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Abstract
Uncertainty in poker stems from two key sources, the
shuffled deck and an adversary whose strategy is un-
known. One approach is to find a pessimistic game theo-
retic solution (i.e. a Nash equilibrium), but human play-
ers have idiosyncratic weaknesses that can be exploited
if a model of their strategy can be learned by observing
their play. However, games against humans last for at
most a few hundred hands so learning must be fast to
be effective. We explore two approaches to opponent
modelling in the context of Kuhn poker, a small game
for which game theoretic solutions are known. Param-
eter estimation and expert algorithms are both studied.
Experiments demonstrate that, even in this small game,
convergence to maximally exploitive solutions in a small
number of hands is impractical, but that good (i.e. better
than Nash or breakeven) performance can be achieved in
a short period of time. Finally, we show that amongst a
set of strategies with equal game theoretic value, in par-
ticular the set of Nash equilibrium strategies, some are
preferable because they speed learning of the opponent’s
strategy by exploring it more effectively.

Introduction
Poker is a game of imperfect information against an ad-
versary with an unknown, stochastic strategy. It rep-
resents a tough challenge to artificial intelligence re-
search. Game theoretic approaches seek to approximate
the Nash equilibrium (i.e. minimax) strategies of the
game (Koller & Pfeffer 1997; Billings et al. 2003),
but this represents a pessimistic worldview where we
assume optimality in our opponent. Human players
have weaknesses that can be exploited to obtain win-
nings higher than the game-theoretic value of the game.
Learning by observing their play allows us to exploit
their idiosyncratic weaknesses. This can be done ei-
ther directly, by learning a model of their strategy, or
indirectly, by identifying an effective counter-strategy.
Several factors render this difficult in practice. First,
real-world poker games like Texas Hold’em have huge
Copyright c© 2005, American Association for Artificial Intel-
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game trees and the strategies involve many parameters
(e.g. two-player, limit Texas Hold’em requires O(1018)
parameters (Billings et al. 2003)). The game also has
high variance, stemming from the deck and stochas-
tic opponents, and folding gives rise to partial obser-
vations. Strategically complex, the aim is not simply
to win but to maximize winnings by enticing a weakly-
positioned opponent to bet. Finally, we cannot expect
a large amount of data when playing human opponents.
You may play only 50 or 100 hands against a given op-
ponent and want to quickly learn how to exploit them.

This research explores how rapidly we can gain an
advantage by observing opponent play given that only
a small number of hands will be played in total. Two
learning approaches are studied: maximum a posteri-
ori parameter estimation (parameter learning), and an
“experts” method derived from Exp3 (Auer et al. 1995)
(strategy learning). Both will be described in detail.

While existing poker opponent modelling research
focuses on real-world games (Korb & Nicholson 1999;
Billings et al. ), we systematically study a simpler ver-
sion, reducing the game’s intrinsic difficulty to show
that, even in what might be considered a best case, the
problem is still hard. We start by assuming that the op-
ponent’s strategy is fixed. Tracking a non-stationary
strategy is a hard problem and learning to exploit a
fixed strategy is clearly the first step. Next, we con-
sider the game of Kuhn poker (Kuhn 1950), a tiny game
for which complete game theoretic analysis is available.
Finally, we evaluate learning in a two-phase manner;
the first phase exploring and learning, while the sec-
ond phase switches to pure exploitation based on what
was learned. We use this simplified framework to show
that learning to maximally exploit an opponent in a
small number of hands is not feasible. However, we
also demonstrate that some advantage can be rapidly at-
tained, making short-term learning a winning proposi-
tion. Finally, we observe that, amongst the set of Nash
strategies for the learner (which are “safe” strategies),
the exploration inherent in some strategies facilitates
faster learning compared with other members of the set.
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Figure 1: Kuhn Poker game tree with dominated strategies removed

Kuhn Poker
Kuhn poker (Kuhn 1950) is a very simple, two-player
game (P1 - Player 1, P2 - Player 2). The deck consists
of three cards (J - Jack, Q - Queen, and K - King). There
are two actions available: bet and pass. The value of
each bet is 1. In the event of a showdown (players have
matched bets), the player with the higher card wins the
pot (the King is highest and the Jack is lowest). A game
proceeds as follows:
• Both players initially put an ante of 1 into the pot.
• Each player is dealt a single card and the remaining

card is unseen by either player.
• After the deal, P1 has the opportunity to bet or pass.

