
published in the Proceedings of the 10th Canadian Conference on Artificial Intelligence
(AI’94), pp. 263-270, Morgan-Kaufman, 1994.

Searching With Abstractions:
A Unifying Framework and New High-Performance Algorithm1

R.C. Holte, C. Drummond, M.B. Perez
Computer Science Department

University of Ottawa
Ottawa, Ontario, CANADA K1N 6N5

{holte , cdrummon , mbperez}@csi.uottawa.ca

R.M. Zimmer, A.J. MacDonald
Electrical Engineering Department

Brunel University
Uxbridge, Middlesex, ENGLAND UB8 3PH

{Robert.Zimmer , Alan.MacDonald}@brunel.ac.uk

Abstract
This paper presents a common algorithmic framework
encompassing the two main methods for using an
abstract solution to guide search. It identifies certain
key issues in the design of techniques for using
abstraction to guide search. New approaches to these
issues give rise to new search techniques. Tw o of
these are described in detail and compared
experimentally with a standard search technique,
classical refinement. The "alternating opportunism"
technique produces shorter solutions than classical
refinement with the same amount of search, and is a
more robust technique in the sense that its solution
lengths are very similar across a range of different
abstractions of any giv en space.

1 Introduction

Heuristic search is ubiquitous in AI. A particular form of
heuristic search, state-space search, is the cornerstone of
many AI systems, including most planning and problem-
solving systems. Consequently, techniques for speeding up
heuristic search, or for automatically generating or
improving heuristics, are of central importance to AI.

Abstraction is a widely studied means of speeding up
state-space search. Instead of directly solving a problem in
the original search space, the problem is mapped into and
solved in an "abstract" search space. The abstract solution
is then used to guide the search for a solution in the original
space.

1 This research was supported in part by an operating grant from the
Natural Sciences and Engineering Research Council of Canada and in part
by the EEC’s ESPRIT initiative (project "PATRICIA").

Abstraction very often produces impressive performance
improvements (e.g. (Knoblock,1991)), but it is not
guaranteed to speedup search. The guidance provided by an
abstract solution is not even guaranteed to reduce the
amount of search in the original space; if the guidance is
positively misleading, it will increase the amount of search
in the original space (e.g. (Holte et al., 1992)). Even if
abstraction does speedup search in the original space, there
are overhead costs associated with abstraction: the cost of
creating an abstract space, and the costs associated with
finding one or more abstract solutions and using them to
guide search in the original space. The former cost can be
amortized if there are many searches of the same space and
the same abstract space is used each time. The speedup in
the original space that results from using abstraction must
more than compensate for these costs in order for a net
speedup to be achieved.

Research on abstraction aims to find methods for creating
and using abstract spaces that reliably speedup search
without undue degradation in solution quality (i.e. the
length of the solution). Most research on abstraction has
investigated different methods for creating an abstract
space; in this paper we investigate different methods for
using an abstract solution to guide search.

There are two principal methods for using an abstract
solution to guide search. In one method, the length of the
abstract solution is used as a heuristic estimate of the
distance to the goal (Pearl,1984; Prieditis and Janakiraman,
1993). In the other method, the individual steps of the
abstract solution are used as a sequence of subgoals whose
solutions link together to form the final solution
(Minsky,1963; Sacerdoti,1974; Knoblock,1991; Yang and
Tenenberg,1990). In the latter method, the abstract solution
serves as a skeleton for the final solution; the process of
"fleshing out" the abstract solution is called "refinement".



Until now, these two methods have been seen as mutually
exclusive. This paper presents a computational framework
in which the two methods are seen to be very similar. As
algorithms, their differences are "minor", in the sense of
being small in number and highly localized (i.e.
independent of one another and of other aspects of the
algorithms). Consequently, hybrids of the two methods can
easily be constructed. But there is a much more important
consequence. The algorithmic differences correspond to
specific issues that arise in designing techniques for using
abstract solutions. Having clearly identified these issues for
the first time, it becomes immediately apparent that there
are numerous promising alternatives to the existing
methods. Two of these alternatives, called "path-marking"
and "alternating opportunism", are examined in this paper.
These techniques are experimentally compared with the
classical refinement technique on a range of problems and
abstraction methods. "Alternating opportunism" emerges as
the best of the three techniques compared. It is between 3
and 12 times faster than breadth-first search, and very
reliably produces near-optimal solutions.

