
Inferring What a User is Not Interested In

Robert C. Holte
Computer Science Department
University of Ottawa
Ottawa, Canada K1N 6N5
holte@csi.uottawa.ca

John Ng Yuen Yan
BNR Ltd.

P.O. Box 3511, Station C
Ottawa, Canada K1Y 4H7

johnng@bnr.ca

Abstract

This paper describes a system to improve the speed and success rate with which users
browse software libraries. The system is a learning apprentice: it monitors the user’s
normal browsing actions and from these infers the goal of the user’s search. It then
searches the library being browsed, uses the inferred goal to evaluate items and
presents to the user those that are most relevant. The main contribution of this paper is
the development of rules for negative inference (i.e. inferring features that the user is
not interested in). These produce a dramatic improvement in the system’s performance.
The new system is more than twice as effective at identifying the user’s search goal than
the original, and it ranks the target much more accurately at all stages of search.

1 Introduction

"Browsing" is the searching of a computer library for an individual library item. The
human doing the search (the "user") starts with a set of requirements and the aim of
finding an item (the "target") that best meets these requirements. The user proceeds
by assessing items currently being displayed and choosing an item (or multiple items)
and an operation to apply. Typical operations are content-based retrieval, requesting
additional information about a particular item, and navigating along links in the
library that connect related items. The operation is executed by the browsing system
and the display updated. This process is repeated until the user decides to abandon
the search or deems an item to adequately satisfy the requirements. In assessing
library items and choosing operations, the user is guided by his (or her) expectation of
what the target item in the library will be like. The user’s mental model of the target
is called the "search goal". Because the user’s knowledge of the content,
organization, and descriptive language of the library is generally imperfect, browsing
is fundamentally an uncertain and iterative process. Consequently it is slow,
frustrating, and somewhat error prone.

To increase the speed and success rate of browsing we have dev eloped a "learning
apprentice" [Mitchell et al.,1985] that attempts to infer a user’s search goal from his
actions. The user browses as usual, unaware that the learning apprentice is
monitoring his actions. From the sequence of user actions the learning apprentice
infers an "analogue" representing what it believes to be the user’s search goal. The
analogue is converted into a "template" that can readily be used to measure the



relevance of an individual library item to the user. The template is matched against
each item in the library, the items are sorted according to their relevance, and
displayed to the user in a special window (the "suggestion box").

Our first learning apprentice for browsing was very successful, inferring the target
before it is found by the user about 40% of the time [Drummond et al.,1995]. The
inference rules in this system are all "positive" in the sense that all draw conclusions
of the form "the user is interested in items with feature X". In this paper we add to
the system "negative" inference rules, which draw conclusions of the form "feature X
is definitely not of interest to the user". We show experimentally that this
dramatically improves the system’s ability to infer the user’s search goal.

2 A Browser for Object-Oriented Software Libraries

Our testbed browsing application is software reuse. The library is a collection of
object-oriented software. An item in the library is a "class", in the object-oriented
sense. Each class contains "instance variables" and "methods" that are locally
defined, and inherits the variables and methods of its superclass in the inheritance
hierarchy. The names of classes, variables, and methods very often consist of several
words concatenated together. A class or variable name is typically a noun phrase with
the noun at the end (e.g. "MenuItem"), whereas a method name tends to be a verb
phrase with the verb at the beginning (e.g. "AdjustSizeForNewItem"). A class’s
functionality is determined by its methods (inherited and locally defined). The aim of
browsing is to find the class whose functionality is closest to the required
functionality.

Our browsing system works as follows. Initially, it presents the user with a list of all
the classes in the library. As browsing proceeds additional class lists and method lists
are created by the user’s actions. To apply an operator to a class, the user selects the
class, C, from any available class list and then specifies the operator to be applied.
The main operators that can be applied to a class are:

Subclasses - creates a list of C’s subclasses.
Superclasses - creates a class list of C’s ancestors.
Defined Methods - creates a list of the methods C defines locally.
Similar Name - creates a list of classes ordered by how similar each class’s name is

to C’s. Similarity is based on the number of words the two names have in
common.

