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states, from which the goal state is reachable in the abstract space but for which there
is no corresponding state in the original space from which the goal state can be reached.
Spurious states can be harmful, in practice, because they can create artificial shortcuts in

Keywords: the abstract space that slow down planning and search, and they can greatly increase the
Abstraction memory needed to store heuristic information derived from the abstract space (e.g., pattern
Heuristic search databases).

Planning This paper analyzes the computational complexity of creating abstractions that do not

contain spurious states. We define a property—the downward path preserving property
(DPP)—that formally captures the notion that an abstraction does not result in spurious
states. We then analyze the computational complexity of (i) testing the downward path
preserving property for a given state space and abstraction and of (ii) determining whether
this property is achievable at all for a given state space. The strong hardness results
shown carry over to typical description languages for planning problems, including sas™
and propositional sTRIPS. On the positive side, we identify and illustrate formal conditions
under which finding downward path preserving abstractions is provably tractable.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Abstraction is a technique for speeding up planning and search that has been successfully applied in various domains.
The idea is to build an “abstract” version of a given state space that contains many fewer states so that planning or search
in the abstract space is very rapid. This can be exploited in two ways: (i) by constructing a plan connecting two states in
the original space by refining an abstract plan connecting the corresponding abstract states [21,20,29], or (ii) by defining a
heuristic function to guide planning and search by using actual distances in the abstract space as estimates of distances in
the original space [27,28,25,15,7].

A potential problem with abstraction is that it can introduce what we call “spurious states”. Given a goal state g in the
original state space, a spurious state is an abstract state that has a path to the abstraction of g but is not the abstract image
of any original state having a path to g. Spurious states cause several difficulties. First, an abstract plan containing spurious
states will, by definition, be unrefinable, and if the length of the abstract plan is being used as a heuristic it will often be
overly optimistic because of shortcuts created in the abstract space by spurious states. Unrefinable abstract plans and low
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Fig. 1. (a) Original state space and (b) abstract space with spurious state v (s1).

heuristic values can drastically slow down planning and search. Secondly, if abstract distances are being stored in memory,
as is done with pattern databases (PDBs), introduced by Culberson and Schaeffer [8,9], spurious states will increase the
memory requirements and PDB construction time, sometimes dramatically.

The following example of four states sq, ..., S4 illustrates how spurious states can arise. Assume, as shown in Fig. 1(a),
that sy is reachable from s; and s4 is reachable from s3 but neither s3 nor s4 is reachable from either s; or s;. If an
abstraction v identifies s, and s3 with each other, but maps s; and s4 to two separate abstract states, then the abstract
state ¥ (sy) is spurious with respect to the goal state s4. As shown in Fig. 1(b), ¥(s4) is reachable from v (s1) but ¢ (s1) has
no pre-image in the original space from which s4 can be reached.

The occurrence of such states is known to the heuristic search and planning community, and reported for instance by
Holte and Hernadvolgyi [19] and by Haslum et al. [14]. Techniques like constrained abstraction, as proposed in a different
paper by Haslum et al. [13], can sometimes reduce the number of spurious states. However, there are no practical methods
known so far to avoid spurious states completely; neither is there any formal research on the complexity of the problem of
avoiding them.

This paper formally analyzes the problem of avoiding spurious states in abstraction. To this end we first introduce a com-
mon language for representing planning and search domains. In this formal framework we then introduce the “downward
path preserving” (DPP) property to refer to state space abstractions that do not contain any spurious states.

In principle, an abstraction can be any kind of mapping of the original state space to a smaller state space, as long as it
does not remove edges between states.2 However, this paper addresses two specific types of abstraction: projection [10] and
domain abstraction [18]. In both cases, we assume that states in the original state space are represented as attribute-value
pairs over a fixed set of attributes (variables) that range over certain value sets. The two types of abstractions we consider
are defined informally as follows.

e When defining a projection, abstraction means to ignore some of the attributes (i.e., to ignore some of the components
of the vectors representing the states, and thus formally to project to a lower-dimensional space).

e When defining a domain abstraction, abstraction means to reduce the value sets of attributes by identifying certain
values with each other.

Intractability results. Our main contribution is a computational complexity analysis of two closely related problems, namely
(A) to determine whether or not a given abstraction has the DPP property, and (B) to determine whether or not a given
state space possesses a DPP abstraction at all.

