A Space-Time Tradeoff for Memory-Based Heuristics

Robert C. Holte and Istvan T. Hernadvolgyi
University of Ottawa
School of Information Technology & Engineering
Ottawa, Ontario, K1IN 6N5, Canada
Email: {holte,istvan}@site.uottawa.ca

Abstract

A memory-based heuristic is a function, h(s),
stored in the form of a lookup table (pattern
database): h(s) is computed by mapping s to an
index and then retrieving the appropriate entry in
the table. (Korf 1997) conjectures for search using
memory-based heuristics that m - t is a constant,
where m is the size of the heuristic’s lookup ta-
ble and t is search time. In this paper we present
a method for automatically generating memory-
based heuristics and use this to test Korf’s con-
jecture in a large-scale experiment. Our results
confirm that there is a direct relationship between
m and t.

Introduction

A heuristic is a function, h(s), that computes an esti-
mate of the distance from state s to a goal state. In
a memory-based heuristic this computation consists of
mapping s to an index which is then used to look up
h(s) in a table. Even heuristics that have a normal
functional definition are often precomputed and stored
in a lookup table in order to speed up search ((Prieditis
1993), (Korf 1997)). For other heuristics the tabular
form is the most natural — for example, the pattern
databases of (Culberson & Schaeffer 1996). Pattern
databases are an important recent advance in heuristic
search; they have been instrumental in efficiently solv-
ing very large problems such as Rubik’s Cube (Korf
1997) and the 15-Puzzle (Culberson & Schaeffer 1996).

The attraction of memory-based heuristics is that they
enable search time to be reduced by using more mem-
ory. Intuitively, a larger lookup table is capable of rep-
resenting a more accurate heuristic thereby reducing
search time. (Korf 1997) expresses this intuitive re-
lationship quantitatively and conjectures that memory
(m) and time (t) can be directly traded off, i.e., that
the product m - t is a constant. This conjecture is very

TCopyright ©1999, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

important because if it is true search time can be halved
simply by doubling available memory.

In this paper we test this conjecture in a large-scale
experiment in which hundreds of heuristics having a
wide variety of memory requirements are evaluated; in
total 236,100 problem instances are solved. For this
experiment a method was required to generate a wide
variety of heuristics automatically. The next two sec-
tions describe our representation for state spaces and
the method used to generate memory based heuristics.
Subsequent sections discuss the conjecture in more de-
tail and present our experiment’s design and results.

State Space Representation

A state space is defined by a triple S =< s¢,0,L >,
where s is a state, O is a finite set of operators, and L
is a finite set of labels. The state space consists of all
states reachable from sy by any sequence of operators.

To facilitate the automatic generation of many differ-
ent abstractions of widely varying granularity, we use a
simple vector notation for states and operators instead
of more conventional representations such as STRIPS
(Fikes & Nilsson 1971). A state is represented by a
fixed length vector of labels from L. An operator is
represented by a left-hand side (LHS) and right-hand
side (RHS), each a vector the same length as the state
vectors. Each position in the LHS and RHS vectors
may be a constant (a label from L), a variable, or an
underscore (_). The variables in an operator’s RHS
must also appear in its LHS. An operator is applica-
ble to state s if its LH.S can be unified with s. The
act of unification binds each variable in LH S to the la-
bel in the corresponding position in s. RHS describes
the state that results from applying the operator to s.
The RHS constants and variables (now bound) specify
particular labels and an underscore in a RH .S position
indicates that the resulting state has the same value as
s in that position. For example,

<AAl _BC>—-<2,_,.,,C.B>

is an operator that can be applied to any state whose
first two positions have the same value and whose third

position contains 1. The effect of the operator is to set
the first position to 2 and exchange the labels in the
last two positions; all other positions are unchanged.
We call this notation PSVN (”production system vector
notation”). Although simple, it is expressive enough
to specify succinctly all finite permutation groups (e.g.
Rubik’s Cube) and the common benchmark problems for
heuristic search and planning (e.g. sliding tile puzzles).