Similar Functionality - creates a list of classes ordered by how similar each class’s
functionality is to C’s. Similarity is based on the similarity of the names of the
methods defined in the two classes.

There are also operators that can be applied to methods. However, to apply an
operator to a method is a two step process. First one must select the method in the
method list produced by "Defined Methods". This "opens" the method in a window
that is used for inspecting a method’s details. To apply an operator, the user must



select the method in this window and then specify the operator. The main operators
that can be applied to a method are:

More details - each time this operator is applied to a method more details about its
implementation are presented.

Mark - marks the method for use with the following operators.
Implemented In - creates a list of the classes ordered by the degree to which each

implements all the currently marked methods. A class’s score is based on the
similarity of the marked methods’ names to the names of the methods the class
implements.

Used By - creates a list of classes ordered by the degree to which each uses all the
currently marked methods. A class’s score is based on the similarity of the
marked methods’ names to the names of the methods that are called by the
class’s own methods.

Table 1 shows the sequence of actions taken by a user searching for the class
"Confirmer" in the experiment reported in [Drummond et al.,1995] (the user was not
told the target’s name). He first chooses a class (Prompter) from the initial class list
and applies the "Defined Methods" operator to it. Three of these methods are opened
for inspection. Additional details are requested for "WaitFor" and "WaitForUser",
presumably in order to determine the difference between them. The user then marks
"WaitForUser" and "PaintBackground" and requests a list of all classes that use these
two methods (or methods with similar names). The target is on the resulting class list
and is recognized by the user, ending the search.

We hav e observed that users do not apply operators in any fixed pattern. Different
users favour different operators and an individual can use different search strategies
for different search goals. However, the method-based operators ("Implemented In"

Table 1. Typical Sequence of Browsing Actions.

Class or Method Operator

1 Prompter Defined Methods
2 PaintBackground (open method)
3 WaitFor (open method)
4 WaitForUser (open method)
5 WaitFor More details
6 WaitForUser More details
7 WaitForUser Mark
8 PaintBackground Mark
9 (marked methods) Used By
10 Confirmer



and "Used By") are usually favoured over, and more effective than, the class-based
operators. This fact is important because, as will be seen later, our negative inference
strategy works only for the method-based operators.

3 The Original System

Our initial learning apprentice for browsing contained only positive inference rules,
i.e. rules inferring that a particular feature is of interest to the user. The analogue
representing the user’s search goal is simply a list of the features in which the user has
shown interest with an associated confidence factor. For example, this apprentice
would make the following inferences during the search in Table 1. From the first
action, it would infer that the user is interested in a class whose name is similar to
"Prompter". From actions 2-4, it would infer that method names similar to those of
the opened methods are of interest. Actions 5-8, and most significantly action 9,
represent further interest exhibited by the user in specific methods and cause the
confidence factors of those methods to be increased. After action 9 the analogue
would contain the assertions

INTERESTED_IN (class name: Prompter) (confidence factor)
INTERESTED_IN (method name: PaintBackground) (confidence factor)
INTERESTED_IN (method name: WaitFor) (confidence factor)
INTERESTED_IN (method name: WaitForUser) (confidence factor)

For the purposes of matching the analogue is converted into a template that can be
readily matched against each class in the library. The class’s name is matched against
the class names in the template, and its methods’ names are matched against the
method names in the template. Matching is a matter of degree. Identical names
match with a score of 1.0, names that have no subterms (words) in common have a
score of 0.0, and names having some subterms in common score an intermediate
value. For example, a method named "PaintForeground" partially matches
"PaintBackground". The matching process also takes into account methods that are
inherited or used by a class. The overall match score for the class is the normalized
weighted sum of the match scores for each name in the template. The weights used in
this sum are derived from the confidence factors in the analogue. The use of
subterms, not whole names, during matching produces some subtle effects. For
example, because "Wait" is a subterm of two method names in the analogue its
effective contribution to the overall score is greater than if it had only occurred in one.