Our complexity analyses show that both problems are, in general, hard to solve and that efficient general algorithms to
produce DPP abstractions are thus unlikely to exist.

Tractability results. The negative results on the computational complexity are mitigated by tractability results for special
cases—our second contribution. We identify simple formal conditions on state spaces that allow DPP abstractions to be
easily constructed.

Some problem domains turn out to be representable in a way that satisfies these conditions even though other natural
ways of representing them do not match the formal conditions of our theorems, and, in fact, do not allow for DPP abstrac-
tions at all. This is illustrated with a variant of the Blocks World planning problem. This shows that the way a problem
domain is encoded is crucial for the design of DPP abstractions. Given two equivalent encodings, one might immediately
yield DPP abstractions, whereas the other might prevent DPP abstractions. Our formal conditions allowing for a construction
of DPP abstractions can be seen as practical design guidelines for representing state spaces.

2. Motivating example

In this section we illustrate that spurious states are of practical concern—they can arise when standard abstraction
methods are applied to typical planning problems and are not entirely eliminated by standard “mutex” methods. In this
example, the problem domain is the Blocks World with table positions, a variation of the standard Blocks World domain in
which there are a fixed number of named (i.e., distinguishable) table positions, each of which can hold one stack of blocks.
There are four operators to move a block: (i) from on top of one block to on top of another, (ii) from on top of a block to
a specific position on the table, (iii) from a table position to on top of a block, and (iv) from one table position to another
table position. We consider the version of this domain with seven blocks and four table positions, which has 604,800 states
that are reachable from any given state.

2 Formal definitions of abstractions in general and specific types of abstractions will be given in Section 3.2.
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Table 1

Number of abstract states and average heuristic value for the abstraction described in the text. We show the
average heuristic value only for the 89,400 non-spurious abstract states (the abstractions of the reachable states
in the original state space).

Filtering method # Abstract states Average h
No filtering 1,310,720 710012
Automatic “mutex” filtering 90,941 7.10012
Handcrafted “mutex” filtering 90,000 716217
Complete filtering 89,400 7.21264

The standard sTrIPS encoding of this domain has predicates encoding what is on each of the four table positions P1
through P4, as well as what is on top of each of the blocks B1 through B7. A typical action is Move-B4-from-B5-to-B3,
which moves B4 from being on top of B5 to being on top of B3. It is represented as follows:

Preconditions: clear-Bd=true, clear-B3=true, on-B4-B5=true
Effects: on-B4-B3=true, clear-B5=true, on-B4-B5=false, clear-B3=false

Projection is the standard method for abstracting propositional sTriPs encodings. If, in this example, we project out the
predicates indicating what is on top of blocks B1 through B4, the 604,800 reachable states in the original state space get
mapped to just 89,400 abstract states, but they are intermingled with 1,221,320 spurious states, resulting in an abstract
space containing a total of 1,310,720 reachable abstract states—more than twice as many states as there are in the original
state space.

To illustrate how spurious states get created in this example, consider the abstract state « in which the following
predicates are true and all others are false:

clear-P1l, clear-P2, clear-P3, on-B7-P4, on-B6-B7, on-B5-B6, on-B4-B5

This abstract state is not spurious: any normal Blocks World state in which blocks B1 through B3 are sitting at the top of
the stack in position P4, in any order, would map to this state when the predicates indicating what is on top of blocks B1
through B4 are projected out. This projection also converts Move-B4-from-B5-to-B3 to the following abstract operator:

Preconditions: on-B4-B5=true
Effects: clear-B5=true, on-B4-B5=false

Although Move-B4-from-B5-to-B3 is not applicable to any normal Blocks World state that maps to «, this abstraction
of Move-B4-from-B5-to-B3 can be applied to «. Doing so produces the abstract state in which the following predicates
are true and all others are false:

clear-P1l, clear-P2, clear-P3, on-B7-P4, on-B6-B7, on-B5-B6, clear-B5

This abstract state does not correspond to any reachable state in the normal Blocks World since the blocks B1, B2, B3,
and B4 must be floating in the air (they can’t be on P1, P2, P3, or B5 (the top block in the stack at P4) because those are
all known to be clear).