Section 2 describes the method used to create
abstractions, and the parameters of this method varied in the
experiment. Section 3 describes the general computational
framework encompassing both standard methods for using
an abstract solution, and presents the three specific
techniques studied in the experiment. Section 4 describes
the experimental setup and results.

2 The "Star" Method of Abstraction

In most AI search systems, a search space is defined
implicitly, typically in the STRIPS notation (Fikes and
Nilsson,1971)). A state is defined to be a set of sentences in
a formal language (containing constants, variables,
predicate symbols, etc.). The successor relation between
states is represented by operators that map one state to
another by adding to or deleting from the set of sentences
(i.e. the state) to which it is applied. Each operator has
preconditions, stated in the formal language, specifying to
which states the operator may be applied. An abstract
search space is created by removing symbols from the
formal language and/or the definitions of the operators and
states (e.g. see (Knoblock et al., 1991)).

By contrast, in our system a search space is represented
by an explicit graph. A state is a node in the graph; the
successor relation between states is represented by edges
connecting each node to its successors. In this way of
representing search spaces, search space SSA is an
abstraction of search space SSB iff there is a graph
homomorphism from SSB to SSA.

In a graph homomorphism, each state in the abstract
space, SSA, corresponds to one or more states in SSB. We
view the abstract state as a class "containing" the
corresponding states from SSB. Henceforth the terms
"class" and "abstract state" will be used interchangeably,
and the term "state" will mean a state in the original space.
In the figures a class will be indicated by drawing a circle
around the states it contains.

Each edge in the abstract space connects one class to

another. There must be an edge in the abstract space
corresponding to each edge in the original space. Thus, if
there is an edge in the original space from state S1 to state
S2, then there must be an edge in the abstract space from
the class containing S1 to the class containing S2. If S1 and
S2 are in the same class, an edge from S1 to S2 corresponds
to an identity edge in the abstract space. Identity edges are
not drawn in the figures.

The use of an explicit graph has the obvious drawback
that it is feasible only for relatively small search spaces (the
largest we have studied to date had 50,000 states). But it
has the very great advantage, for research purposes, of
flexibility and generality. It permits a very wide range of
different abstraction-creating and abstraction-using
techniques to be easily implemented and investigated. The
ultimate aim of our research is to develop techniques that
operate on implicit graphs; and indeed, the principles
underlying new search techniques described in this paper
can be used in the ordinary STRIPS representation as
readily as in the explicit graph representation.

The standard STRIPS-based definition of abstraction is a
highly restricted type of graph homomorphism. Some of
the limitations and weaknesses of this type of graph
homomorphism are discussed in (Holte et al.,1993). To
overcome them, we have been developing alternative
methods of abstraction.

The "star" method of abstraction was first investigated in
(Mkadmi,1993). Each class consists of a "hub" state and all
the neighbours of the hub within a given distance, R, called
the "radius" of abstraction. The classes are built one at a
time; once a state is included in a class it is ineligible to be
included in any other. The process is repeated until all
states have been assigned to a class (it may happen that a
class contains just one state). Then edges are added
between classes, as described above, to complete the
construction of the abstract space.

As with any abstraction method, the star method can be
applied recursively to the abstract space it creates in order to
construct a "hierarchy" of abstract spaces. In our current
implementation, successively more abstract search spaces
are added to the hierarchy until the trivial search space is
produced (the trivial search space consists of just one class).
For simplicity, the discussion will speak as if there were
only two lev els in the hierarchy, the original search space
(which is always at the bottom of the hierarchy) and one
abstract search space. But all of the discussion applies
equally to any two adjacent levels in a larger abstraction
hierarchy.

The two main decisions in using the star method are: how
to choose the hub states, and what value of R to use. These
are parameters that will be varied in the experiments below.
We will consider two ways of choosing hub states: choose a
random state, and choose the state having the greatest
number of immediate neighbours. The radius will be varied
from 2 (which means a class contains only the hub and its
immediate neighbours) to 9.