4 Negative Inference

Positive inference in combination with partial matching proved very successful in our
original experiments. The example in Table 1, however, illustrates a limitation of this
system. The user’s actions plainly indicate that he has deliberately decided method
"WaitFor" is not of interest. The interest exhibited in opening and inspecting this
method was tentative. Once "WaitFor" and "WaitForUser" have been compared and a
decision between them made, only one ("WaitForUser") remains of interest. Merely
retracting INTERESTED_IN (method name: WaitFor) would not entirely capture this



information because "Wait" and "For" occur in "WaitForUser" and would therefore
produce quite strong partial matches.

To make the correct inference from this sequence of actions, two changes are
necessary to the learning apprentice. First, subterms must have their own entries in
the analogue. This will permit the system to assign a higher confidence factor to
"User", the subterm that actually discriminates between between the two method
names in this example, than to the subterms "Wait" and "For". Secondly, rules are
needed to do negative inference so that features that once seemed interesting can be
removed from the analogue when they prove to be uninteresting.

Browsers sometimes have actions that directly indicate that the user is not interested
in an item. For example, in the browsers for electronic news of [Lang,1995] and
[Sheth and Maes,1993] the user explicitly indicates if a news article is or is not of
interest. This is a form of relevance feedback [Harman,1992; Haines and Croft,1993].
In such cases, negative inference is as straightforward as positive inference.

In browsers, such as ours, that only have actions that a user applies to further explore
items of interest, negative inference must be based on the missing actions − actions
that could have been taken but were not. For example, the user could have applied the
"Mark" action to "WaitFor", but did not. The difficulty, of course, is that there are a
great many actions available to the user at any giv en moment of which only a few will
actually be executed. It is certainly not correct to make neg ative inferences from all
the missing actions.

What is needed to reliably make neg ative inferences is some indication that the user
consciously considered an action and rejected it. In the example, the fact that the user
opened "WaitFor" is a strong indication that he consciously considered its use in the
subsequent "Used By" operation. This is because with our browser the main reason to
open a method is so that it can be marked and used in conjunction with "Used By" or
"Implemented By". The fact that "WaitFor" was not used in the culminating operation
of this sequence is best explained by its being judged of no interest. To generalize
this example, negative inference can be reliably performed when there is a definite
culminating operation (in this case either "Used By" or "Implemented By") and a two
step process for selecting the item(s) to which the operator is to be applied.

Specifically, neg ative inference is triggered by the "Used By" or "Implemented By"
operations and is applied to the names of methods that are open but not marked. For
each word, W, in these names the assertion

NOT_INTERESTED_IN(method subterm: W)
is added permanently to the analogue. This assertion is categorical (its certainty
factor is 1.0); it overrides any previous or subsequent positive inference about the
subterm W. In the above example, negative inference would produce



NOT_INTERESTED_IN (method subterm: Wait)
NOT_INTERESTED_IN (method subterm: For)

Only the positive assertions in the analogue are converted into the template. Class
and method names are matched as before. A method subterm in the template is
considered to match a class if the subterm appears in any of the class’s own method
names.

5 Experimental Method

The library and code for the browser in which our first learning apprentice was
embedded are proprietary and no longer available. It was therefore necessary to re-
implement the system and apply it to some other library. The browser is faithfully re-
implemented, but several details of the learning apprentice and Rover (see below)
differ in the re-implementation. The re-implemented version of the original learning
apprentice is called Version1 below. Version2 is Version1 with analogue-subterms
and negative inference added.

The advantage of negative inference is measured by comparing the performance of
Version1 to Version2. In particular, we compare how the two learning apprentices
rank the target as search proceeds. The higher the target is ranked, or, alternatively,
the sooner it becomes highly ranked, the better the learning apprentice (the perfect
apprentice would immediately assign the target a rank of 1). The rank assigned to the
target by the learning apprentices is also compared to rank of the target in the user’s
most recently created class list. This comparison indicates if the learning apprentice
is "ahead of" or "behind" the user.