Table 1 shows how the number of abstract states, and the average heuristic value of the 89,400 non-spurious abstract
states, are affected by various methods for reducing the number of spurious states. The first row gives the data when no
spurious states are filtered out, and the last row shows the data when all the spurious states are filtered out. Complete
elimination of spurious states reduces the number of abstract states by more than an order of magnitude and increases the
average heuristic value of the 89,400 non-spurious states from 7.10012 to 7.21264.

The second row of Table 1 shows the effects of a standard “mutex” method for detecting (and therefore eliminating)
spurious states [7]. This method works by automatically computing pairwise mutual exclusions, i.e., combinations of value
assignments to two of the state variables that cannot possibly occur in a state from which the goal state can be reached.
Note that in general there are no efficient methods known for finding all such mutual exclusions. The standard mutex
method eliminates the vast majority of the spurious states: only 1,541 spurious states remain after it is applied. Note,
however, that the average heuristic value of the 89,400 non-spurious abstract states has not changed at all—the spurious
states eliminated by the standard mutex method were not the ones creating shortcuts in the abstract space.

The third row of Table 1 shows that 941 of the remaining spurious states are eliminated by the use of additional mutex
filters that we handcrafted specially for this domain encoding. The heuristic value of the 89,400 non-spurious abstract
states is reduced, but is still slightly larger than the heuristic value when all spurious states are filtered out. This small
difference in the heuristic value has a significant effect on the speed of search. When all the spurious states are filtered out,
IDA* expands only 287,954 nodes (on average, over 100 randomly generated start states with an average solution length of
10.95), whereas with the spurious states remaining after the mutex methods were applied, it expands 319,325 nodes (see
Table 2).
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Table 2

Number of nodes expanded by IDA* with different filtering methods.
Filtering method Avg. nodes expanded
Automatic “mutex” filtering 361,861
Handcrafted “mutex” filtering 319,325
Complete filtering 287,954

This example demonstrates that the standard abstraction methods applied to typical problems can introduce a large
number of spurious states, and that even if standard automatic methods can eliminate most of the spurious states those
that remain can degrade search performance.

3. Formal model of downward path preserving state space abstractions

In this section we will formally define state spaces, abstractions, and the DPP property. We also describe a representation
language for planning and search problem domains, so that we will be able to formally analyze DPP and non-DPP projections
and domain abstractions.

The following notation will be used for this purpose.

If A is a finite set then |A| denotes the cardinality of A. The symbol ¢ denotes the empty set.

If A, B are any two sets and v : A — B a mapping then v/ (A) denotes the set {y/(a) |a e A} C B.

Let X, I' be finite alphabets, n € N, and ¢ : X" — I'". ¢ is called a string homomorphism if there is a mapping
Yo : X — I' such that ¥ (o1,...,0n) = (Yo(o1),...,¥o(0oy)) for all oq,...,0, € X. We can then identify  with . For
convenience, slightly abusing notation, we will use the same function symbol () for both the mapping from X" to I'" and
for the mapping from X to I'.

3.1. State space representation

Usually a state space represents a weighted directed graph, but since none of the issues discussed in this paper are
affected by edge weights we ignore them in our definitions.

Definition 1. A state space is a triple S = (X, n, IT) where X is a finite alphabet, n € N, and IT C X" x X", Every s€ X" is
called a state and every pair (s, s’) € IT is called an edge from state s to state s'.

Definition 2. Let S = (X, n, IT) be a state space, s,s’ € X" states. s’ is reachable from s (in S) if there is a sequence
T =(51,52,...,5z) € (Z™T such that sy =s, s, =5, and (s;, sjr1) € [T for all i € {1,...,z— 1}. Define

A(s,S) ={s" € Z"| s is reachable from s in S}.

Note that we assume that the set of all states in a state space S is always the full set of n-tuples over X. In contrast to
that it is also common to define a state space via a seed state s* € X" and all states reachable from that state (edges and
thus reachability might be defined in the form of operators). In such a definition, the set of states in S would only be one
connected component of X". For technical and practical reasons these different perspectives on state spaces do not play
a role in this paper and so for simplicity we always assume the set of states to be equal to X". It is also not uncommon
to have different alphabets for each component of a state instead of just one alphabet X for all n components. Again for
simplicity we choose only one alphabet ¥ without loss of generality of our results.

Our concern is with the complexity of certain decision problems on state spaces. Clearly, since the size of a problem
instance is a critical issue in complexity analysis, we need to distinguish between different more or less compact ways of
representing state spaces.

