian and Nymeyer 2004; Smaus and Hoffmann 2008;
Sharygina, Tonetta, and Tsitovich 2009)). The work we
present in this paper is the first to distinguish two different
types of such paths—state-specific and state-independent
(defined below)—and to use this understanding to develop a
new technique (operator chains) to eliminate spurious paths.

1For a minimal abstraction, Clarke et al. also require the set of
abstract start states to be the exact image of the set of the concrete
start states. Since we do not include the start states in our definition
of a state space, we cannot express that requirement here.

2Here, the images are abstract edges and pre-images are con-
crete edges. Similarly, when we talk about paths, the images and
the pre-images correspond to the abstract and concrete paths of the
same length respectively.

a b1
x

b2 d

c

y

y

(a) the concrete space

A B

D

C

x

y

y

(b) the abstract space

Figure 1: A state-independent (type (i)) spurious path.

Some properties studied previously are sufficient condi-
tions for abstractions being free of spurious paths. An ab-
straction is precondition-preserving (PP) if for any label l
and any state s, if there exists an abstract edge ψ(s)→l t∈Π′,
then there exists a concrete edge s→l s′ ∈Π. If an abstraction
is PP and all labels are deterministic in the abstract space,
then the abstract space contains no spurious states (Zilles
and Holte 2010). It is easy to prove that these conditions are
also strong enough to prevent spurious paths:
Lemma 1. Ifψ is a precondition-preserving abstraction and
all labels in the abstract space are deterministic, then the
abstract space contains no spurious paths.

Without determinism of the labels in the abstract space,
PP alone does not guarantee there are no spurious paths.
Consider the example in Figure 1. S = {a, b1, b2, c, d},
L= {x, y} and Π = {a→x b1, b2→x d, b1→y c}. The abstraction
ψ maps the states as follows:ψ(a) =A,ψ(b1) = ψ(b2) =B,
ψ(c) =C, and ψ(d) =D. This abstraction is PP but label y
in the abstract space is not deterministic. The abstract path
(A,B,D) is reachable from A but has no pre-image reach-
able from a, so it is a spurious path w.r.t. a. A stronger
property called bisimularity does not require determinism.
An abstraction is a bisimulation if for any states s1, s2 s.t.
ψ(s1) = ψ(s2), for every edge s1→l s′1 ∈Π, there exists an
edge s2→l s′2 ∈Π s.t. ψ(s′1) = ψ(s′2) (Milner 1980; 1990;
Helmert et al. 2014). A special type of bisimulation, namely,
goal-respecting bisimulation, is used in merge-and-shrink to
obtain perfect heuristics (Nissim, Hoffmann, and Helmert
2011). It is easy to prove that a bisimulation abstraction cre-
ates no spurious paths:
Lemma 2. If ψ is a bisimulation, then the abstract space
contains no spurious paths.

Many abstractions do not have these strong properties and
thus may contain spurious paths. We will now show that
there are two types of spurious path. Abstractions are sur-
jective mappings, thus any abstract state has a concrete state
pre-image. Furthermore, every abstract edge also has a pre-
image. Then why are there still spurious states and spurious
edges (w.r.t. s) if all abstract states and abstract edges have
pre-images? Because none of their pre-images are reachable
(from s). For clarity, we rewrite condition 2 in Definition 1:

(i) there is no path (s0, s1, ..., sk) in S s.t. ψ(si) = ti for
all i ∈ {0, 1, ..., k}, or

(ii) there exist one or more paths (s0, s1, ..., sk) in S s.t.
ψ(si) = ti for all i ∈ {0, 1, ..., k}, but in all such paths,
s0 is unreachable from s.

We call spurious paths of type (i) state-independent spu-
rious paths since those paths are spurious w.r.t. any state s,

C A′

A

Figure 2: Surjectivity imposed by restricting A to A′, i.e., exclud-
ing paths in the hatched area.

and we call spurious paths of type (ii) state-specific spurious
paths. Spurious states and spurious edges are state-specific
but never state-independent. However, spurious paths with
more than 1 edge could be state-independent. The path
(A,B,D) in Figure 1 is in fact a state-independent spu-
rious path, since it does not have any pre-image at all.
The path (A,B,C) is state-specific spurious path but not a
state-independent spurious path. (A,B,C) has a pre-image
(a, b1, c) which is reachable from a but not from any other
concrete state in the space.

In the next section, we develop the theoretical under-
pinnings for a method to identify and eliminate state-
independent spurious paths. The implementation of this
method in the context of Hierarchical IDA∗ (Holte, Gra-
jkowski, and Tanner 2005), and a case study applying this
implementation to the 8-Puzzle, are then given. This case
study shows how harmful spurious paths can be: eliminat-
ing them reduces the number of 8-Puzzle states expanded
by almost a factor of 10 in several cases.

State Space Representations and
Operator Chains

For any abstraction ψ and any k ∈N0, we have a map-
ping ψk :C 7→A where C is the set of all concrete paths of
length k and A is the set of all abstract paths of length k. Let
A′ = {ψ(w) |w ∈C}, the set of images of concrete paths in
C. The abstract paths inA\A′ are the state-independent spu-
rious paths of length k because they do not have pre-images.
ψk is not surjective, but if we avoid the generation of the ab-
stract paths in A\A′, we will have imposed surjectivity on
ψk. See Figure 2 for an illustration.

Can we impose surjectivity without enumerating C? The
answer is yes (in practice only partially), because the state
spaces are defined implicitly, by a state space representation.

An implicit representation of a state space is a triple,
R= (L,O, c), where L is a formal language for describing
states, O is a set of operators, and c :O 7→R+

0 is a function
giving the cost of each operator. Each operator o has a pre-
condition, pre(o), which specifies the set of states to which
o can be applied, and a postcondition, which specifies the ef-
fects of applying o to a state. If operator o can be applied to
state s∈L, we write s∈ pre(o). We allow operators to be
non-deterministic: applying an operator to a state can pro-
duce a set of states. We write s′ ∈ o(s) if state s′ is among
the states produced by applying operator o to state s, and use
post(o) to denote

⋃
s ∈ pre(o) o(s)—the set of states that can

be produced by applying o to states in pre(o).
For example, in SAS+ (Bäckström and Nebel 1995) and

PSVN (Holte, Arneson, and Burch 2014), L is specified
by fixing n ∈N, the number of state variables, and defin-
ing a finite set of possible values for each state vari-
able. If Di is the set of values for state variable i, then
L=D1 ×D2 × . . . ×Dn. The precondition of an opera-
tor in SAS+ requires certain state variables to have specific
values and the postcondition sets certain state variables to
specific values. Preconditions and postconditions in PSVN
are more expressive, allowing some state spaces to be rep-
resented with exponentially fewer operators than SAS+, but
are still executable in time linear in n. Operators in SAS+ are
always deterministic. In PSVN it is possible to define non-
deterministic operators.