[Drummond et al.,1995] reports the results of a small scale study with human users.
But its main experiment employed an automated user, i.e., a computer program that
played the role of the user. This enables large-scale experiments to be carried out
quickly and also guarantees that experiments are repeatable and perfectly controlled.
The experiment below is the same in its design. A similar experimental method is
used in [Haines and Croft,1993] to compare relevance feedback systems.

We do not claim to have created a simulated user that perfectly mimics the rich
behavioural patterns of a human user. Our aim in creating automated users for
browsing has been to try to capture some of the more prominent general behavioural
trends that a human might be expected to follow.

Our automated user, Rover, consists of two parts: a "fuzzy oracle" that represents the
search goal, and a heuristic search strategy that consults the oracle and selects
browsing actions. The fuzzy oracle contains a target class selected by the
experimenter from amongst the classes in the library. The oracle gives YES/NO
answers to questions about whether a given library item matches the target class in
certain ways. The oracle is "fuzzy" because its answers are not always correct; it
returns the incorrect answer with a certain probability. This noisiness represents the



user’s uncertainty in evaluating the degree of match between a library item and his
requirements.

The heuristic search strategy combines depth-first search and hill-climbing. The first

ten classes1 in the most recent class list are scanned in order until a class is found
whose name, according to the oracle, is similar to the target’s. If no such class is
found the strategy backtracks to the previous class list. If a class with a similar name
is found, "Defined Methods" is applied to it. Methods in the resulting list are opened
at random. Those that the oracle says have names similar to the target’s methods are
marked (by the "Mark" operation). When several methods have been marked the
oracle is asked if this set of marked methods is collectively more similar to the target’s
methods than the best previous collection of marked methods. If the answer is YES,
"Implemented By" is applied creating a new class list. Otherwise the strategy
abandons this class and continues scanning the most recent class list.

For present purposes, a very important aspect of this strategy is that its search is
almost exclusively based on the "Implemented By" operation, an operation that
triggers negative inference. Therefore the effect of negative inference on the learning
apprentice’s ability to infer the target will be most evident with a search strategy of
this kind. It must be said, however, that this strategy was not devised especially for
this experiment. It is our standard strategy, the same as was used in [Drummond et
al.,1995]. Furthermore, human users often heavily rely on the method-based
operators. One of the human users in the experiment in [Drummond et al.,1995]
exclusively used "Used By" (which is the same as "Implemented By" for the purpose
of negative inference); another almost exclusively used "Implemented By", only
occasionally adding a Subclass or Superclass operation.

The library used in the experiment is the Smalltalk code library, which contains 389
classes. Four of these classes have no defined methods; these are excluded from the
study. Each of the remaining classes was used as the search target in a separate run of
the experiment. Rover continues searching until it finds the target or 70 steps have
been taken. A "step" in the search is the creation of a new class list by the operation
"Implemented By". Rover’s complete set of actions is recorded as is the rank of the
target in Rover’s most recent class list at each step. The resulting trace of Rover’s
search is then fed into each learning apprentice (Version1 and Version2) separately to
determine the target’s rank in the suggestion box at each step and the step at which the
learning apprentice successfully identifies the target.

The learning apprentice is considered to have identified the target when its rank in the
suggestion box is 10 or better for five consecutive steps. This definition precludes the
learning apprentice from succeeding if Rover finds the target in fewer than 5 steps;
this happens on 69 runs.