An explicit way to represent a state space would be to write down X, n, and the set IT of all edges explicitly. This is in
general not a compact representation and thus usually impractical. Except for cases in which explicit representation helps
us to underline some of our hardness results below, we instead follow the PSVN notation introduced by Hernadvélgyi and
Holte [17,18]; we call this an implicit representation of a state space. Here we define edges via parameterized operators, so
that one operator can represent a large set of edges.

For instance, consider X' = {a, b, ¢} and n = 4. Let x; and x, be variable symbols. The operator

(X1, ¢, x1,X2) — (b, X1, X2, X2)

means that every state s that has a ‘c’ in component 2, identical entries o in components 1 and 3, and any value ¢’ in
component 4 has an outgoing edge to the state that has a ‘b’ in component 1, ¢ in component 2, and ¢’ in components 3
and 4. For example, ({(a,c,a,a), (b,a,a,a)) and ({(b,c,b,a), (b,b,a,a)) are edges induced by this operator, whereas neither
({a,a,a,a), (b,a,a,a)) nor ({(a,c,a,a),(b,b,a,a)) are.
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Definition 3. let S = (X,n,IT) be a state space and X = {x; | i € N} a set of variables, X N ¥ = (. Any n-tuple
P={y1,...,¥n) € (X UX)" is called a state pattern.

Let p=(y1.....yn) and p’ = (y),...,y,) be state patterns. p — p’ is called an operator if, for all i € {1,...,n}, yj e X
or y; =y; for some je{1,...,n}. p is called the precondition of the operator, p’ is called the postcondition. A state
s={o01,...,0n) € X™ matches p if for all i € {1,...,n} the following conditions hold.

1. yi=ojory eX,

2. if y;=y; for some je{1,...,n} then 0; =0j.
An edge (s,s') (with s = (01,...,0n) € Z" and s’ = (07, ...,0,) € ¥") matches p — p’ if s matches p, s’ matches p’, and
foralli,je{1,...,n}

yi=yj = oj=o0j

(X,n, 0) is a representation for S if O is a set of operators such that (s,s’) € IT if and only if there is an 0o € O such
that (s, s’) matches o.

Some remarks on this representation are necessary:

1. Our implicit (PSVN) representation is expressive enough to model state spaces defined in propositional sTRIPS [11] or
sas™ [4] notation. In particular, any propositional STRIPS or sAs™ domain encoding or plan existence problem can be
transformed into a similar one in our notation in time and space polynomial in the size of the input.

2. Although it is not relevant for our analysis, we note that PSVN can be used to more compactly represent certain

state spaces than sas™ or propositional sTRIPs. For instance, in order to represent the PSVN operator (xq,...,X;) —
(X2,...,Xn,Xx1) in sAst, a separate operator for every possible combination of values of the n state variables would be
required.

3. Initial states and goal states are not part of our definition of state spaces. They come into play as soon as reachability
(ie., plan existence) problems and search or planning problems are considered. We consider the state space as an
environment in which new planning problems can be defined by choosing new start and goal states; this is the same
as the separation of problem domain definition and problem definition in PDDL, cf. [26].

3.2. State space abstractions

An abstraction of a state space S is a state space Sy with a mapping  from the states in S to the states in Sy. The
edges are considered to be induced by .

Definition 4. Let S = (X', n, IT) be a state space, I" € ¥, and m € N. Any mapping ¢ : X" — '™ induces a state space
Sy = (I',m, ITy) over I'™ where, for all t,t" € I'™ we have (t,t") € [Ty, if and only if there are states s,s’ € X" such that
P(s)=t, ¥(s)=t/,and (s,s) € I1. Sy is called an abstraction of S, ¥ is called an abstraction mapping.

Thus v is a graph homomorphism between the graphs (X", IT) and (I"™, ITy,), where without loss of generality and just
for simplicity we assume I C X'. Note that our definition precludes the abstract space containing edges that are not induced
by v (i.e., ITy is the minimal set of edges for which ¢ is a graph homomorphism between (X", IT) and (1“’",11,,)).3 All
the hardness results that we prove below for this special case also hold in the general case where ITy is only a subset of
the edges in the abstract state space.

We consider two types of abstraction.

Domain abstraction. Here m =n but I" is a proper subset of X. A domain abstraction® mapping is a surjective string
homomorphism v : X" — I'" with ¥ (y(0)) =¥ (o) for all o € X. The trivial case is || =1.