A state space representation R= (L,O, c) in-
duces a state space S = (S,O, c,Π) where S =L and
Π = {s→o s′ | o ∈O, s∈ pre(o), and s′ ∈ o(s)}. Each oper-
ator o∈O therefore represents a set of edges in the state
space, which we denote Πo = {s→o s′ | s→o s′ ∈Π}.

Although abstraction functions operate on the represen-
tation R and not directly on the induced state space S,
in the remainder of this paper we continue to refer to ψ
as being applied to S to produce an abstract state space
S ′ = (S′,O, c,Π′) and we define the abstract operators in
terms of the edges in S ′, as follows. For each operator
o ∈O, abstraction ψ induces an abstract operator, denoted
by ψ(o), that corresponds to Π′o = {t→o t′ | t→o t′ ∈Π′}, the
set of abstract edges with label o. We call operators in O
the concrete operators. It is worth noting that two different
concrete operators o1 and o2 can be mapped to an identical
abstract operator, i.e., Π′o1 = Π′o2 . In addition, an abstraction
may map a non-identity operator o to the abstract identity
operator, i.e., for any t→o t′ ∈Π′o, t= t′. Some search algo-
rithms ignore duplicate operators and/or identity operators.
Our search algorithm keeps all abstract operators including
duplicate operators and identity operators. This ensures that
our algorithm does not eliminate a valid solution path.

Let k ∈N0 and π be the operator sequence
π = (o1, o2, ..., ok). The precondition of π, pre(π), is
the set of states to which the whole sequence (o1, o2, ..., ok)
can be applied, and the postcondition of π, post(π), is the
set of states can be produced by π when it is applied to states
in pre(π). We say π = (o1, o2, ..., ok) generates a concrete
path p= (s0, s1, ..., sk) if si−1→oi si ∈Π for i ∈ {1, 2, ..., k}.
For an abstraction ψ, we say the abstract operator sequence
ψ(π) = (ψ(o1), ψ(o2), ..., ψ(ok)) generates an abstract
path w= (t0, t1, ..., tk) if ti−1→oi ti ∈Π′ for i ∈ {1, 2, ..., k}.
Definition 2 (Operator Chain). An operator sequence π is
an operator chain if it generates a concrete path in S .

In the rest of this section, if not specified otherwise, we
tacitly assume S = (S,O, c,Π) denotes the concrete state
space induced by representation R= (L,O, c), ψ denotes
an abstraction of S, and S ′ = (S′,O, c,Π′) denotes the ab-
stract state space. In addition, k ∈N0, π = (o1, o2, ..., ok) is
an operator chain and w= (t0, t1, ..., tk) is an abstract path.

Returning to our discussion of Figure 2, if w ∈ A′ then w
must have a concrete path pre-image in C and the concrete

a1

a2

b1

b2
c1

c2

d1 d2

e1 e2

o1

o2

o2

o3

o3

o4

o4

(a) the concrete space

ABC

D

E

o1

o2

o2

o3

o3

o4

o4

(b) the abstract space

Figure 3: In the abstract space (b),w1 = (B,D,A),w2 = (B,E,A),
w3 = (D,A,B) and w4 = (A,B,D,C) are state-independent spuri-
ous paths.

path must be generated by an operator chain. If an abstract
path can only be generated by ψ(π) for which π is not an
operator chain, then the abstract path has no pre-image and
is state-independent spurious.
Theorem 3. If there is no operator chain π s.t. ψ(π) gen-
erates the abstract path w, then w is a state-independent
spurious path.

Figure 3 shows an example in which spurious paths are
generated by an operator sequence that is not the abstraction
of an operator chain. In the example, the states and edges are
shown in the figure. For x∈ {a, b, c, d, e} and i ∈ {1, 2}, the
abstraction ψ maps the concrete state denoted by xi to the
abstract state denoted by X (the upper-case of x). Note that
the postcondition of o2 conflicts with the precondition of o3,
i.e., post(o2)∩ pre(o3) = ∅, so (o2, o3) is not an operator
chain. This conflict, however, is hidden by the abstraction,
so (ψ(o2), ψ(o3)) can generate state-independent spurious
paths w1 = (B,D,A) and w2 = (B,E,A).

Reification and Abstract Determinism
The abstraction of an operator chain may still generate a
state-independent spurious path. For example, in Figure 3,
(o3, o1) is an operator chain, but (ψ(o3), ψ(o1)) still gen-
erates w3 = (D,A,B) which is a spurious path. In fact,
o3 cannot be applied after o1 is applied to d2 because
o3(d2) = {a2} and pre(o1) = {a1}. However, this fact is
hidden by the abstraction since a1 and a2 are mapped to
the same abstract state. Hence, (ψ(o3), ψ(o1)) can generate
w3 = (D,A,B), but (o3, o1) cannot generate a pre-image for
w3. The following definition concerns whether an operator
chain can generate a pre-image for an abstract path.
Definition 3 (Reification). Let i ∈ {1, 2, ..., k}. We say
π reifies the first i steps in w if π generates a path
(s0, s1, ..., sk) s.t. ψ(sj) = tj for all j ∈ {0, 1, ..., i}. We say
π reifies w if π reifies all k steps in w.

The definition immediately implies the following.
Lemma 4. w is not state-independent spurious if and only
if there exits an operator chain π that reifies w.

Now consider again the operator chain π3 = (o3, o1)
and the path w3 in Figure 3. Since d1 6∈ pre(π3) and

d2 6∈ pre(π3), π3 does not reify the first step in w3. Thus,
π3 does not reify w3, and so we know w3 is a spurious path.
However, in the worst case, one has to check every state in
an abstract path to verify whether an operator chain reifies
the path. In general, even if π reifies the first i steps in w,
it does not mean that π reifies the first i+ 1 steps in w.
For example, w4 = (A,B,D,C) in Figure 3 can be generated
by (ψ(o1), ψ(o2), ψ(o4)) whose pre-image π4 = (o1, o2, o4)
is an operator chain. We can see that a1 ∈ pre(π4) and
b1 ∈ o1(a1), which means π4 reifies the first step in w4. Fur-
thermore, c1 ∈ post(π4) and ψ(c1) = C, i.e., π4 can even
generate a pre-image for the last state C in the path w4. Un-
fortunately, w4 still fails to reify the first two steps in w4.