1 the initial class list is scanned from first to last



6 Experimental Results and Discussion

The simplest summary of the experimental results is given in Table 2. Each run that is
between 5 and 70 steps in length is categorized as a win (for the learning apprentice),
a loss, or a draw, depending on whether the learning apprentice identified the target
before Rover found it, did not identify the target at all, or identified it at the same time
Rover found it. The row for Version1 indicates that 299 runs were between 5 and 70
steps in length and that of these, 70 (23.4%) were wins for Version1. This figure is
considerably lower than the 40% win rate that the original learning apprentice
obtained. The difference may in part be due to small differences in the re-
implementation of the learning apprentice or Rover, but are probably mainly due to
differences in the library. The Smalltalk library is, it seems, more difficult for the
learning apprentice than the Objective-C library used in our original experiments.

Version2 performs very well, identifying the target before it is found by Rover over
half the time. The addition of negative inference has more than doubled the number
of wins. There are also 7 runs that required more than 70 steps by Rover and
Version1 but which required fewer than 70 steps with Version2.

Table 3 is a direct comparison of the learning apprentices to each other. The first row
summarizes the runs in which Version1 identified the target before Version2 did. This
happened only 11 times, and on these targets Version1 was only 1.6 steps ahead of
Version2. The second row summarizes the runs in which Version2 identified the
target before Version1. This happened 120 times (almost 1/3 of the runs), and the
reduction in search time on these runs was very considerable, 11.0 steps. This shows
that negative inference is rarely detrimental, and never a significant impediment, and

Table 2. Wins-Losses-Draws

Wins Losses Draws Total

70 207 22
(23.4%) (69.2%) (7.4%)

Version1 299

161 110 35
(52.6%) (36.0%) (11.4%)

Version2 306

Table 3. Av erage Search Length when Version1 and Version2 differ.

Av erage Search Length Number of
Version1 Version2 Difference Targets

Version1 finishes first 9.9 11.5 1.6 11
Version2 finishes first 23.6 12.6 11.0 120



that it frequently almost doubles the speed with which the learning apprentice
identifies the target.

The preceding analyses address the question "how quickly is the target identified ?"
but giv e no indication of how the target’s rank evolved as the search progressed. If the
user is to benefit from a learning apprentice in practice, it must be true that throughout
the search the apprentice’s rank for the target class is consistently significantly better
than the user’s own rank for the target. In other words, for the suggestion box to be
useful the target’s position in the suggestion box must be better (nearer the top) than
its position in the user’s own class lists.

Figure 1 plots the average rank of the target on each step. The average for step N is
computed only for the targets that are still active at step N. For Rover "rank" refers to
the position of the target in the user’s most recent class list. For Version1 and
Version2 it refers to the target’s position in the suggestion box. The best rank is 1; the
higher the average rank, the worse the system. From this perspective, Version1 is
much better than Rover. Except for the first 5-10 steps of a search, the target is 10-20
positions higher in Version1’s suggestion box than it is in Rover’s most recent class
list. This result is qualitatively identical to the corresponding result with the original
learning apprentice (Figure 11 in [Drummond et al.,1995]).

Figure 1. Av erage Rank of the Target at each step

20

30

40

50

60

70

80

90

100

110

120

130

0 10 20 30 40 50 60 70

A
ve

ra
ge

 R
an

k 
of

 th
e 

T
ar

ge
t

Step Number

"Rover"
"Version1"
"Version2"



Version2 dramatically outperforms Version1. After just one step it ranks the target 20
positions higher than Rover and Version 1; after 3 steps this difference has increased
to 30. The figure also shows that the target is almost always (on average) among the
first 40 in the suggestion box. In a sense the user’s search space has been reduced by
90%, from a library of almost 400 classes to a list of 40.

7 Related Work

The work presented in this paper is most closely related to research on "active
assistants". An active assistant is a background process that monitors the user’s
actions and, in certain circumstances, interrupts the user and offers unsolicited advice.
We categorize active assistants based on the nature of their internal inference
mechanism.