Projection. Here I' = X but m < n. A projection mapping i is defined via a subset M = {iy,...,in} C {1,...,n} of
cardinality m such that ¥ (o1, ..., 0n) = (0y;, ..., 0i,) forall o1, ..., 0, € X. The trivial case is M = 0.

Note that, if S= (X, n, IT) is a state space and v an abstraction mapping then

¥ (A, 8)) S A(Y(s), Sy)

holds for every s € S by definition. Interestingly, the opposite inclusion does not necessarily hold—and this is exactly what
causes the problems observed in Section 2. For any given original state s* (not necessarily the start state or goal state),

3 This coincides with a previously studied notion of homomorphism for abstraction mappings [16].
4 Here the term “domain” refers to the domain X of the variables used for state space encodings, while often we use the term “domain” to refer to the
general problem domain, e.g., the Blocks World domain with k blocks. It will always be clear from the context which of these two concepts is meant.
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[1000]  [ooo0]  [1010] -000 -000 010
[1001]  [2101] [1112] [-001] [101] [112]
(a) original state space (b) projection (M = {2, 3,4})
--00 - 00 .10

--01 --01 --12

(c) projection (M = {3, 4})

0000 0000 [1000] [oooo]  [1010]
0000 0002 [1001]  [o101]  [1110]
(e) domain abstraction (v (0) = ¥ (1)) (f) domain abstraction (v (0) = ¥ (2))

Fig. 2. A state space and abstractions. Projections (b) and (d) are not DPP, projection (c) is DPP. Domain abstraction (e) is not DPP, domain abstraction (f) is
DPP but it does not reduce the number of states in the connected component shown.

a spurious state is an abstract state that is reachable from the abstract image of s* but has no pre-image in the original
state space that is reachable from s*.

Definition 5. Let S = (X', n, IT) be a state space, I’ C X, and m € N. Let ¢ : ¥™ — '™ be an abstraction mapping and let
s*e X", te '™ tis called spurious with respect to s* if t € A(Y (s*), Sy) \ Y (A(s*, S)).

The role s* plays in this consideration would be the role of the start state when doing forward search; in this case one
would want to avoid spurious states reachable from i (s*) in the abstract space. When doing regression search backwards
from the goal state (e.g., to build a pattern database), one should think of S as being the transpose of the original state
space, i.e., the state space after inverting all edges, and of s* as being the goal state. In this case one would want to avoid
spurious states reachable from the abstract goal i (s*) in the transpose of the given state space. This is the perspective
taken in Sections 1 and 2.

It is important to distinguish between spurious states, as we have defined them here, and the “spurious” states that
are often generated during regression search [7]. The latter are defined as states that are reachable from the goal (in the
transpose of the state space) but from which the start state cannot be reached. A more apt name for them would be
“deadend” states. They have no intrinsic relation to spurious states, in our sense, since they are defined in terms of two
states within a single state space, whereas spurious states, in our sense, are defined in terms of one state (s*) and two states
spaces (the original and the abstract space). Throughout this paper we use the term “spurious” to refer only to spurious
states as we have defined them.

For any fixed start state s* (or goal state s* in the transpose of the state space), an abstraction i avoiding spurious states
would fulfill A(y(s*), Sy) € ¥ (A(s*,S)). Thinking in terms of a problem domain without fixing start or goal in advance,
this definition can be generalized to a criterion concerning all possible states s*. This motivates our definition of downward
path preserving abstractions.

Definition 6. Let S = (X, n, IT) be a state space and ¥ an abstraction mapping. i is called a downward path preserving
(DPP) abstraction of S if

V(A 8) =AY (), Sy)

for all s € ™. For any particular state s* € X the abstraction v is DPP for s* and S if ¥ (A(s*, S)) = A(Y (s*), Sy).

Fig. 2 illustrates the difference between DPP and non-DPP abstractions, both for the case of domain abstraction and for
the case of projection. Note that the initial state space chosen here consists of three components that are not connected to
each other (plus a large set of isolated states not shown)—this situation is possible given our definition of state space. The
dotted boxes in the abstractions indicate which of the original states are no longer distinguishable from certain other states
after abstraction.
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4. Computational complexity of finding DPP abstractions

In this section we formally analyze the complexity of the problem of generating DPP abstractions. This problem is ad-
dressed in several very general versions, which turn out to be intractable. Later, Section 5 discusses easily testable conditions
under which a given state space allows for very natural DPP abstractions, both for the case of projection and for the case
of domain abstraction. These conditions show that the concrete state space encoding matters for the design of DPP abstrac-
tions, an issue that is further discussed in Section 6.