State Space Abstraction

A domain abstraction is a map ¢ : L — K, where L
and K are sets of labels and | K| < |L|. From a domain
abstraction one can induce a state space abstraction,
S = ¢(S) =< ¢(s0),9(0), K >, by applying ¢ to each
position of sy and to every label in the LHS and RH S
of each operator in O. This definition extends the no-
tion of “pattern” in the pattern database work (Cul-
berson & Schaeffer 1996), which in their framework is
produced by mapping several of the labels in L to a
special new label (“don’t care”) and mapping the rest
of the labels to themselves.

The key property of state space abstractions is that they
are homomorphisms and therefore the distance between
two states in the original space, S, is always greater
than or equal to the distance between the correspond-
ing abstract states in ¢(S). Thus, abstract distances are
admissible heuristics for searching in S (in fact they are
monotone heuristics: for formal proofs of these asser-
tions see (Hernddvolgyi & Holte 1999)).

The heuristic defined by an abstraction can either be
computed on demand, as is done in Hierarchical A*
(Holte et al. 1996), or, if the goal state is known in
advance, the abstract distance to the goal can be pre-
computed for all abstract states and stored in a lookup
table (pattern database) indexed by abstract states. In
this paper we take the latter approach.

The memory required for a pattern database, m, is
clearly just its size, m = |¢(S)|, and this can vary from
1 (if ¢ maps all labels to the same value) to n = |S| =
the number of states in S (if ¢ is one-to-one). m can
even be much larger than n. This happens if the im-
age of S under ¢ is embedded in and connected to a
larger space. We call such abstractions non-surjective
and in our experiments we have intentionally avoided
them since Korf’s conjecture (see below) is certainly
false for them. The simplest example of a non-surjective
homomorphism occurs with a state space defined by
sop =< 1,2,3,4 > and one operator

op: <AAB,C>—<AAC,B>

that is not applicable to sy because it requires the first
two vector positions to be equal. S contains only one
state, sg. If ¢(1) = ¢(2) and @(3) # ¢(4) then ¢(op)
will be applicable to ¢(sg) and ¢(S) will contain two

states. Non-surjective abstractions do arise in prac-
tice. All our attempts to represent the Blocks World
in PSVN have given rise to non-surjective homomor-
phisms (Hernddvolgyi & Holte 1999).

We can therefore generate a memory-based heuristic,
simply by generating a domain abstraction ¢ and us-
ing it as a state space homomorphism. The memory
needed for the heuristic is directly proportional to the
granularity of ¢ (i.e K') and how many labels in L are
mapped to each label in K.

Korf’s Conjecture

A fundamental question about memory-based heuris-
tics concerns the relationship between m, the size of
the pattern database for a heuristic, and ¢, the number
of nodes generated when the heuristic is used to guide
search. (Korf 1997) gives an insightful, but informal,
analysis of this relationship which leads to the conjec-
ture that ¢ ~ n/m. That ¢ should be inversely propor-
tional to m is a direct consequence of approximating ¢
by b%~¢ where b is the effective branching factor (the
number of children of a node in the search tree), d is
the average optimal solution length, and e is the av-
erage value of the heuristic being used. b?~¢ = b?/b°
and, assuming that S and ¢(S) are both tree-shaped
with the same branching factor, b¢/b¢ =~ n/m.

There are two data points of experimental evidence
touching this conjecture. In (Korf 1997), the search
space was Rubik’s Cube and t-m equaled 1.4 n. This is
in almost perfect agreement with the conjecture but
it must be noted that the experiment used two in-
dependent pattern databases simultaneously whereas
the analysis was based on the use of a single pattern
database. In (Culberson & Schaeffer 1996) the search
space was the 15-puzzle and, for the best single pat-
tern database used, t - m equaled 17.3n. This is in
fair agreement with the conjecture , but in these exper-
iments the Manhattan distance heuristic was used in
conjunction with the pattern database and symmetries
of the puzzle were used to reduce the pattern database
size and increase its accuracy, so the observed perfor-
mance is not attributable to the pattern database alone.
Finally, both (Korf 1997) and (Culberson & Schaeffer
1996) used IDA* (Korf 1985) which produces a larger ¢
than the search model used in the analysis.