"Daemons" are preprogrammed to recognize particular patterns of user behaviour,
and, when a particular pattern of behaviour is detected, to issue the corresponding
preprogrammed response. For example, the critics [Silverman and Mazher,1992] in
Fischer’s design environment [Fischer et al.,1990] are daemons: each critic recognizes
certain types of flaws in the user’s current design (e.g. violations of design
constraints) and draws these to the user’s attention (possibly also suggesting
corrections). Finin’s active help system [Finin,1983] is similar, consisting of a
collection of rules each of which defines a particular situation (specified by a
(generalized) sequence of actions) and the advice/help to give should that situation
arise. Likewise, plan recognition systems are daemons because they simply match the
user’s action sequence against a given library of plans [McCalla et al., 1992; Cohen
and Spencer, 1993; Hook et al., 1993] or "parse" the user’s actions with a given set of
plan schemas [Goodman and Litman,1990]. Most ‘‘programming by demonstration"
systems that do inference employ daemons. For example, [Bos, 1992; Cypher, 1991;
Witten and Mo, 1993] all use a preprogrammed notion of "similar action" to detect
repeated sequences of actions.

"Learning agents" do not have a preprogrammed set of situation−action rules. Instead
they learn from the user’s actions when to interrupt the user and/or what advice to
give. For example, [Sheth and Maes, 1993] describes a "personalized information
filtering" agent, which assists a user by suggesting USENET news articles that might
be of interest. The user directly states his actual interest in the articles and this
feedback drives a form of artificial evolution that improves the agent’s performance.
Other news filtering agents [Jennings and Higuchi, 1993; Lang,1995] are similar but
uses different techniques for learning. Unlike classical relevance feedback systems,
which "adapt" to the user’s immediate concerns, these systems learn a user model
over an extended period.

Learning agents have also been developed to assist a user in filling in a form [Dent et
al., 1992; Hermens and Schlimmer, 1993; Maes and Kozierok, 1993]. As the user fills
in the various fields of the form, the agent suggests how the remaining fields should
be completed. If the agent’s predictions are correct, the number of keystrokes needed



to complete the form will have been reduced, thereby speeding up the process. Each
completed form is added to the set of "training examples" on which the learning
agent’s subsequent predictions will be based.

An important feature of all these learning agents, and of relevance feedback systems,
is that they receive immediate feedback from the user directly indicating the
correctness of their predictions. In the news reading and relevance feedback
applications, the user indicates immediately whether the articles retrieved are or are
not relevant. In the form-filling applications the correct entry for a field is
immediately provided. This is crucial to the operation of these systems because this
feedback provides new, highly informative training data that can be used to improve
the agent’s subsequent predictions.

By contrast, in our browsing task the correctness of the apprentice’s predictions
cannot be determined until the search has ended. Only then does the user know the
library item that satisfies his requirements. If our learning apprentice’s purpose was
to learn in the long-term, feedback about its predictions after the search had ended
would be useful. But its purpose is to speedup the search: feedback after the search
has ended is of no use.

Our learning apprentice does get some feedback during search, but it is much lower
quality than the feedback available to the above learning agents. It is "noisy" and only
indirectly related to the correctness of the apprentice’s predictions. It is noisy because
the user is searching somewhat blindly. To some degree, the user will pursue
deadends and circuitous routes, thus giving misleading feedback about which
directions are "most promising". There are two reasons why the feedback is not
directly related to the correctness of the apprentice’s predictions. The first is simply
that the user might choose to completely disregard the apprentice’s suggestions. This
would happen, for example, if the user is in the midst of pursuing his own search
strategy. We expect the user to consult the suggestion box only occasionally, when he
feels the need for assistance. A more subtle reason is that, unlike the learning agents
described above, a learning apprentice for browsing is not attempting to predict or
suggest the next action (or sequence of actions). It is trying to predict the final
stopping point of the user’s search, and this is only remotely related to the user’s
judgement about which action is leading in the most promising direction.

8 Conclusions

This paper has presented rules for negative inference (i.e. inferring features that the
user is not interested in). When added to (a re-implementation of) our original
learning apprentice [Drummond et al., 1995] these produce a dramatic improvement
in the system’s performance. The new system is more than twice as effective at
identifying the user’s search goal than the original, and it ranks the target much more
accurately at all stages of search.