Note that π4 actually reifies the path (A,B,E,C) which is
different from w4 on the third state, and the difference is
caused by the non-determinism of o2 in the abstract state
space. It is easy to see that the determinism of operators in
the abstract space is the key for the induction of operator
chain reification. In particular, if π = (o1, o2, ..., ok) reifies
the first i step in w, and oi+1 is deterministic in the abstract
space, then π reifies the first i+1 step inw. This observation
implies the following.

Lemma 5. If π reifies the first step in w and all operators of
π are deterministic in the abstract space, then π reifies w.

If the abstraction is domain abstraction (Hernádvölgyi and
Holte 2000), then the operators are deterministic in the ab-
stract space if they are deterministic in the concrete space.
For projection (Edelkamp 2001), if SAS+ is used, the op-
erators are guaranteed to be deterministic in the abstract
space. If the formalism is PSVN, then projections may in-
troduce non-determinism to the abstract space. Abstractions
like merge-and-shrink (Helmert et al. 2014) or Cartesian ab-
straction (Seipp and Helmert 2013) may also make operators
non-deterministic in the abstract space.

Syntactic Condition
When the operators are deterministic in the abstract space,
we only need to check the first two states to know whether
the operator chain reifies the path. However, this process is
still dependent on the particular paths. For example, (o3, o1)
in Figure 3 reifies (E,A,B) but not (D,A,B). One has to do
the reification check for every path. To avoid this semantic
dependence, we introduce the concept of an operator chain
being self-fulfilling.

Definition 4 (Self-Fulfilling). We say π = (o1, o2, ..., ol) is
a self-fulfilling operator chain if pre(o1) = pre(π).

In PSVN or SAS+, the precondition of an operator or an
operator chain3 can be represented by a simple expression.
In these formalisms, the condition pre(o1) = pre(π) can be
checked syntactically by comparing their corresponding ex-
pressions. If an operator chain is self-fulfilling and its ab-
stract operators are deterministic, then any path generated
by ψ(π) is not state-independent spurious.

3Each operator chain forms a “macro-operator” (Holte and
Burch 2014). The precondition of the operator chain is the pre-
condition of the macro-operator.

v1 v2 v3

v4 v5 v6

v7 v8 v9

(a) variables

− 2 −
− 0 −
− 0 −

− 0 −
− 2 −
− 0 −

− 0 −
− 0 −
− 2 −

pre(π) post(π)

(b) the invalid operator chain π = (o1, o2)

0 2 4

6 0 8

0 0 0

0 0 4

6 2 8

0 0 0

0 0 4

6 0 8

0 2 0

o1 o2

(c) a spurious path generated by ψ(π)

Figure 4: An invaid operator chain π = (o1, o2) in the 8-Puzzle.
o1 moves tile 2 from the upper-middle position to the center and o2
moves tile 2 from the center to the bottom-middle position.

Theorem 6. Let w be an abstract path generated by ψ(π).
If π is self-fulfilling and its operators are deterministic in the
abstract space, then w is not state-independent spurious.

Proof. ψ(π) generates w, so t0→o1 t1 ∈Π′. There exists
s→o1 s′ ∈Π s.t. ψ(s) = t0 and ψ(s′) = t1. Because π is self-
fulfilling, π can be applied to s, which means it generates
a path (s0, s1, ..., sl) in which s0 = s. Since s0 = s,
ψ(s0) = t0. Because o1 is deterministic in the abstract
space, we have ψ(s1) = t1. π reifies the first step in w.
In addition, all operators of π are deterministic in the ab-
stract space, so π reifies the whole path w (Lemma 5). By
Lemma 4, w is not state-independent spurious.

State-Specific Spurious Paths
The definition of operator chain does not take reachability
into consideration, so the abstraction of an operator chain
may still generate state-specific spurious paths even if it does
not generate state-independent spurious paths.

Consider the 8-Puzzle. A standard representation requires
9 state variables v1, v2, ..., v9 for the 9 positions of the puz-
zle (see Figure 4(a)). The value sets for all variables are
the same: D= {0, 1, 2, ..., 8} in which each indicates what
object (the blank (0) or a specific tile (1, 2, ..., 8)) is in a
specific position of the puzzle. Now consider two operators
o1 and o2. o1 moves tile 2 from the upper-middle position
to the center, so the precondition of o1 requires v2 = 2 and
v5 = 0, and the postcondition of o1 exchanges the values of
v2 and v5, i.e., v2 := 0 and v5 := 2. o2 moves tile 2 from the
center to the bottom-middle position, so its precondition is
(v5 = 2, v8 = 0) and its postcondition is (v5 := 0, v8 := 2).
o2 can be applied immediately after o1 because the pre-
condition of o2 does not conflict with the postcondition
of o1, so π = (o1, o2) is an operator chain and can gener-
ate concrete paths. However, the precondition of π requires
(v2 = 2, v5 = 0, v8 = 0). See Figure 4(b) (‘−’ indicates the
variable is not included in either operator). Any states to
which π can be applied must contain two blanks, which
means the state cannot be reached from a standard 8-Puzzle
state. Therefore, paths generated by ψ(π) are state-specific
spurious paths because they do have pre-images but all of

them are unreachable concrete paths. To avoid these state-
specific spurious paths, we integrate reachability with oper-
ator chains.
Definition 5 (Valid Operator Chain). Let s be a concrete
state. We say π is valid w.r.t. s if π generates a path
(s0, s1, ..., sl) s.t. s0 is reachable from s. Otherwise, we say
π is invalid w.r.t. s.

The following theorem improves upon Theorem 3.
Theorem 7. Let s be a concrete state. If there is no valid op-
erator chain π w.r.t. s such that ψ(π) generates the abstract
path w, then w is a spurious path w.r.t. s.