– If P1 bets in round one, then in round two P2 can:
∗ bet (calling P1’s bet) and the game then ends in a

showdown, or
∗ pass (folding) and forfeit the pot to P1.

– If P1 passes in round one, then in round two P2
can:
∗ bet (in which case there is a third action where P1

can bet and go to showdown, or pass and forfeit
to P2), or

∗ pass (game proceeds to a showdown).
Figure 1 shows the game tree with P1’s value for each
outcome. Note that the dominated strategies have been
removed from this tree already. Informally, a dominated
strategy is one for which there exists an alternative strat-
egy that offers equal or better value in any given situa-
tion. We eliminate these obvious sources of suboptimal
play but note that non-dominated suboptimal strategies
remain, so it is still possible to play suboptimally with
respect to a specific opponent.

The game has a well-known parametrization, in
which P1’s strategy can be summarized by three pa-
rameters (α, β, γ), and P2’s by two parameters (η,

ξ). The decisions governed by these parameters are
shown in Figure 1. Kuhn determined that the set of
equilibrium strategies for P1 has the form (α, β, γ) =
(γ/3, (1 + γ)/3, γ) for 0 ≤ γ ≤ 1. Thus, there is a
continuum of Nash strategies for P1 governed by a sin-
gle parameter. There is only one Nash strategy for P2,
η = 1/3 and ξ = 1/3; all other P2 strategies can be
exploited by P1. If either player plays an equilibrium
strategy (and neither play dominated strategies), then
P1 expects to lose at a rate of −1/18 per hand. Thus
P1 can only hope to win in the long run if P2 is playing
suboptimally and P1 deviates from playing equilibrium
strategies to exploit errors in P2’s play. Our discussion
focuses on playing as P1 and exploiting P2, so all ob-
servations and results are from this perspective.

The strategy-space for P2 can be partitioned into the
6 regions shown in Figure 2. Within each region, a sin-
gle P1 pure strategy gives maximal value to P1. For
points on the lines dividing the regions, the bordering
maximal strategies achieve the same value. The in-
tersection of the three dividing lines is the Nash strat-
egy for P2. Therefore, to maximally exploit P2, it is
sufficient to identify the region in which their strat-
egy lies and then to play the corresponding P1 pure
strategy. Note that there are 8 pure strategies for P1:
S1 = (0, 0, 0), S2 = (0, 0, 1), S3 = (0, 1, 0), . . . , S7 =
(1, 1, 0), S8 = (1, 1, 1). Two of these (S1 and S8) are
never the best response to any P2 strategy, so we need
only consider the remaining six.

This natural division of P2’s strategy space was used
to obtain the suboptimal opponents for our study. Six
opponent strategies were created by selecting a point
at random from each of the six regions. They are
O1 = (.25, .67), O2 = (.75, .8), O3 = (.67, .4), O4 =
(.5, .29), O5 = (.25, .17), O6 = (.17, 2). All experi-
ments were run against these six opponents, although
we only have space to show results against representa-
tive opponents here.
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Figure 2: Partition of P2 Strategy-space by Maximal P1
Strategies

Parameter Learning
The first approach we consider for exploiting the op-
ponent is to directly estimate the parameters of their
strategy and play a best response to that strategy. We
start with a Beta prior over the opponent’s strategy and
compute the maximum a posteriori (MAP) estimate of
those parameters given our observations. This is a form
of Bayesian parameter estimation, a typical approach to
learning and therefore a natural choice for our study. In
general poker games a hand either results in a show-
down, in which case the opponent’s cards are observed,
or a fold, which leaves the opponent’s cards uncertain
(we only get to observe their actions, our own cards,
and any public cards). However, in Kuhn poker, the
small deck and dominated strategies conspire in certain
cases to make the opponent’s cards obvious despite their
folding. Thus, certain folding observations (but not all)
contain as much information as a showdown.