The value of R has great impact on the performance of
search systems that use abstraction. For example, the total
amount of search done at all levels of abstraction is bounded
above by W(R)×(2R)A, where A is the number of levels in



Goal

Start

A

Goal

Start

Abstract
Space

Original
Space

X

B

Figure 1.

the abstraction hierarchy and W(R) is the amount of search
done to solve a problem when the start and goal are both in
the same class of radius R (Mkadmi,1993). Solution length
is also affected by R, typically decreasing as R increases.
Certain overhead costs increase as R increases, but others
decrease. Generally speaking, the choice of R affects − in
antagonistic ways − the quantity and quality of the guidance
that an abstract solution provides for search in the original
space. When R is small, there are few states in each class.
Consequently, knowing which classes are in the abstract
solution provides information about very few states, but the
information is specific to those states and therefore is highly
reliable. When R is large there are many states in each
class: the abstract solution provides information about many
more states, but the information is not very specific and so
is indiscriminate, possibly even misleading.

3 Search Methods That Use Abstractions

There are two main ways that abstract solutions can be used
to guide search. "Heuristic" methods are based on the
observation that distance (number of edges in the shortest

path) between two states is greater than or equal to the
distance, in the abstract space, between the corresponding
classes. For example, in Figure 1, the distance between
Start and Goal in the original space is 3 (the shortest path
passes through state X); the distance between the
corresponding classes is 2. Distance in the abstract space is
therefore an admissible heuristic and can be used in the A*
algorithm (Hart et al., 1968) to find optimal solutions.

When the A* algorithm visits state S it computes h(S), an
estimate of the distance from S to a goal state. If h(S) is
defined to be the abstract distance from the class containing
S to a goal class, computing h(S) involves searching in the
abstract space. The result of this search is a shortest path,
i.e. a sequence of classes, connecting S’s class to a goal
class. In Figure 1, when A* visits state A, it would compute
h(A) by finding a shortest path between the class containing
A and the goal class. In this example there are two shortest
paths. h(A) would be 2, the length of whichever of the two
was actually found.

We note, however, that the abstract path found in the
course of computing h(A) provides the information needed
to compute h(-) for many other states. Suppose, in the



Ci-k Ci+1 Ci+jCi

S N5

N4N3
N2

N1

Figure 2.

example, that the path found is the one including B’s class.
Firstly, for every state S in the same class as A, h(S)=h(A).
Secondly, this path also allows us to compute h(B), because
it includes a shortest path from B’s class to the goal class.
And, of course, it allows us to compute h(S) for every S in
the goal class. In general, one abstract shortest path enables
the computation of h(S) for every state S contained in every
class on the path.

This h(-) information is easily cached with each state.
Now when A* visits state S it only needs to search in the
abstract space if the class containing S has not occurred on
any of the abstract paths previously computed. Although
this may seem like a minor implementation detail, it
provides a conceptual link to the other method of using
abstract paths to guide search.

"Refinement" methods find one abstract path from Start to
Goal and use each class in this path as a subgoal when
searching in the original space. The Start state, S1, is, by
definition, in the first class, C1, on this path. A path (in the
original space) is sought, typically using breadth-first
search, from S1 to any state, S2, in C2, the second class on
the abstract path. In searching for this path, only states in
C1 are considered: all other states are disregarded (this is
the graph equivalent of "goal protection"). In our example
(Figure 1), a path in the original space is sought from Start
to a state in the same class as B. In searching for this path,
state X, and other states in X’s class are ignored, because
that class is not on the abstract path.

Having reached S2 in class C2, a path wholly within C2 is
sought from S2 to any state, S3, in C3, the third class in the
abstract path. This process, called refinement, is repeated
for each successive class on the abstract path until a path in
the original space has been constructed from Start to a state,
Sg, in Cg, the class containing the goal state. Then, as the
final step, a path wholly within Cg is sought from Sg to the
actual goal state.

Figure 2 shows a portion of the abstract path C
1
...C

n

being refined and a typical intermediate situation during
refinement, in which we are searching forward from state S,
in class C

i
, looking for any state in class C

i+1
. The five

successors of S illustrate the different possibilities for a
state’s successors. N

1
is not in a class on the abstract path;

it will be ignored. N
2

is in a previous class; it too will be

ignored. N
3

and N
4

are in the current and next class,

respectively. N
4

would be preferred to N
3
, and would result

in C
i+1

becoming the current class. But if S happened not to

have any successors in the next class, states in the same
class (N

3
) would be pursued during refinement. State N

5
is

in a class more than 1 ahead of the current class. If the
abstract path is a shortest path, such states cannot exist.
However, refinement techniques (unlike the heuristic
methods described above) are not guaranteed to find
shortest paths, so this situation certainly can arise. In
classical refinement, this opportunity to jump ahead is
ignored. Techniques that exploit such opportunities we call
"opportunistic".