The use of the average value of the heuristic, e, in the
(Korf 1997) analysis is a weakness that is improved in
(Korf & Reid 1998). There the number of nodes gener-
ated (t) in the worst case is shown to be

d+1
t(b,d, P) = i b P(d—i+1) (1)
=1

where b and d are as above and P(z) is the probability
that a state s € S has a heuristic value h(s) < z. Thus

0.35 [A
03 B
0.25 |- —
02 A
0.15 - B

0.1 A
0.05 |- A
0 L L T L L

0.4 T T T T T T

0.35 [A
03 B
0.25 |- —
02 A
0.15 - B
0.1 A
0.05 |- A

0.35 |- B
03 A
0.25 - —
0.2 B

0.15 B

01 4

0.05 - B
0 . N . N . .

Figure 1: Solution lengths histogram for the 8-Puzzle
(top), 8-Perm (middle) and (8,4)-Top-Spin (bottom).

the average heuristic value is replaced by the probabil-
ity distribution over the heuristic values. In a private
communication, Richard Korf has suggested that equa-
tion 1 can be approximately re-expressed in terms of m

as follows:

l
Y ekt

(2)

m

Experiment Design

The aim of our experiments is to examine the true rela-
tionship between ¢t and m and compare it with the rela-
tionships conjectured in (Korf 1997) and (Korf & Reid
1998). Our approach is to create abstractions with dif-
ferent values of m and problem instances with different
values of d and measure ¢ by running A* (not IDA¥*)
with each abstraction on each problem instance!. This
is repeated for different search spaces to increase confi-
dence in the generality of our conclusions.

For a given m there can be many different abstrac-
tions. 30 are generated at random and their ¢ val-
ues averaged?. t is estimated separately for “hard”,
“typical”, and “easy” problem instances using 100 ran-
domly selected start states of each type (the goal state
is fixed for each search space). The difficulty of a prob-

!instead of the number of nodes generated we measure the
number of nodes expanded by A*; they differ by a constant
so our conclusions are not affected.

Yfor the smallest values of m for each space fewer than
30 abstractions sometimes had to be used; never were fewer
than 18 abstractions used for a given m.

| 8-Puzzle | 8-Perm | Top-Spin |

n 181440 40320 40320
min m 252 56 28
max m 30240 20160 10080
b 1.667 6 2
deasy 18 5 12
dtypical 22 7 16
dhard 27 9 19

Table 1: Experiment Parameters

lem instance is determined by how its solution length
compares to the solution lengths of all other problem
instances. For example, we use the median of the so-
lution lengths to define a “typical” problem instance.
Figure 1 shows the distribution of solution lengths for
all problem instances in each space.

Results are presented (figure 2) as plots with m on the
x-axis and ¢t on the y-axis. Each data point represents
the average of 3000 runs (30 abstractions, each applied
to 100 problem instances).> Breadth-first search was
also run on all problem instances; it represents the ex-
treme case when m = 1. In total, our experiments
involved solving 236,100 problem instances.

We chose state spaces large enough to be interesting
but small enough that such a large-scale experiment
was feasible. Table 1 gives the general characteristics
and experiment parameters for each space. Note that
the m values for each space range from very small to a
significant fraction of n. Each state space is generated
by a puzzle, which we now briefly describe.

The 8-Puzzle is composed of 8 labeled sliding tiles ar-
ranged in a 3 x 3 grid. There is one tile missing, so a
neighboring tile can be slid into its place. In PSVN each
position in the vector corresponds to a particular grid
position and the label in vector[i] denotes the tile in
the corresponding grid position. For example, if vector
position 1 corresponds to the upper left grid position,
and vector position 2 corresponds to the upper middle
grid position, the operator that exchanges a tile in the
upper left with an empty space (A) in the upper middle
is

<X7A7_7_7_7_7_7_7_>_><A7X7_7_7_7_7_7_7_>

In the N-Perm puzzle a state is a vector of length N
containing NV distinct labels and there are N — 1 oper-
ators, numbered 2 to N, with operator k reversing the
order of the first k& vector positions. We used N = 8. In
PSVN operator 5, which reverses the first 5 positions,
is represented

<A,B,C,D,E,_,_,_>—><E,D,C,B,A,_,_,_>

3except for the smallest values of m for which fewer than

30 abstractions had to be used.