The estimation in Kuhn poker is quite straight-
forward because in no case does the estimate of any sin-
gle player parameter depend on an earlier decision gov-
erned by some other parameter belonging to that player.
The task of computing a posterior distribution over op-
ponent strategies for arbitrary poker games is non-trivial
and is discussed in a separate, upcoming paper. For the
present study, the dominated strategies and small deck
again render the task relatively simple.

Priors
We use the Beta prior, which gives a distribution over a
single parameter that ranges from 0 to 1, in our case, the
probability of passing vs. betting in a given situation
(P2 has two parameters, η and ξ). Thus we have two
Beta distributions for P2 to characterize our prior belief

of how they play. A Beta distribution is characterized
by two parameters, θ ≥ 0 and ω ≥ 0. The distribu-
tion can be understood as pretending that we have ob-
served the opponent’s choices several times in the past,
and that we observed θ choices one way and ω choices
the other way. Thus, low values for this pair of param-
eters (e.g. Beta(1,1)) represent a weak prior, easily re-
placed by subsequent observations. Larger values (e.g.
Beta(10,10)) represent a much stronger belief.

A poorly chosen prior (i.e. a bad model of the op-
ponent) that is weak may not cost us much because it
will be quickly overwhelmed by observations. How-
ever, a good prior (i.e. a close model of the opponent)
that is too weak may be thwarted by unlucky observa-
tions early in the game that belie the opponent’s true
nature. We examine the effects of the prior in a later
section. The default prior, unless otherwise specified, is
Beta(1,1) for both η and ξ (i.e. η = 0.5 and ξ = 0.5,
pretending we have seen 2 decisions involving each).

Nash Equilibria and Exploration
Nash equilibrium strategies are strategies for which a
player is guaranteed a certain minimum value regard-
less of the opponent’s strategy. As such, they are “safe”
strategies in the sense that things can’t get any worse.
As mentioned above, the Nash strategies for P1 in Kuhn
poker guarantee a value of −1/18, and thus guarantee
a loss. Against a given P2 strategy, some non-Nash P1
strategy could be better or worse. So, even though Nash
is a losing proposition for P1, it may be better than the
alternatives against an unknown opponent. It therefore
makes sense to adopt a Nash strategy until an opponent
model can be learned. Then the best means of exploit-
ing that model can be tried.

In many games, and in Kuhn Poker P1’s case, there
are multiple equilibrium strategies. We explore the pos-
sibility that some of these strategies allow for faster
learning of an opponent model than others. The exis-
tence of such strategies means that even though they of-
fer identical game theoretic values, some strategies may
be better than others against exploitable opponents.

Another interesting exploration approach is to max-
imize exploration, regardless of the cost. For this, we
employ a “balanced” exploration strategy, (α = 1, β =
1, γ = .5), that forces as many showdowns as possible
and equally explores P2’s two parameters.

Strategy Learning
The other learning approach we examine here is what
we will call strategy learning. We can view a strategy
as an expert that recommends how to play the hand.
Taking the six pure strategies shown in Figure 2 plus
a single Nash strategy (α = 1

6 , β = 1
2 , γ = 1

2 ), we use
the Exp3 algorithm (Auer et al. 1995) to control play by
these experts. Exp3 is a bounded regret algorithm suit-
able for games. It mixes exploration and exploitation
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Algorithm 1 Exp3
1. Initialize the scores for the K strategies: si = 0

2. For t = 1, 2, . . . until the game ends:
(a) Let the probability of playing the ith strategy for

hand t be pi(t) = (1 − ψ) (1+ρ)si(t)

P

K
j=1(1+ρ)sj (t) + ψ

K

(b) Select the strategy to play u according to the dis-
tribution p and observe the hand’s winnings w.

(c) si(t+ 1) =

{

si(t) + ψw
Kpi(t)

if u = i

si(t) if u 6= i

in an online fashion to ensure that it cannot be trapped
by a deceptive opponent. Exp3 has two parameters, a
learning rate ρ > 0 and an exploration rate 0 ≤ ψ ≤ 1
(ψ = 1 is uniform random exploration with no online
exploitation). See Algorithm 1 for details.

Exp3 makes very weak assumptions regarding the
opponent so that its guarantees apply very broadly. In
particular, it assumes a non-stationary opponent that can
decide the payoffs in the game at every round. This is
a much more powerful opponent than our assumptions
dictate (a stationary opponent and fixed payoffs). A few
modifications were made to the basic algorithm in or-
der to improve its performance in our particular setting
(note that these do not violate the basic assumptions
upon which the bounded regret results are based).