Thus, when a state is visited during refinement, it is
necessary to know whether or not it is in a class on the
abstract path, and, if so, the position of the class in the
abstract path. This is precisely the information that would
be cached when h(Start) is computed by the implementation
of the heuristic method described above. It is clear
therefore that the two methods for using abstract paths are
very similar, differing only in two respects:
(1) the refinement method restricts itself to states that are

part of the first abstract path computed, whereas the
heuristic method considers all states (and may have to
find additional abstract paths to do so);

(2) the refinement method does not take into account the
distance of a state from the start state, whereas the
heuristic method adds this to the abstract distance to the
goal in order to compute a state’s overall "score".

These two classical methods are not the only ways in which
the information derived from an abstract path can be used to
guide search. The following are two novel variants of the
classical refinement technique.

Path-Marking
Classical refinement derives its efficiency from two sources:
from ignoring states that are not part of the abstract path,
and from associating a position in the abstract path with
each state. The path-marking technique uses only the first
of the sources: it does ordinary breadth-first search (in the
original space) but ignores all states that are not in classes
on the abstract path. This is guaranteed to find the shortest
possible refinement of the abstract path.



Alternating Search Direction
While searching in the abstract space, many classes may be
visited that, in the end, are not on the abstract path. For
these classes the distance to a goal class is not known; that
distance is known only for classes on the abstract path.
However, the distance to the abstract start class is known for
all classes visited during the search, because the start class
is where the search began. This information has no utility if
search in the original space is in the same direction as
search in the abstract space (e.g. from start to goal). But, if
search in the original space proceeds in the opposite
direction, from goal to start (using the inverse of the
successor relation), then distance from the start is precisely
what is need to guide search. If there are several levels of
abstraction, search direction alternates from one level to the
next.

Using this technique, search is not confined to states that
are on the abstract path: heuristic distance information is
available for every state in every class visited during the
abstract search. This means that the solutions found by
alternating search direction could be shorter than those
found using the path-marking technique. Such solutions
would not, of course, be refinements of the abstract path in
the normal sense.

Our implementation of this alternating-direction

technique is "opportunistic", as defined above.2 Like
classical refinement, alternating opportunism never moves
"away" from the destination: once it finds a state whose
heuristic distance from the destination is D, it ignores all
states whose heuristic distance is greater than D. For this
reason, the solutions found by alternating opportunism
could be longer than those found by the path-marking
technique.

4 Experimental Comparison

This experiment compares three search techniques —
classical refinement (abbreviated CR), path-marking (PM),
and alternating opportunism (AO). The two performance
measures of interest are the length of the solution found,
and the amount of "work" required to find a solution.

We originally measured work in terms of CPU time, but
this proved extremely sensitive to low-level programming
details of no significance to the algorithms themselves. In
this paper, work is measured by counting the number of
edges traversed during search (at all levels of abstraction)
and the number of "overhead" operations performed during
search (for example, to pass the heuristic distance
information from one level of abstraction to the next). As
these two counts have roughly comparable units, they can
sensibly be added to give a composite "total work" figure.
Overhead costs associated with creating the abstraction are
not included in the "work" measure because our aim is to

2 we have also implemented a variation of classical refinement that
is opportunistic. This was not used in the experiments because with star
abstraction and the types of graphs used in the experiments, it can be
proved that the heuristic distance must decrease by 1 if search is confined
to the abstract path.

compare different techniques for using abstractions; the cost
of creating the abstractions is the same for them all.

Also of interest is the robustness of a search technique: to
what extent does good performance depend upon the
abstract space that is used. To inv estigate this, abstractions
were created using several different radii and two different
methods for choosing the hub states (see section 2).