We can use mutex sets (Bonet and Geffner 2001), i.e., sets
of variable assignments that are not achievable from the ini-
tial state, to discover invalid operator chains w.r.t. the ini-
tial state. In particular, if the precondition of an operator
chain contains a mutex, we know the operator chain is in-
valid. Since it is usually not feasible to find all mutexes, we
cannot discover all invalid operator chains w.r.t. the initial
state. The most commonly used mutexes are mutex pairs,
i.e., mutex sets of size 2. In the previous 8-Puzzle example,
(v5 = 0, v8 = 0) is a mutex pair, and it can be detected au-
tomatically by methods like h2 (Haslum and Geffner 2000).
With this knowledge, we know (o1, o2) is an invalid opera-
tor chain, so we can avoid using (ψ(o1), ψ(o2)) to generate
abstract paths.

Hierarchical IDA∗ and SPECO
In this section, we present SPECO—the method for Spuri-
ous Path Elimination by Chains of Operators—and HIDA∗
the base search algorithm we apply SPECO on.

SPECO
We first set a limit k ∈N on the length of operator chains
we are willing to consider. In other words, we are inter-
ested in removing spurious paths of length k. An operator se-
quence is an operator chain if and only if it forms a “macro-
operator” (Holte and Burch 2014). We use Holte and Burch’s
“move composition” process for building a macro-operator
to check whether an operator sequence is an operator chain.
After we get an operator chain π of length k, we check if
its precondition contains a mutex detected by h2 (Haslum
and Geffner 2000). If the precondition of π does not contain
a mutex detected by h2 we put the π in a set Ck. Ck con-
tains all valid operator chains, but may also contains some
invalid operator chains since h2 is not guaranteed to detect
all mutexes.

Consider forward search in the abstract space. As-
sume that we are expanding the abstract state t. Let
(ψ(o1), ψ(o2), ..., ψ(ok−1)) be the sequence of abstract op-
erators that precedes t. For any operator ψ(o) that is applica-
ble to t, we check if π = (o1, o2, ..., ok−1, o)∈ Ck. If π ∈ Ck,
then we apply ψ(o) to t and continue the search, otherwise
we do not apply ψ(o) to t and move on to check the next op-
erator applicable to t. We call this process SPECO. By The-
orem 7, SPECO does not eliminate any non-spurious paths:
for any non-spurious path w= (t0, t1, ..., tk−2, t, t

′), there
must be a valid operator chain π = (o1, o2, ..., ok−1, o) s.t.
ψ(π) generates w.

Hierarchical IDA∗

We apply SPECO in Hierarchical IDA∗ (HIDA∗) (Holte,
Grajkowski, and Tanner 2005). A hierarchy in HIDA∗ con-
sists of multiple levels of state spaces. The bottom level is
the concrete space. Each other level is an abstraction of the
state space in the level immediately below it. Level 0 is the
bottom level, level 1 is the first abstract level, level 2 is the
second abstract level, and so on.

IDA∗ (Korf 1985) is used at all levels. The heuristic for
IDA∗ at level i is obtained by IDA∗ search at level i+ 1. In
other words, if ψ is the abstraction of level i that induces the
abstract space at level i + 1, hi(s) = di+1(ψ(s)) where s is
a state at level i, hi(·) is the heuristic function for search at
level i and di+1(·) is the function of the true cost to achieve
the goal at level i+ 1. IDA∗ at the highest abstraction level
is blind IDA∗ search, i.e., hi(s∗) = 0 if s∗ is a goal state,
and hi(s) = ε for any other state s where ε is the minimum
cost over all edges. HIDA∗ terminates as soon as a concrete
solution is found.

We choose HIDA∗ as the base search algorithm for two
reasons. First, linear-space search algorithms such as IDA∗
require linear space to record the operator sequence preced-
ing the current state. Second, hierarchical search (IDA∗ or
A∗) only computes the abstract distances that are needed
for solving the concrete problem. This is different from pat-
tern database (PDB) construction (Culberson and Schaeffer
1998) which requires an exhaustive search of the abstract
space. See a discussion of the application of SPECO in PDB
construction in the Discussion section below.

Cache Indexing
Heuristic values (at any level) in HIDA∗ can be cached to
avoid re-solving abstract problems. The cache entries of
HIDA∗ at level i are indexed by states at level i. In addi-
tion to the basic heuristic (abstract cost-to-goal), HIDA∗ also
uses P-g caching to improve the heuristic (Holte et al. 1996;
Holte, Grajkowski, and Tanner 2005). Let bound be the cost
bound of the current iteration of IDA∗ at the abstract level i
and g be cost of the path from the abstract initial state to the
current abstract state. For any state s at level i, P-g caching
updates hi(s) to bound− g if the value is larger than the
abstract cost d(ψ(s)).

P-g caching is critical for improving the efficiency of
HIDA∗. However, if SPECO is used and cache entries are
indexed by abstract states, P-g caching may create an in-
admissible heuristic. Consider states t0, t′, t and goal at
the level i. t0 is the abstract initial state and goal is the
abstract goal state. There are 4 operators a, b, c and d of
cost 1 s.t. Π′ = {t0→a t, t′→b t, t′→c t, t→d goal}. Suppose
C2 = {(b, c), (c, d)} and that a is applied earlier than b. With-
out SPECO, the goal will be reached when bound= 2. With
SPECO, IDA∗ never allows the generation of the spurious
path (t0, t, goal) because (a, d) /∈ C2, so the goal will not be
reached when bound= 2. However, when bound= 3, since
a is applied before b, t is reached through operator a first.
P-g caching makes hi(t) = bound− g = 2 which is an over-
estimate of the cost from t to g. Later, when t is reached
through b, g = 2 so g + hi(t)> bound and the search branch

is pruned. IDA∗ will then continue to the next iteration with
bound= 4 and P-g caching will make hi(t) = 3 this time.
This process will repeat forever and the goal will never be
reached.

In order to solve this problem, one needs to distinguish
t by its preceding operator sequences. We use the combi-
nation of t and π as the index of a cache entry for the
cost-to-goal of t with preceding operator sequence π. In
the previous example, we store two values hi(t, a) and
hi(t, b) instead of one value hi(t). When bound= 3, P-g
caching makes hi(t, a) = 2 after applying operator a, but
later when t is reached through b, hi(t, b) = 1 is used.
hi(t, b) + g = 3≤ bound, so the search will continue and
the goal will be reached through a non-spurious path.