There are three decision problems of immediate relevance for the automatic construction of DPP abstractions. Their
computational complexity is the topic of this section.

Throughout this section we assume that abstraction mappings can be computed in polynomial time, so that they are in
fact never the bottleneck when we obtain hardness results. Moreover, all results presented here transfer to sast notation
and propositional STRIPS notation.

We analyze the following decision problems.

REACHABLE. Given a state space S (in explicit or implicit representation) and two corresponding states s and s’, decide
whether or not s’ € A(s, S).

IS-DPP. Given a state space S (in explicit or implicit representation) and an abstraction mapping v (of type domain
abstraction or projection), decide whether or not v is a DPP abstraction of S.

EXIST-DPP. Given a type of abstraction (either domain abstraction or projection), a state space S over X" (in explicit
or implicit representation), a subset I" C ¥ and a number m (where either n = m (domain abstraction) or X = TI"
(projection)), decide whether or not there is a non-trivial DPP abstraction mapping v of S, of the given type, inducing a
state space Sy over I'™.

In what follows we give results on the computational complexity of these three decision problems. Proofs for all theorems
in this section are given in Appendix A.
The first result is just a review and mainly due to [4].

Theorem 1.

1. REACHABLE is PSPACE-complete for the case of implicit state space representation.
2. REACHABLE is in P for the case of explicit state space representation.
3. REACHABLE is in P for the case of either type of state space representation if the dimension n is fixed a priori.

The hardness result in the first statement of this theorem turns out to be very useful for the analysis of the IS-DPP
problem, due to the following reducibility result.

Theorem 2.

1. REACHABLE is polynomially reducible to IS-DPP for the case of domain abstraction.
2. REACHABLE is polynomially reducible to IS-DPP for the case of projection.

The preceding reducibility results are the main ingredients in the proofs of the following complexity properties of the
IS-DPP problem.

Corollary 3.

1. IS-DPP is PSPACE-complete for the case of implicit state space representation and either type of abstraction.

2. IS-DPPis in P for the case of explicit state space representation and either type of abstraction.

3. IS-DPP is in P for the case of either type of state space representation and either type of abstraction if the dimension n is fixed a
priori.

At this point one might ask why we consider explicit state space representation at all—it is not compact and it thus
yields trivial tractability results that are of no practical value—for both REACHABLE and IS-DPP.

The reason to nevertheless include explicit representation is in order to illustrate the hardness of EXIST-DPP. The next
theorem shows that even for explicit representation and for fixed state space dimension the existence of a DPP domain
abstraction can presumably not be decided in polynomial time, see Assertion 3.

Theorem 4.

1. EXIST-DPP is PSPACE-complete for the case of projection and implicit state space representation.

2. EXIST-DPPis in P for the case of projection and either type of state space representation if the dimension n is fixed a priori.

3. EXIST-DPP is NP-complete for the case of domain abstraction and either type of state space representation if the dimension n is
fixed withn > 2 a priori.
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The reader might be concerned that the hardness results here are due to the fact that we ask for general DPP abstractions
instead of just for abstractions that are DPP for a specific state s* and S in the sense of Definition 6. However, all hardness
results proven here hold even in the case that s* is part of the problem instance and we only ask for DPP abstractions with
respect to s* and S. We denote these variants of the decision problems by adding a subscript s*.

Corollary 5.

1. IS-DPPg+ is PSPACE-complete for the case of implicit state space representation and either type of abstraction.

2. EXIST-DPPs« is PSPACE-complete for the case of projection and implicit state space representation.

3. EXIST-DPPs+ is NP-complete for the case of domain abstraction and either type of state space representation if the dimension n is
fixed with n > 2 a priori.

5. Sufficient conditions for the existence of DPP abstractions

The preceding intractability results show that the general problem of avoiding abstractions with spurious states is hard,
but this does not preclude there being special circumstances in which the DPP property can be easily tested and perhaps
even guaranteed.

This section provides easily testable criteria that help us to design DPP projections and domain abstractions for given
state spaces (in case such abstractions exist at all), and gives examples of encodings of typical problem domains that meet
these easily testable criteria. By “encoding of a problem domain” we mean the choice of a state space (X, n, 1) for the
problem domain.