Four different search spaces, derived from well-known
puzzles, were used in the experiment. These are described
below. For each space, 100 pairs of states were chosen
randomly. Each pair <S1,S2> gives rise to two problems:
<start=S1,goal=S2> and <start=S2,goal=S1>. The same
200 problems were used for every different combination of
system and abstraction-parameter settings. All the results
shown are averages over these 200 problems.

A simple breadth-first search system was also run on the
200 test problems for each search space. Its performance
figures allow us to compare the solutions found using
abstraction to the optimal solutions, and to measure how
much work is being saved by using abstraction to guide
search.

4.1 Search Spaces

To wers of Hanoi. The 7-disk version has 37 = 2187 states.
Each state (except for the 3 extreme "corners") has 3
successors, but the effective branching factor is
considerably less than 3 because of the structure of the
space. The maximum distance between two states is
27 = 128.

5-puzzle. This is a 2×3 version of the 8-puzzle. The state
space comprises two unconnected regions each containing
360 states. We hav e connected the space by adding a single
edge between one randomly chosen state in each of the two
regions. Two-thirds of the states have only 2 successors,
which means the branching factor at these states is
effectively 1 (because every edge has an inverse, so one of
the 2 successors will be the state from which the current one
was reached). The other states have 3 successors.

Blocks World. There are 6 distinct blocks, numbered 1 to
6, each of which is either on the "table" or on top of another
block. There is a "hand" that can hold one block at a time
and execute one of four operations: put the block being held
onto the table, put it down on top of a specific stack of
blocks, pick up a block from the table, and pick up the
block on top of a specific stack. With 6 blocks there are
7057 states. Unlike the other search spaces, in the blocks
world the branching factor varies considerably from one
state to another, depending as it does on the number of
stacks in the state. The maximum distance between two
states is 11.

Permutation. A state is a permutation of the integers 1−7;
there are 7! = 5040 states. There are 6 operators numbered
2 to 7. Operator N reverses the order of the first N integers
in the current state. For example, applied to the state
[3,2,5,6,1,7,4] operator 4 produces [6,5,2,3,1,7,4]. Operator
7 rev erses the whole permutation. All operators are



TABLE 1. Solution Length.
States with the most neighbours are used as the hubs of the abstract classes.
The optimal solution length is shown in brackets.

To wers of Hanoi 5-puzzle Blocks World Permutation
(66) (21) (9.5) (6.2)

radius CR PM AO CR PM AO CR PM AO CR PM AO

2 98 88 80 29 27 25 14.7 13.2 11.2 11.6 10.6 8.3
3 101 77 76 27 24 24 11.5 11.0 10.8 9.5 9.3 8.0
4 80 72 75 24 23 23 12.1 11.6 11.2 9.7 8.9 8.1
5 82 72 76 29 25 25 11.9 11.2 11.3 8.1 7.3 7.4
6 82 72 77 27 26 25 11.6 10.5 10.8 7.1 6.4 6.8
7 79 69 75 26 25 24 10.3 9.7 10.2 7.3 6.4 6.8
8 73 69 71 25 25 24 9.5 9.5 9.5 6.2 6.2 6.2
9 78 68 74 26 25 24 9.5 9.5 9.5 6.2 6.2 6.2

TABLE 2. Total Work (#edges + overhead).
States with the most neighbours are used as the hubs of the abstract classes.
The work done by ordinary breadth-first search is shown in brackets.

To wers of Hanoi 5-puzzle Blocks World Permutation
(3058) (802) (3936) (5570)

radius CR PM AO CR PM AO CR PM AO CR PM AO

2 894 1048 767 299 362 255 724 1073 762 512 868 460
3 867 903 711 251 308 238 1200 1339 1227 616 762 609
4 776 903 751 294 333 301 902 1127 889 750 1191 790
5 752 927 740 314 371 300 1268 1767 1395 1407 2443 2527
6 777 944 765 335 392 321 2124 2906 2146 3055 3926 5454
7 802 950 828 333 392 325 3424 4258 4149 5739 7053 6416
8 932 1079 938 348 413 346 5915 5915 5973 7982 7982 7982
9 916 1082 946 386 469 389 5973 5973 5973 7982 7982 7982

applicable in every state, so each state has 6 successors.
The maximum distance between two states is 14.