Acknowledgements

This research was supported in part by an operating grant from the Natural Sciences
and Engineering Research Council of Canada. We wish to thank Chris Drummond,
the developer of the first learning apprentice, for his assistance and advice.

References

Bos, E. (1992), "Some Virtues and Limitations Of Action Inferring Interfaces", 5th
Annual Symposium on User Interface Software and Technology.

Cohen, R., and B. Spencer (1993), "Specifying and Updating Plan Libraries for Plan
Recognition Tasks", Proceedings of the Conference on Artificial Intelligence
Applications (CAIA’93), pp. 27-33.

Cypher, A. (1991),"EAGER: Programming Repetitive Tasks by Example",
SIGCHI’91, pp. 33-39.

Dent, L., J. Boticario, J. McDermott, T.M. Mitchell and D. Zabowski (1992), "A
Personal Learning Apprentice", Proceedings of the 10th National Conference on
Artificial Intelligence (AAAI’92), pp. 96-102.

Drummond, C., D. Ionescu and R.C. Holte (1995), "A Learning Agent that Assists the
Browsing of Software Libraries", technical report TR-95-12, Computer Science Dept.,
University of Ottawa.

Finin, T.W. (1983), "Providing Help and Advice in Task Oriented Systems",
IJCAI’83, pp. 176-178.

Fischer, G., A. C. Lemke, T. Mastaglio, and A. I. Morch (1990), "Using Critics to
Empower users", Proceedings of CHI-90 ("Empowering People"), pp. 337-347.

Goodman, B.A. and Diane J. Litman (1990), "Plan Recognition for Intelligent
Interfaces", CAIA’90, pp. 297-303.

Haines, D., and W.B. Croft (1993), "Relevance Feedback and Inference Networks",
Proceedings of the 16th International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 2-11.

Harman, D. (1992), "Relevance Feedback Revisited", Proc. 15th International
Conference on Research and Development in Information Retrieval (SIGIR’92),
pp. 1-10.

Hermens, L.A., and J.C. Schlimmer (1993), "A machine-learning apprentice for the
completion of repetitive forms", Proc. 9th Conference on Artificial Intelligence for
Applications, pp. 164-170.

Hook, K., J. Karlgren, and A. Woern (1993), "Inferring Complex Plans", Intelligent
User Interfaces, pp. 231-234.

Jennings, A., and H. Higuchi (1993), "A User Model Neural Network for a Personal
News Service", User Modeling and User-Adapted Interaction, vol. 3, pp. 1-25.

Lang, Ken (1995), "NewsWeeder: Learning to Filter Netnews", Proceedings of the
12th International Conference on Machine Learning, Morgan Kaufmann,
pp. 331-339.



Maes, P., and R. Kozierok (1993), "Learning Interface Agents", AAAI’93,
pp. 459-465.

McCalla, G., J. Greer, and R. Coulman (1992), "Enhancing the Robustness of Model-
Based Recognition", Proceedings of 3rd International Workshop on User Modelling,
pp. 240-248.

Mitchell, T.M., S. Mahadevan and L. Steinberg (1985), "LEAP: A Learning
Apprentice for VLSI Design", IJCAI’85, pp. 573-580.

Schlimmer, J.C. and L.A. Hermens, (1993), "Software Agents: Completing Patterns
and Constructing User Interfaces", Journal of Artificial Intelligence Research, vol. 1,
pp. 61-89.

Sheth, B. and P. Maes (1993), "Evolving Agents For Personalized Information
Filtering", CAIA’93, pp. 345-352.

Silverman, B.G. and T.M. Mazher (1992), "Expert Critics in Engineering Design:
Lessons Learned and Research Needs", AI Magazine, vol. 13, no. 1, pp. 45-62.

Witten, I.H. and Dan Mo (1993), "TELS: Learning Text Editing Tasks from
Examples", Watch What I Do, Allen Cypher (ed.), MIT Press, pp. 183-204.