The (N,K)-Top-Spin puzzle has N tokens arranged in
aring. The tokens can be shifted cyclically clockwise or
counterclockwise. The ring of tokens intersects a region
K tokens in length which can be rotated to reverse the
order of the tokens currently in the region. We used
N = 8 and K = 4, and three operators to define the
state space

<I1,J,K,L,M,N,0,P>—< J,K,L,M,N,O,P,I>
<I,J,K,L,M,N,0,P>—< P,I,J,K,L,M,N,O >
<A7B707D7—7—7—7—> - <D,C,B,A,_,_,_,_>

Experimental Results

Figure 2 plots the experimental results with m on the
x-axis and ¢t on the y-axis. The scale on both axes is
logarithmic but the axes are labeled with the actual
m and t values. With both scales logarithmic ¢ - m =
constant ¢, the conjecture in (Korf 1997), would appear
as a straight line with a slope of —1. Note that the
y-axis is drawn at the smallest m value used in the
experiments, not at m = 0.

In the top part of figure 2 a short horizontal line across
each line (at around m = 4000) indicates the perfor-
mance of the Manhattan Distance on the test problem
instances. This shows that randomly generated ab-
stractions of quite small size (5040 entries, less than
3% of the size of the state space) are as good as one
of the best hand-crafted heuristics known for the 8-
puzzle. The best of these randomly generated heuristics
expands about 30% fewer nodes than the Manhattan
distance.

A linear trend is very clear in all the curves in figure 2
The correlation between the data and the least squares
regression line is 0.99 or higher in every case. However,
the slope is not —1. These results therefore strongly
suggest that t-m® = constant ¢ for a between —0.57 and
—0.8. « in this range means that doubling the amount
of memory reduces the number of nodes expanded by
less than a factor of 2.

Despite the very high correlation with a straight line, it
appears that the top curves in each plot, and the middle
curves to a lesser extent, are bowed up, i.e., that for
problem instances with long solutions the effect on ¢ of
increasing m depends on the value of m, with a greater
reduction in ¢ being achieved when m is large. The
lowest curve for the 8-Perm puzzle appears to be bowed
in the opposite direction, which would mean increases in
m give diminishing returns for problem instances with
short solutions in this space.

Further evidence that the curves flatten out as they ap-
proach m = 1 is obtained by extrapolating the regres-
sion lines to m = 1 and comparing them with value with
the actual value at m = 1 (breadth-first search). In ev-
ery case the extrapolated lines are much higher than the

actual value. For example, for the 8-puzzle the extrap-
olated lines have values at m = 1 of 89,322 (d = 18),
514,011 (d = 22), and 2,191,288 (d = 27), while the ac-
tual numbers of nodes expanded by breadth-first search
are 15,725, 64,389, and 165,039 respectively. Even the
regression line for the lowest curve of the 8-Perm puzzle
significantly overestimates the true value at m = 1.

25600 [y ' ' ' ' ']
— 1
12800 T q
6400 e\‘\\ T o, T
3200 [B
1600 |) T o
800 - 4
400 | 4
200 - g

100 1

n L L L L L L
252 500 1000 2000 4000 8000 16000 30240
m

12800 £ T T

6400

mm
554
244

3200 T B

1600 [el e B

I I I I I I I I
56 100 250 500 1000 2000 4000 8000 16000
m

.
12800 [

6400 |- e R
3200 e T 4

1600 |- T 1

12 - —

L L L L L L L L
28 50 100 250 500 1000 2000 4000 8000
m

Figure 2: Number of States Expanded [t] vs Size of
Pattern Database [m]: 8-Puzzle (top), 8-Perm (middle)
and (8,4)-Top-Spin (bottom).

Similarly, the regression lines can be extrapolated to
the other extreme, m = n, and compared to the solu-
tion length, which is the number of nodes expanded by
the perfect heuristic produced when m = n. The low-
est lines in each plot extrapolate well, giving values of
21 instead of 18 for the 8-puzzle, 4.24 instead of 5 for

8-Perm, and 8.5 instead of 12 for (8,4)-Top-Spin. The
extrapolation of the middle and upper lines overesti-
mate the value at m = n significantly, the middle line’s
prediction being about double the true value, and the
upper line’s prediction being about nine times the true
value. This is yet more evidence that the middle and
upper curves are not strictly linear.