4.2 Results

Tables 1 and 2 show the solution length and total work
results when states having the most immediate neighbours
are used as the hubs of abstract classes. The solutions
found using abstraction are relatively short, within 30% of
the optimal length in most cases and never more than
double the optimal length. Total work is impressively small
for small radii, in most cases, but for large radii search
using abstraction is not cost-effective. This is particularly
evident in the Blocks World and Permutation spaces, whose
maximum distance between states is small: a radius of 7 or
greater causes almost all states to be put into the same class,
making abstraction of little value. Only in the Towers of
Hanoi space, where the maximum distance between two
states is large, does abstraction with large radii pay off. In
the comparisons that follow, data for radius ≥ 7 for the
Blocks World and Permutation spaces will be ignored.

The experiment shows that PM’s solutions are roughly
10% shorter than CR’s. Regarding total work, it is possible
for PM to do less than CR, if their solutions are different
lengths. In the experiment, this never happened: PM always
did more work, sometimes much more. In most
circumstances, the 10% improvement in solution length PM

provides is probably not sufficient to justify the additional
work.

CR produces its poorest solutions when radius=2. It was
hoped that PM would find much shorter solutions in this
case, but the experiment reveals that its solutions are just
10% shorter, as usual. Since PM produces the optimal
refinement of an abstract solution, one may conclude that
the relatively poor performance when radius=2 is an
inherent property of the the general strategy of using a
single abstract solution to guide search.

AO does not follow the same general strategy, and its
solutions are 10-15% shorter than PM’s when radius=2. For
larger radii, AO and PM give solutions of similar lengths −
PM’s are slightly shorter in the Towers of Hanoi space,
AO’s in the Permutation space. However, AO always does
much less work than PM. AO does the same amount of
work as CR and produces shorter solutions, sometimes very
much shorter. The single exception is the Permutation
space, where AO begins to degenerate to breadth-first
search slightly sooner (radius=5) than CR.

The same patterns arise when random states are used as
the hubs when constructing abstract classes (see Tables 3
and 4). The solutions found by all techniques have
increased in length but CR’s hav e increased more than PM’s
which, in turn, have increased more than AO’s.
Consequently, the difference in solution lengths has become



TABLE 3. Solution Length.
Randomly chosen states are used as the hubs of the abstract classes.
The optimal solution length is shown in brackets.

To wers of Hanoi 5-puzzle Blocks World Permutation
(66) (21) (9.5) (6.2)

radius CR PM AO CR PM AO CR PM AO CR PM AO

2 91 80 75 32 29 26 27.2 21.3 12.7 15.6 12.0 8.4
3 95 81 83 30 29 26 22.0 19.1 13.1 11.4 10.0 8.1
4 82 72 77 27 25 25 19.7 16.5 13.6 10.1 9.6 8.5
5 86 74 78 28 25 24 14.3 13.6 12.1 9.5 8.5 8.6
6 95 86 79 26 26 24 15.6 14.8 13.0 9.0 7.7 8.0
7 88 81 79 25 25 25 17.0 16.2 13.8 6.9 6.4 6.6

TABLE 4. Total Work (#edges + overhead).
Randomly chosen states are used as the hubs of the abstract classes.
The work done by ordinary breadth-first search is shown in brackets.

To wers of Hanoi 5-puzzle Blocks World Permutation
(3058) (802) (3936) (5570)

radius CR PM AO CR PM AO CR PM AO CR PM AO

2 847 1021 765 316 411 285 1310 1526 1070 806 1015 817
3 794 957 763 282 338 264 571 783 546 800 978 806
4 734 870 738 269 337 264 699 1027 738 811 1250 1038
5 776 924 763 280 360 265 902 1093 896 1258 2491 1456
6 931 1111 830 306 363 303 808 1048 780 3142 5064 3674
7 942 1106 916 292 354 302 964 1297 964 6295 7008 6566

greater (except, perhaps, for the Towers of Hanoi). It is now
the case that the shortest of CR’s solutions for any radius is
comparable in length to AO’s longest solution.

For radii other than 2, total work has decreased in most
cases; dramatically so in the Blocks World. But all the
search techniques have benefited roughly equally: CR and
AO still do comparable amounts of work, and PM does
significantly more.