SPECO States
If the average number of different operator sequences pre-
ceding each state is B, then the search with SPECO will be-
come B times more expensive than the normal search with-
out spurious path elimination. We alleviate this overhead by
using SPECO only on states on solution paths. At the ab-
stract level i, we use normal search (i.e., without SPECO)
to find a solution and then we check if the solution contains
an operator sequence π′ of length k such that π′ /∈ Ck. Let
(t0, t1, ..., tk−1, tk) be the subsequence of the solution path
generated by ψ(π′). If π′ /∈ Ck, we mark the state tk−1 as a
SPECO state and re-expand it. When expanding a SPECO
state tk−1, we perform SPECO and store its heuristic in
hi(tk−1, π) where π is the operator sequence of length k− 1
that precedes tk−1. When we say search with SPECO we
mean the search with the application of SPECO only on
SPECO states.

Our method can be viewed as an abstraction refinement
method in the sense that every SPECO state t refines the nor-
mal abstract state t into P “states” (t, π′1), (t, π′2), ..., (t, π′P)
where π′i for i∈ {1, 2, ..., P} is an operator sequence that
precedes t. The preceding operator sequence π′ provides
an additional precondition for applying an operator ψ(o) to
t—(π′, o) must be an operator chain. Thus, this refinement
helps us prune spurious paths.

A Case Study: 8-Puzzle
We illustrate that HIDA∗ with SPECO improves the heuris-
tic quality substantially on the 8-Puzzle. We use domain ab-
stractions that map the blank to itself (ψ(0) = 0) and map
at least two tiles to the blank as well. This kind of abstrac-
tion induces abstract spaces that are free of spurious states
and spurious edges (Sadeqi, Holte, and Zilles 2013) but still
contain spurious paths of length 2. Figure 4(c) shows an ex-
ample of such spurious paths where the abstraction maps
the odd-number tiles to the blank and leaves the blank and
the even-number tiles untouched. The path can be generated
by (ψ(o1), ψ(o2)), but since (o1, o2) is an invalid operator
chain, we know the path is a spurious path. We use “Blank-
n” to denote the domain abstraction that maps the first n tiles
to the blank.

We use a simple hierarchy that contains only two levels:
the concrete level (Level-0) and the abstract level (Level-

Use Cache at Level-0
Abst. All Level-0 Level-1 Time Cache Cache-1

Blank-3 114,428 10,872 103,556 0.84 21,833 14,842
SPECO 170,606 1,363 169,243 1.38 33,626 32,271
Blank-4 46,318 26,355 19,963 0.34 17,692 3,005
SPECO 54,711 2,681 52,030 0.50 15,561 13,535
Blank-5 59,182 56,401 2,781 0.37 28,103 503
SPECO 22,065 5,913 16,152 0.22 8,432 4384
Blank-6 114,356 114,125 231 0.61 49,022 46
SPECO 27,763 22,931 4,832 0.33 14,540 1,014
Blank-7 192,789 192,781 8 0.92 71,786 5
SPECO 80,703 79,973 730 0.68 36,919 148

No Cache at Level-0
All Level-0 Level-1 Time Cache-1

125,533 21,973 103,560 0.88 15,013
171,607 2,755 168,852 1.38 32,362

84,406 64,481 19,925 0.47 3,022
58,447 5,726 52,721 0.58 13,563

176,558 173,723 2,835 0.74 504
32,399 15,808 16,591 0.54 4,441

452,332 451,871 461 1.74 71
90,941 86,021 4,920 2.26 1,118

1,004,426 1,004,417 9 3.72 5
415,914 415,072 842 7.41 165

Table 1: The number of node expansions, search time (in seconds) and the number of cache entries used. A row starting with “SPECO”,
shows the data for HIDA∗ with SPECO using the same abstraction as the row above it.

1). We use HIDA∗ with/without SPECO to solve 100 ran-
dom instances of the 8-Puzzle. We compare normal HIDA∗
and HIDA∗ with SPECO on domain abstractions Blank-n
for n∈ {3, 4, 5, 6, 7}. We compare them in terms of num-
ber of node expansions, search time, and number of cache
entries. We use k= 2 in our experiment, i.e., we build the
set C2 in a preprocessing step. Because all operator chains
of length 2 in this domain are self-fulfilling and all opera-
tors are deterministic in the abstract spaces, by Theorem 6,
operator chains in C2 do not permit any state-independent
spurious paths.

Experiment Results
Table 1 shows the average number of node expansions,
search time, and number of cache entries used for solving the
100 random instances. The table has two parts: HIDA∗ using
a cache at the concrete level (on the left) and HIDA∗ using
no cache at the concrete level (on the right). The columns
“All” give the total number of node expansions at all lev-
els of HIDA∗ and the columns “Level-0” and “Level-1” give
the number of node expansions at the concrete level (Level-
0) and the abstract level (Level-1). The average search time
is given in the columns “Time”. The column “Cache” (in
the left sub-table) gives the number of cache entries used in
both levels. “Cache-1” only counts cache entries in the ab-
stract level. A row starting with an abstraction (e.g., Blank-
3) indicates normal HIDA∗ with that abstraction, and the
row below it, starting with “SPECO”, indicates HIDA∗ with
SPECO using the same abstraction.

Note that there are re-expansions when states get marked
as SPECO states. In addition, a SPECO state can be ex-
panded more than once since it has different preceding op-
erators. Similarly, a SPECO state may need multiple cache
entries because of different preceding operators. We count
all of these re-expansions and cache entries for HIDA∗ with
SPECO.

Results with a Concrete Level Cache. We will first ana-
lyze the performance of HIDA∗ with a concrete level cache.
We observe a trade-off between the expansions in the con-
crete level and in the abstract level. On the one hand, the
number of node expansions at the concrete level (Level-0)

are much lower when SPECO is used. For the first three
abstractions, the number of concrete node expansions with
SPECO is about 10 times less than the number of concrete
node expansions without spurious path elimination. This in-
dicates that spurious paths existed and were substantially re-
ducing heuristic values, and that SPECO was effective in
removing them. On the other hand, the number of abstract
node expansions is higher when SPECO is used due to the
overhead of eliminating spurious paths. There are two rea-
sons for this overhead. First, there are the re-expansions of
SPECO states. Second, because SPECO forces the search to
find longer (and more accurate) solutions that do not contain
spurious short-cuts, there are more node expansions.