One improvement, intended to mitigate the effects
of small sample sizes, is to replace the single score
(si) for each strategy with multiple scores, depending
on the card they hold. We also keep a count of how
many times each card has been held. So, instead of
just si, we have si,J , si,Q, and si,K , and counters ci,J ,
ci,Q, and ci,K . We then update only the score for the
card held during the hand and increment its counter.
We now compute the expert scores for Algorithm 1’s
probabilistic selection as follows: si = 1

3si,J/ci,J +
1
3si,Q/ci,Q+ 1

3si,K/ci,K . This avoids erratic behaviour
if one card shows up disproportionately often by chance
(e.g. the King 10 times and the Jack only once). Natu-
rally, such effects vanish as the number of hands grows
large, but we are specifically concerned with short-term
behaviour. We are simply taking the sum of expecta-
tions instead of the expectation of a sum.

Another improvement is to “share” rewards amongst
those strategies that suggest the same action in a given
situation. We simply update the score and counter for
each agreeing expert. This algorithm bears a strong re-
semblance to Exp4 (Auer et al. 1995).

In all experiments reported here, ρ = 1 and ψ =
0.75. These values were determined by experimentation
to give good results. Recall that we are attempting to
find out how well it is possible to do, so this parameter
tuning is consistent with our objectives.

Experimental Results
We conducted a large set of experiments using both
learning methods to answer various questions. In partic-
ular, we are interested in how quickly learning methods
can achieve better than Nash equilibrium (i.e. winning
rate ≥ −1/18) or breakeven (i.e. winning rate ≥ 0)
results for P1 , assuming the opponent is exploitable to
that extent. In the former case, P1 is successfully ex-
ploiting an opponent and in the latter, P1 can actually
win if enough hands are played. However, we aim to
play well in short matches, making expected winning
rates of limited interest. Most of our results focus on
the total winnings over a small number of hands (typi-
cally 200, although other numbers are considered).

In our experiments, P1 plays an exploratory strategy
up to hand t, learning during this period. P1 then stops
learning and switches strategies to exploit the opponent.
In parameter learning, the “balanced” exploratory strat-
egy mentioned earlier is used throughout the first phase.
In the second phase, a best response is computed to
the estimated opponent strategy and that is “played” (in
practice, having both strategies, we compute the exact
expected winning rate instead). For strategy learning,
modified Exp3 is run in the first phase, attempting some
exploitation as it explores, since it is an online algo-
rithm. In the second phase, the highest rated expert
plays the remaining hands.

We are chiefly interested in when it is effective to
switch from exploration to exploitation. Our results are
expressed in two kinds of plot. The first kind is a payoff
rate plot, a plot of the expected payoff rate versus the
number of hands before switching, showing the rate at
which P1 will win after switching to exploitation. Such
plots serve two purposes; they show the long-term ef-
fectiveness of the learned model, and also how rapidly
the learner converges to maximal exploitation.

The second kind of plot, a total winnings plot, is
more germane to our goals. It shows the expected total
winnings versus the number of hands before switching,
where the player plays a fixed total number of hands
(e.g. 200). This is a more realistic view of the problem
because it allows us to answer questions such as: if P1
switches at hand 50, will the price paid for exploring be
offset by the benefit of exploitation. It is important to
be clear that the x-axis of both kinds of plot refers to
the number of hands before switching to exploitation.

All experiments were run against all six P2 oppo-
nents selected from the six regions in Figure 2. Only
representative results are shown here due to space con-
straints. Results were averaged over 8000 trials for pa-
rameter learning and 2000 trials for strategy learning.
The opponent is O6 unless otherwise specified, and is
typical of the results obtained for the six opponents.
Similarly, results are for parameter learning unless oth-
erwise specified, and consistent results were found for
strategy learning, albeit with overall lower performance.
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Figure 3: Convergence Study: Expected payoff rate vs.
switching hand for parameter and strategy learning

Convergence Rate Study
Figure 3 shows the expected payoff rate plot of the
two learning methods against a single opponent. The
straight-line near the top shows the maximum exploita-
tion rate for this opponent (i.e. the value of the best re-
sponse to P2’s strategy). It takes 200 hands for param-
eter learning to almost converge to the maximum and
strategy learning does not converge within 900 hands.
Results for other opponents are generally worse, requir-
ing several hundred hands for near-convergence. This
shows that, even in this tiny game, one cannot expect
to achieve maximal exploitation in a small number of
hands. The possibility of maximal exploitation in larger
games can reasonably be ruled out on this basis and we
must adopt more modest goals for opponent modellers.