The more recent conjecture is that ¢ - log% = constant

c. Logarithmic scale plots of the experimental results
with an x-axis of log% instead of m produce curves that
are visually indistinguishable from figure 2 but the least
squares regression lines have slightly higher correlation

in all cases and slopes closer to —1 (—0.67 to —0.95).

Predicting a Heuristic’s Performance

One of the intuitions used in the analysis in (Korf 1997),
is that the larger the average value (e) of an admissible
heuristic the smaller ¢ is expected to be. We directly
tested this hypothesis for the 8-Puzzle by generating
100 random abstractions with m = 5040 and evaluat-
ing them on 1000 random problem instances with so-
lution length 22 (fixed goal state, varying start state).
For each of the abstractions Figure 3 shows the average
heuristic value, e, on the x-axis and ¢, the average num-
ber of nodes expanded by A* using the heuristic on the
1000 problem instances, on the y-axis.

1050

2
R ®
1000 | EE SRS i
RN
RN 6\, R
950 - og\\%:i ° B
° E °
% I ° o A
900 AN %{9/ 1
O 00 ® ©
g °
850 |- PO S f
o0
- "o
800 - g
08 o e

L e o i
750 ¢ o " .
700 o]

o .
o 00 .

650 - B ° o]

600 L L L L
135 14 145 15 15.5 16

Figure 3: Number of Nodes Expanded t vs. Mean
Heuristic Value e. 8-puzzle, m = 5040 and d = 22.

The first point of interest is the range of e. Although
these heuristics all require the same amount of memory,
there is a difference of more than 2 between the largest
and smallest average heuristic values. The relationship
between e and t is quite well represented by the least
squares regression line (figure 3), except for the group of
points with m values between 14.5 and 15.5 that lie well
below the line. These points are extremely interesting
because they plainly contradict the intuition that the

larger a heuristic’s average value the fewer nodes A* will
expand. Consider the two heuristics A and B shown on
figure 3. They both have e = 14.71, but A expands 873
states on average, while abstraction B expands only
703. The same trends occur with the heuristics from
the previous experiment with other values of m and d
and for the other search spaces.

This phenomenon is partially explained by considering
P, the distribution of heuristic values in S, not only
e (as in (Korf & Reid 1998)). It is possible to have a
different P but the same average. This is illustrated by
figure 4 which plots the difference between p4(h) and

0.015

| ﬂﬂ_ﬂ_\ |
0

-0.015 - A

h(s)

0.02 |- A
0.01 | A
0

I I I I
0 5 10 15 20 25
h(s)

Figure 4: pa(h) — pp(h) and Pa(h) — Pg(h) vs. h

pp(h) vs. h, where h is the heuristic value provided by
abstractions A and B and p(h) represents the relative
frequency of h within the range of heuristic values. The
graph below is the cumulative difference P4(h)—Pg(h).

Although they have the same average heuristic value,
abstraction B has a much higher proportion of its val-
ues near the average. By contrast abstraction A has
a higher proportion of large heuristic values but also
higher proportion of smaller ones. Looking at the dif-
ference in cumulative distribution, A is greater for all
small values of h(s). In equation 1, these values have
the greatest weight, and in this case, the penalty for
having more low values outweighs the savings due to
having more high ones.

Conclusion

(Korf 1997) conjectured that for memory-based heuris-
tics t - m = m, where n is the size of the state space, m

is the memory needed to store the heuristic as a lookup
table (pattern database) and ¢ is the number of nodes
generated by A* search using the heuristic. The main
result of this paper is to provide substantial experimen-
tal evidence in favor of the slightly weaker conjecture
that log(t) and log(m) are linearly related. Our ex-
periments involved using 270 different heuristics with
widely varying memory requirements and solving a total
of 236,100 problem instances from three different state
spaces. The results had a correlation of 0.99 or greater
with the least squares regression lines. There is almost
certainly a small non-linear component in the relation
between log(t) and log(m) — especially near the extrem-
ities of m’s range — but for the region of most interest
the relation is essentially linear. Knowing this relation-
ship is important because it provides an assurance that
any increase in memory will produce a corresponding
reduction in search time.

An important feature of our experiments is that the
heuristics were generated automatically — randomly, in
fact. This demonstrates that the use of memory to de-
crease search time does not require any form of human
intervention.