When only a few tiles are mapped to the blank, e.g.,
Blank-3 or Blank-4, normal HIDA∗ has fewer total node ex-
pansions than HIDA∗ with SPECO. When the abstraction
maps more tiles to the blank, HIDA∗ with SPECO expands
fewer in total. This is because when there are more tiles
mapped to the blank, the abstraction is coarser and there are
more spurious paths in the abstract space. These spurious
paths introduce harmful short-cuts that can lower the heuris-
tic, and normal HIDA∗ suffers from the low heuristic val-
ues. However, since SPECO removes all spurious paths (of
length 2) in the abstract solutions, the abstract solutions do
not contain spurious short-cuts (of length 2), so the heuris-
tic values are closer to the true cost to reach the goal. As
a result, even though the abstraction is coarse, search with
SPECO at the abstract level can still produce a good qual-
ity heuristic that helps reduce the number of concrete level
expansions. In fact, HIDA∗ with SPECO using abstraction
Blank-5 or Blank-6 does fewer node expansions than nor-
mal HIDA∗ using finer abstractions Blank-3 and Blank-4.

The search time shows a similar trend to total node ex-
pansions. When the abstraction is finer-grained and con-
tains fewer spurious paths, normal HIDA∗ is faster since
the heuristic is still informative and SPECO costs more time
than it saves. When the abstraction gets coarser, the spurious
path problem becomes dominant. In such abstract spaces, re-
moving spurious paths reduces the total search time.

We also record the number of cache entries used in
HIDA∗. For the four coarsest abstractions, HIDA∗ with

SPECO needs 2-3 times fewer total cache entries. On the
abstract level, SPECO needs more cache entries (shown in
column “Cache-1”). However, those SPECO cache entries
store more accurate heuristic values that are important for
reducing the total expansions and total cache usage.

Results with No Concrete Level Cache. Now we analyze
HIDA∗ that does not use a cache in the concrete level. The
advantage of disallowing concrete level cache is that it saves
space (compare “Cache” on the left and “Cache-1” on the
right).

First of all, although the data in the two sub-tables show
some differences, we can see that the expansions in the sub-
tables have the same trend, namely that HIDA∗ with SPECO
outperforms normal HIDA∗ in terms of node expansions.

There are two important differences between using and
not using a concrete level cache. First, without a concrete
level cache, there is no P-g caching in the concrete level.
This explains why the expansions are much higher when a
concrete level cache is not used. The second difference is
that when there is no concrete level cache, we have to ac-
quire heuristic values from the abstract level cache, while
with concrete level cache, we get heuristic from the con-
crete level cache. Acquiring the heuristic value from a cache
entry of a SPECO state is slower because it needs to check
the preceding operator. As a result, HIDA∗ with SPECO is
slower even when it expands many fewer nodes than normal
HIDA∗ which has no SPECO state. Our current implemen-
tation just uses a naive data structure for SPECO states, and
it may be possible to alleviate the lookup time overhead by
using a better data structure.

Related Work
Spurious path have been studied primarily in the setting
of abstraction refinement. The most notable example is
Counter-Example Guided Abstraction Refinement (CEGAR)
(Clarke et al. 2000; Seipp and Helmert 2013). CEGAR it-
eratively refines its abstractions by fixing “errors” (a point
at which the abstract solution cannot be converted to a con-
crete solution) in the abstract solution. Each refinement it-
eration first identifies an error in abstract abstraction, and
then refines the abstraction so that the same error will never
occur again. Similar ideas have been used in many other
abstraction refinement methods (e.g., (Clarke et al. 2002;
Smaus and Hoffmann 2008; Sharygina, Tonetta, and Tsi-
tovich 2009)). One difference between refinements in CE-
GAR and our method is that in CEGAR the refinement tries
to produce a non-spurious solution path while in our method
the refinement only makes sure paths of fixed length k (e.g.,
k= 2 in our 8-Puzzle experiment) are not spurious. Thus,
our refinement is less accurate but more efficient than CE-
GAR. Another important difference is that most abstraction
refinements are predicate-based, i.e., an abstraction is re-
fined by adding predicates that are ignored in the abstrac-
tion, while our refinement is based on operator sequences.
Coarse-to-Fine Dynamic Programming (CFDP) (Raphael
2001) bears some resemblance to CEGAR and our refine-
ment method in that it refines the abstraction by splitting the
abstract states on the abstract solution path. However, CFDP

refines the abstraction to ensure that the optimal abstract so-
lution corresponds to the optimal concrete solution.

Abstraction refinement has also been used to improve
heuristics. Smaus and Hoffmann (2008) apply predicate
abstraction refinement for generating heuristic functions.
Seipp and Helmert (2013) use the abstraction in last itera-
tion of CEGAR to provide heuristics for optimal planning
if the refinement fails to find a concrete path within the
given time and space limit. A drawback of these methods
is that the refinement only focuses on the region around the
solution path from the abstract initial state to the abstract
goal. Other regions of the state space are less refined. The
resulting abstract space will provide better heuristic values
for the states close to the abstract solution region but worse
(lower) heuristic value for other states. Therefore, the con-
crete search tends to expand states outside the refined areas.
Smaus and Hoffmann noticed this issue, and use refinement
on multiple random solution paths in an effort to alleviate
this effect. Our application of SPECO to refine abstraction
for better heuristics for HIDA∗ does not have this prob-
lem, because we refine the solution path for every state on
which the heuristic is requested. The refined abstract space
has the same granularity (regarding spuriousness) for the all
states that are evaluated. Thus, the search will not be mis-
led into less refined areas. Static Abstraction Guided model-
checking (Qian and Nymeyer 2004) is similar to our method
because it also uses a pre-defined abstraction hierarchy, and
uses abstract distances in a coarser abstraction as a heuris-
tic to guide the search in the next finer abstract space. They
also check spurious paths, but the spuriousness is defined
with respect to the finer abstraction at the next level.

In addition to the precondition-preserving property and
bisimularity, there are other abstraction properties related to
spurious paths. Bäckström and Jonsson (2013) introduce a
number of properties regarding abstraction, and an abstrac-
tion property Pmk↓ was briefly discussed as their future work.
Pmk↓ implies any abstract path (t0, t1, ..., tk) can be refined
into a sequence of concrete states s0, s1, ..., sk s.t. there is
a concrete path of length at most m from si−1 to si for all
i ∈ {1, 2, ..., k}. Thus, P1

k↓ means the abstraction is free of
spuriosu paths of length k. The downward refinement prop-
erty (DRP) (Bacchus and Yang 1994) is another abstraction
property related to spurious paths. DRP requires any abstract
solution to be refinable to a concrete solution.