Game Length Study
This study is provided to show that our total winnings
results are robust to games of varying length. While
most of our results are presented for games of 200
hands, it is only natural to question whether different
numbers of hands would have different optimal switch-
ing points. Figure 4 shows overlaid total winnings plots
for 50, 100, 200, and 400 hands using parameter learn-
ing. The lines are separated because the possible to-
tal winnings is different for differing numbers of hands.
The important observation to make is that the highest
value regions of these curves are fairly broad, indicat-
ing that switching times are flexible. Moreover, the re-
gions of the various curves overlap substantially. Thus,
switching at hand 50 is a reasonable choice for all of
these game lengths, offering close to the best possible
total winnings in all cases. This means that even if
we are unsure, a priori, of the number of hands to be
played, we can be confident in our choice of switching
time. Moreover, this result is robust across our range of
opponents. A switch at hand 50 works well in all cases.
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and 400 hands played by parameter learning
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Figure 5: Prior Study: Four different priors for parame-
ter learning against a single opponent.

Parameter Learning Prior Study

In any Bayesian parameter estimation approach, the
choice of prior is clearly important. Here we present a
comparison of various priors against a single opponent
(O6 = (.17, .2)). Expected total winnings are shown
for four priors: a weak, default prior of (.5,.5), a weak,
bad prior of (.7,.5), a strong, default prior of (.5,.5), and
a strong, bad prior of (.7,.5). The weak priors assume
2 fictitious points have been observed and the strong
priors assume 20 points. The “bad” prior is so called
because it is quite distant from the real strategy of this
opponent. Figure 5 shows that the weak priors clearly
do better than the strong, allowing for fast adaptation to
the correct opponent model. The strong priors perform
much more poorly, especially the strong bad prior.
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switching hand for parameter learning with various
Nash strategies used during the learning phase.

Nash Exploration Study
Figure 6 shows the expected total winnings for param-
eter learning when various Nash strategies are played
by the learner during the learning phase. The strate-
gies with larger γ values are clearly stronger, more ef-
fectively exploring the opponent’s strategy during the
learning phase. This advantage is typical of Nash strate-
gies with γ > 0.7 across all opponents we tried.

Learning Method Comparison
Figure 7 directly compares strategy and parameter
learning (both balanced and Nash exploration (γ = 1)),
all against a single opponent. Balanced parameter learn-
ing outperforms strategy learning substantially for this
opponent. Over all opponents, either the balanced or the
Nash parameter learner is the best, and strategy learning
is worst in all but one case.

Conclusions
This work shows that learning to maximally exploit an
opponent, even a stationary one in a game as small as
Kuhn poker, is not generally feasible in a small num-
ber of hands. However, the learning methods explored
are capable of showing positive results in as few as
50 hands, so that learning to exploit is typically bet-
ter than adopting a pessimistic Nash equilibrium strat-
egy. Furthermore, this 50 hand switching point is ro-
bust to game length and opponent. Future work includes
non-stationary opponents, a wider exploration of learn-
ing strategies, and larger games. Both approaches can
scale up, provided the number of parameters or experts
is kept small (abstraction can reduce parameters and
small sets of experts can be carefully selected). Also,
the exploration differences amongst equal valued strate-
gies (e.g. Nash) deserves more attention. It may be pos-
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Figure 7: Learning Method Comparison: Expected total
winnings vs. switching hand for both parameter learn-
ing and strategy learning against a single opponent.

sible to more formally characterize the exploratory ef-
fectiveness of a strategy. We believe these results should
encourage more opponent modelling research because,
even though maximal exploitation is unlikely, fast op-
ponent modelling may still yield significant benefits.
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