There are other techniques for using memory to speed
up heuristic search. (Kaindl et al. 1995) provides a
good summary and an initial comparison of some of the
techniques. These techniques can be used in combina-
tion with each other and with memory-based heuris-
tics. The optimal allocation of memory among these
techniques is an open research question. Very few pre-
vious studies investigate the space-time tradeoff in de-
tail. Perimeter search (Dillenburg & Nelson 1994) and
the related BAI algorithm (Kaindl et al. 1995) give
significant reductions in ¢ for small values of m. For
SMA* (Russell 1992), ¢t was found to be proportional
to m~133 on the “perturbed 8-puzzle”.

In our experiments a single memory-based heuristic
was used to guide search. This was done in order to
eliminate confounding factors in interpreting the re-
sults. In practice, memory-based heuristics would be
used in conjunction with other knowledge of the search
space. For example, (Culberson & Schaeffer 1996) uses
hand-crafted memory-based heuristics in combination
with the Manhattan distance and exploits symmetries
in the search space and the invertibility of the opera-
tors to decrease the size and increase the usefulness of
the memory-based heuristics. (Korf 1997) uses multi-
ple memory-based heuristics simultaneously. Our ex-
perience (not reported here) indicates that log(t) and
log(m) are linearly related even when multiple memory-
based heuristics are used, but for a given m, t is roughly
halved if three memory-based heuristics are used to-
gether instead of using just one on its own.

In this paper we have also examined the relationship
between e, the average value of a heuristic, and ¢. For
the most part our results confirm the intuition that ¢

decreases as e increases, but the relationship is much
closer to linear than the expected exponential. Further-
more, heuristics were found with relatively low e values
that also had very good t values, due to a favorable
distribution of heuristic values.

Acknowledgments

This research was supported in part by an operat-
ing grant and a postgraduate scholarship from the
Natural Sciences and Engineering Research Council of
Canada. Thanks to Jonathan Schaeffer and Joe Cul-
berson for their encouragement and helpful comments
and to Richard Korf for communicating his unpublished
extensions of the (Korf & Reid 1998) work.

References

Culberson, J. C., and Schaeffer, J. 1996. Searching
with pattern databases. Advances in Artificial Intel-
ligence (Lecture Notes in Artificial Intelligence 1081)
402-416.

Dillenburg, J. F., and Nelson, P. C. 1994. Perimeter
search. Artificial Intelligence 65:165-178.

Fikes, R., and Nilsson, N. J. 1971. STRIPS: A new ap-
proach to the application of theorem proving to prob-
lem solving. Artificial Intelligence 2:189-208.

Hernddvolgyi, I. T., and Holte, R. C. 1999. PSVN: A
vector representation for production systems. Techni-
cal Report TR-99-04, School of Information Technol-
ogy and Engineering, University of Ottawa.

Holte, R. C.; Perez, M. B.; Zimmer, R. M.; and Mac-
Donald, A. J. 1996. Hierarchical A*: Searching
abstraction hierarchies efficiently. Proceedings of the
Thirteenth National Conference on Artificial Intelli-
gence (AAAI-96) 530-535.

Kaindl, H.; Kainz, G.; Leeb, A.; and Smetana, H.
1995. How to use limited memory in heuristic search.
Proceedings of the Fourteenth International Joint Con-
ference on Artificial Intelligence (IJCAI-95) 236-242.

Korf, R. E., and Reid, M. 1998. Complexity analysis
of admissible heuristic search. Proceedings of the Fif-
teenth National Conference on Artificial Intelligence
(AAAI-98) 305-310.

Korf, R. E. 1985. Depth-first iterative-deepening: An
optimal admissible tree search. Artificial Intelligence
27:97-109.

Korf, R. E. 1997. Finding optimal solutions to Ru-
bik’s cube using pattern databases. Proceedings of the
Fourteenth National Conference on Artificial Intelli-
gence (AAAI-97) 700-705.

Prieditis, A. E. 1993. Machine discovery of effective
admissible heuristics. Machine Learning 12:117-141.
Russell, S. 1992. Efficient memory-bounded search

methods. Proceedings of the Tenth European Confer-
ence on Artificial Intelligence (ECAI-92) 1-5.