There are many mutex detection methods invented for
different planing systems and for different purposes (e.g.,
(Dawson and Siklóssy 1977; Blum and Furst 1997; Gerevini
and Schubert 2000; Rintanen 2000; Bonet and Geffner 2001;
Haslum and Geffner 2000; Helmert 2009; Sadeqi 2014)). We
use mutex information to discover invalid operator chains.
This is related to Haslum, Bonet and Geffner (2005)’s work
that avoids applying an operator to a state if the state is mu-
tex with the precondition of the operator, and Alcázar et
al. (2013)’s action pruning using e-deletion, which also uses
mutexes to identify “impossible” actions. Both the methods
check if applying an operator leads to a state that contains
mutex. Haslum et al.’s method is different from Alcázar et
al.’s and ours in that their method checks the application

of an operator to a particular abstract state during search,
whereas e-deletion and our method do not rely on particular
states and can precompute the inapplicability of operators in
a preprocessing step.

Discussion
In CEGAR-like abstraction refinements, in order to discover
an error, one has to applying the operator sequence used in
the abstract solution to the initial state to generate a concrete
solution. As soon as an error is found, the path generation
has to stop, and a refinement needs to be done, because the
error prevents the applications of subsequent operators in the
operator sequence. Thus, CEGAR-like refinement only fixes
the first error in an abstract path, and ignore any other errors
after the first one. SPECO, however, does not have this re-
striction, because it does not use concrete path generation to
discover errors. SPECO can pick any error in the path to fix.
The current implementation fixes the last error. In fact, our
preliminary experiments showed that fixing the last error in
a path resulted in fewer node expansions than fixing the first
error. It is worth exploring which spurious error in the path
should be fixed first in abstraction refinement.

If the spurious path elimination is more about improving
a heuristic than finding a concrete solution, like our method
and others’ (Smaus and Hoffmann 2008; Seipp and Helmert
2013; Qian and Nymeyer 2004), the abstraction refinement
could be more “relaxed”, because it should care more about
the solution cost than the actual solution. For example, we
have shown that w4 in Figure 3 is a spurious path. Our cur-
rent method removes this path. However, if C is the abstract
goal state, w4 is not a short-cut (C can be reached from
A through the path (A,B,E,C) which has the same cost as
w4), i.e., keeping w4 in the abstract space will not harm the
heuristic quality. This fact can be exploited to avoid unnec-
essary refinement. In addition, since we only care about so-
lution cost, we could use label reduction, i.e., a mapping
from the original label set to a new (smaller) label set, to re-
duce the complexity of refinement. For instance, the current
SPECO may change a state t to two states (t, o1) and (t, o2)
(assume o1 and o2 are preceding operators of t), but with
the label reduction φ(o1) = φ(o2) = o we would only need
to change t to one state (t, o).

To get the set of operator chains Ck, one needs to check,
in the worst case, all |O|k operator sequences. Since we use
PSVN in our experiments, the size of O is not a problem for
computing Ck. This computation, however, would be infeasi-
ble if |O| is larger (even for small k). To avoid this problem,
instead of precomputation of Ck, we could apply the “macro-
operator” composition process on operator sequences during
the search. This would make it possible to apply SPECO on
a problem represented by SAS+, which often has exponen-
tially many more operators than PSVN.

SPECO does not have to be used in conjunction with
HIDA*, we originally used it during pattern database (PDB)
construction to improve the heuristic quality of the PDB. A
PDB requires a solution path for every abstract state, so to
obtain the most accurate heuristic every abstract state should
be expanded as a SPECO state. This makes the abstract
space much larger than it would normally be. We did not

keep this abstract space as our final PDB. Instead, we stored
the minimum cost for an abstract state t over all preceding
operator sequences of t, i.e., h(t) = minπ ∈ Q h(t, π) where
Q is the set of preceding operator sequences of t. The final
PDB therefore had the same size as the normal PDB, but
it provided a better heuristic. Our experiments with SPECO
applied to PDB construction were conducted on the 3× 4
Sliding Tile Puzzle. Similar to the HIDA∗ experiment, we
used domain abstractions in which 5 tiles were mapped to
the blank (so there were 6 blanks in each abstract state) and
varied which tiles were mapped to the blank. For SPECO,
we set k= 2 to eliminate spurious paths of length 2. The
number of concrete node expansions was between 126 and
762 times smaller when the SPECO PDB was used com-
pared to the normal PDB, depending on which 5 tiles were
mapped to the blank. However, the intermediate abstract
space was about 17 times larger when SPECO was used.
This increase may be acceptable in some circumstances, es-
pecially considering the speedup obtained, but our conclu-
sion was that SPECO is better suited to hierarchical search
methods such as HIDA∗ than PDB construction.

Conclusion
We define a spurious path as a generalization of a spuri-
ous state. We showed that spurious paths can be categorized
into two types: state-independent and state-specific. We pre-
sented SPECO—a novel method based on syntactical check-
ing that eliminates state-independent spurious paths, as well
as state-specific spurious paths when integrated with mu-
tex detection methods. We gave syntactical conditions under
which our method can remove state-independent spurious
paths completely. We demonstrated that spurious paths may
exist in abstract spaces of typical search domains such as the
Sliding Tile Puzzle. We tested our method on 8-Puzzle as a
case study. The results show that spurious paths are harm-
ful and removing them substantially increases the heuristic
quality.

Acknowledgements
We thank the anonymous reviewers for their helpful com-
ments. We thank Martin Wehrle for pointing us to related
work in the model-checking literature, and Mehdi Sadeqi
for providing the h2 program that computes mutexes for
PSVN. We gratefully acknowledge the funding provided by
Canada’s NSERC.

References
Alcázar, V.; Borrajo, D.; Fernández, S.; and Fuentetaja, R.
2013. Revisiting regression in planning. In Proc. 23rd Interna-
tional Joint Conference on Artificial Intelligence (IJCAI 2013).
Bacchus, F., and Yang, Q. 1994. Downward refinement and
the efficiency of hierarchical problem solving. Artificial Intelli-
gence 71(1):43–100.
Bäckström, C., and Jonsson, P. 2013. Bridging the gap between
refinement and heuristics in abstraction. In Proc. 23rd Interna-
tional Joint Conference on Artificial Intelligence (IJCAI 2013),
2261–2267.