AO’s solution lengths are remarkably insensitive to the
manner in which hub states are chosen and to the choice of
radius (as long as the radius is not so large as to cause AO
to degenerate to breadth-first search). This robustness of the
search technique is important because it relieves the
abstraction-constructing system of the responsibility of
ensuring good solutions. The abstraction-construction
system can therefore focus on other issues; for example, it
could attempt to construct abstract spaces that were
"meaningful" to a human in the sense that each class has a
succinct description.

6 Conclusions

This paper has provided a common algorithmic framework
encompassing the two main methods of using an abstract
solution to guide search. In doing so, it has identified
certain key issues in the design of techniques for using
abstraction to guide search. The clear identification of these
issues is important for research in abstraction, because
doing so sharply focuses research. In response to these
issues, two new new search techniques have been developed

— path-marking and alternating opportunism. These have
been compared experimentally with a standard search
technique, classical refinement. Path-marking is guaranteed
to find the optimal refinement of a given abstract path; the
experiments show that classical refinement, in general,
produces refinements whose length are within 10% of the
optimal refinement. However, the optimal refinement of a
somewhat arbitrarily chosen abstract path is not necessarily
close to being an optimal solution. The alternating
opportunism technique is based on a generalization of the
notion of "refinement of an abstract path". It produces
shorter solutions than classical refinement with the same
amount of search. It is also a more robust technique, in the
sense that its solution lengths are very similar across a range
of different abstractions of any giv en space.

This study has been carried out with a system in which
search spaces are represented as explicit graphs. However,
this is incidental to the general framework and specific
techniques developed and compared in the paper. Path-
marking, alternating search direction, and opportunism
could all be implemented as search techniques in a
traditional STRIPS-style search system.

References

[Fikes and Nilsson, 1971] Fikes, R. and N.J. Nilsson (1971),
"STRIPS: A New Approach to the Application of
Theorem Proving to Problem Solving", Artificial
Intelligence, vol.2, pp.189-208.



[Hart et al., 1968] Hart, P.E., N.J. Nilsson, and B. Raphael
(1968), "A Formal Basis for the Heuristic Determination
of Minimum Cost Paths", IEEE Transactions on
Systems Science and Cybernetics, vol.4(2), pp.100-107.

[Holte et al., 1993] Holte, R.C., R. Zimmer, and A.J.
Macdonald (1993), "A Study of the Representation-
Dependency of Abstraction Techniques", ML’93
workshop on Knowledge Compilation and Speedup
Learning, June 1993. (unpublished)

[Holte et al., 1992] Holte, R.C., R. Zimmer, and A.
MacDonald (1992), "When does Changing
Representation Improve Problem-Solving Performance
?", in M. Lowry (ed.), Proceedings of the Workshop on
Change of Representation and Problem Reformulation,
NASA Ames technical report FIA-92-06. May 1992.

[Knoblock, 1991] Knoblock, C.A. (1991). Automatically
Generating Abstractions for Problem Solving.
tech. report CMU-CS-91-120, Computer Science Dept.,
Carnegie-Mellon University.

[Knoblock et al., 1991] Knoblock, C.A., J.D. Tenenberg,
and Q. Yang (1991), "Characterizing Abstraction
Hierarchies for Planning", Proc. AAAI, pp.692-697.

[Minsky, 1963] Minsky, M. (1963), "Steps Tow ard Artificial
Intelligence", in Computers and Thought, E.
Feigenbaum and J. Feldman (eds.), McGraw-Hill,
pp.406-452.

[Mkadmi, 1993] Mkadmi, T. (1993). Speeding Up State-
Space Search by Automatic Abstraction. Master’s
Thesis. Computer Science Dept., University of Ottawa.

[Pearl, 1984] Pearl, J. (1984), Heuristics, Addison-Wesley.

[Prieditis and Janakiraman, 1993] Prieditis, A., and B.
Janakiraman (1993), "Generating Effective Admissible
Heuristics by Abstraction and Reconstitution", Proc.
AAAI, pp.743-748.

[Sacerdoti, 1974] Sacerdoti, E. (1974). Planning in a
hierarchy of abstraction spaces. Artificial Intelligence,
vol. 5(2), pp. 115-135.

[Yang and Tenenberg, 1990] Yang, Q. and J.D. Tenenberg
(1990). Abtweak: Abstracting a nonlinear, least
commitment planner. Proc. AAAI’90, pp. 204-209.