Bäckström, C., and Nebel, B. 1995. Complexity results for
SAS+ planning. Computational Intelligence 11:625–656.
Blum, A., and Furst, M. L. 1997. Fast planning through plan-
ning graph analysis. Artificial Intelligence 90(1-2):281–300.
Bonet, B., and Geffner, H. 2001. Planning as heuristic search.
Artificial Intelligence 129(1-2):5–33.
Clarke, E. M.; Grumberg, O.; Jha, S.; Lu, Y.; and Veith, H.
2000. Counterexample-guided abstraction refinement. In Proc.
12th International Conference on Computer Aided Verification
(CAV 2000), 154–169.
Clarke, E. M.; Gupta, A.; Kukula, J. H.; and Strichman, O.
2002. SAT based abstraction-refinement using ILP and machine
learning techniques. In Proc. 14th International Conference on
Computer Aided Verification (CAV 2002), 265–279.
Clarke, E. M.; Grumberg, O.; and Long, D. E. 1994. Model
checking and abstraction. ACM Transactions on Programming
Languages and Systems (TOPLAS) 16(5):1512–1542.
Culberson, J. C., and Schaeffer, J. 1998. Pattern databases.
Computational Intelligence 14(3):318–334.
Dawson, C., and Siklóssy, L. 1977. The role of preprocessing
in problem solving systems. In Proc. 5th International Joint
Conference on Artificial Intelligence (IJCAI 1977), 465–471.
Edelkamp, S. 2001. Planning with pattern databases. In Proc.
6th European Conference on Planning (ECP 2001), 13–24.
Gerevini, A., and Schubert, L. K. 2000. Discovering state con-
straints in DISCOPLAN: some new results. In Proc. 17th Na-
tional Conference on Artificial Intelligence (AAAI 2000), 761–
767.
Haslum, P., and Geffner, H. 2000. Admissible heuristics for
optimal planning. In Proc. 5th International Conference on Ar-
tificial Intelligence Planning Systems (AIPS 2000), 140–149.
Haslum, P.; Bonet, B.; and Geffner, H. 2005. New admissible
heuristics for domain-independent planning. In Proc. 20th Na-
tional Conference on Artificial Intelligence (AAAI 2005), 1163–
1168.
Helmert, M.; Haslum, P.; Hoffmann, J.; and Nissim, R. 2014.
Merge-and-shrink abstraction: A method for generating lower
bounds in factored state spaces. Journal of the ACM 61(3):16.
Helmert, M. 2009. Concise finite-domain representations for
PDDL planning tasks. Artificial Intelligence 173(5-6):503–535.
Hernádvölgyi, I. T., and Holte, R. C. 1999. PSVN: A vector
representation for production systems. Technical Report TR-
99-04, Department of Computer Science, University of Ottawa.
Hernádvölgyi, I. T., and Holte, R. C. 2000. Experiments with
automatically created memory-based heuristics. In Proc. 4th
Symposium on Abstraction, Reformulation and Approximation
(SARA 2000), 281–290.
Holte, R. C., and Burch, N. 2014. Automatic move pruning for
single-agent search. AI Communication 27(4):363–383.
Holte, R. C.; Arneson, B.; and Burch, N. 2014. PSVN man-
ual. Technical Report TR14-03, Computing Science Depart-
ment, University of Alberta.
Holte, R. C.; Perez, M. B.; Zimmer, R. M.; and MacDonald,
A. J. 1996. Hierarchical A*: Searching abstraction hierarchies
efficiently. In Proc. 13th National Conference on Artificial In-
telligence (AAAI 1996), 530–535.

Holte, R. C.; Grajkowski, J.; and Tanner, B. 2005. Hierarchical
heuristic search revisited. In Proc. 6th Symposium on Abstrac-
tion, Reformulation and Approximation (SARA 2005), 121–133.
Knoblock, C. A. 1994. Automatically generating abstractions
for planning. Artificial Intelligence 68(2):243–302.
Korf, R. E. 1985. Depth-first iterative-deepening: An optimal
admissible tree search. Artificial Intelligence 27(1):97 – 109.
Milner, R. 1980. A Calculus of Communicating Systems, vol-
ume 92 of Lecture Notes in Computer Science. Springer.
Milner, R. 1990. Operational and algebraic semantics of con-
current processes. In Handbook of Theoretical Computer Sci-
ence, Volume B: Formal Models and Sematics (B). Elsevier and
MIT Press. 1201–1242.
Nissim, R.; Hoffmann, J.; and Helmert, M. 2011. Comput-
ing perfect heuristics in polynomial time: On bisimulation and
merge-and-shrink abstraction in optimal planning. In Proc.
22nd International Joint Conference on Artificial Intelligence
(IJCAI 2011), 1983–1990.
Qian, K., and Nymeyer, A. 2004. Abstraction-based model
checking using heuristical refinement. In Proc. 2nd Interna-
tional Conference on Automated Technology for Verification
and Analysis (ATVA 2004), 165–178.
Raphael, C. 2001. Coarse-to-fine dynamic programming.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence (TPAMI) 23(12):1379–1390.
Rintanen, J. 2000. An iterative algorithm for synthesizing in-
variants. In Proc. 17th National Conf. on Artificial Intelligence
(AAAI 2000), 806–811.
Sacerdoti, E. D. 1974. Planning in a hierarchy of abstraction
spaces. Artificial Intelligence 5(2):115–135.
Sadeqi, M.; Holte, R. C.; and Zilles, S. 2013. Using coarse
state space abstractions to detect mutex pairs. In Proc. 10th
Symposium on Abstraction, Reformulation and Approximation
(SARA 2013), 104–111.
Sadeqi, M. 2014. Mutex Pair Detection for Improving
Abstraction-Based Heuristics. Ph.D. Dissertation, University
of Regina.
Seipp, J., and Helmert, M. 2013. Counterexample-guided
Cartesian abstraction refinement. In Proc. 23rd International
Conference on Automated Planning and Scheduling (ICAPS
2013), 347–351.
Sharygina, N.; Tonetta, S.; and Tsitovich, A. 2009. The syn-
ergy of precise and fast abstractions for program verification. In
Proc. 2009 ACM Symposium on Applied Computing, 566–573.
Smaus, J., and Hoffmann, J. 2008. Relaxation refinement:
A new method to generate heuristic functions. In Model
Checking and Artificial Intelligence, 5th International Work-
shop (MoChArt 2008), 147–165.
Zilles, S., and Holte, R. C. 2010. The computational complexity
of avoiding spurious states in state space abstraction. Artificial
Intelligence 174(14):1072–1092.