Later on, we give an example of a typical planning problem for which the usual encoding does not meet these criteria,
but which can be very naturally encoded in a way that our criteria become applicable and DPP abstractions can be defined
very easily.

The problem of finding an encoding of a problem domain, such that our easily testable criteria apply, is hard nevertheless.
But the criteria provided here can be used as design principles for state space encodings of problem domains.

For the ease of notation, we extend the definition of domain abstraction and projection mappings s to state patterns
as follows. Let X' be a finite alphabet, I" C ¥, X = {x; | i € N} a set of variables disjoint with X, n,m € N with m < n.
If :X"— I'" is a domain abstraction mapping, then we set v (x;) = x; for all i € N and define ¥ ((y1,...,¥n)) =
YW1),....¥ ). If ¢y : 2" — ¥™ is a projection mapping with ¥ ({(o1,...,04)) = (0y,,...,0i,), then we define
V(Y1 ¥n) = Viys - s Yi)- For t,t" € I'™, we define the meaning of “(t, t) matches ¥ ((y1, ..., yn)) = ¥ (¥, ..., yp)”
by analogy with Definition 3. Note that for projections ¥ ((y1,..., yn)) = ¥ ({¥],..., ¥y)) is not necessarily an operator in
the sense of Definition 3, because there might be an i € {i1, ..., in} for which yg is a variable but y; E{Yis - Vim )

We observe the following fact.

Lemma 6. Let S = (X, n, O) be a state space representation, vy any projection or domain abstraction mapping defined over X", and
t,t' ey (M. If (t,t') € ITy then thereis some 0 = (y1,..., Yn) = (¥}, ..., ¥n) € O such that (t,t') matches ¥ ((y1,..., yn)) =
VY- V)

Proof. Since (t,t") € ITy, and [Ty is minimal, there is some 0 = (y1,..., yn) = (¥]....,¥5) € O and some s = (071, ..., 0p),
s'=(01,...,0p) € " such that ¥ (s) =t, ¥(s') =t’, and (s,s’) matches o. ¥(s) =t and ¥ (s') =t’ implies that t matches
V¥ ((¥1,...,yn)) and t’ matches ¥ ((y]...., yp)). Since (s, s") matches o, we obtain [y;=y; =0/ =oj] foralli,je(1,...,n},
and therefore, in particular, (t,t") matches ¥ ((y1,....yn) = ¥ ((¥].....yp). O

This allows us to formally define a property that is sufficient for an abstraction to be DPP. Later on, we will show how
to use this property as a design principle for creating abstractions in the special cases of projection and domain abstraction.

Definition 7. Let S = (X, n, 0) be a state space representation, ¥ any projection or domain abstraction mapping defined
over X", and 0 = (y1,...,¥n) = (¥]...., ¥n) € 0. ¥ is precondition-preserving for o if ¥ ((y1,...,¥yn) = V¥, ..., ¥pn)
is an operator and for all s € X" and all t € ¥ (X™) the following condition holds.

If ¥(s) =t and t matches ¥ ({y1,..., ¥n)) then s matches (y1,..., ¥n).

¥ is precondition-preserving if ¥ is precondition-preserving for all o € O.

The abstraction in Section 2 is an example of an abstraction that is not precondition-preserving. When the preconditions
of Move-B4-from-B5-to-B3 are abstracted, they are matched by the abstract state o but there are states the abstraction
maps to o that do not satisfy the preconditions of Move-B4-from-B5-to-B3.

The following theorem states that preserving preconditions of operators is sufficient for creating DPP abstractions.
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Theorem 7. Let S = (X, n, O) be a state space representation and v a projection or domain abstraction mapping defined over X". If
W is precondition-preserving then v is DPP.

Proof. Let Sy = (I",m, ITy). According to Definition 6, we have to prove that

Y (A, 8)) = A (5). Sy)
holds for all s € X",
Since ¥ (A(s, S)) € A(¥(s), Sy) trivially holds for all s € X", we only need to show that A(¥(s), Sy) € ¥ (A(s, S)) for
all se X7,
This inclusion relation follows inductively from the next fact, which we are going to prove below.

Fact. For every state s € X™ and for every two abstract states t,t' € y(X™) with (s) = t, the following holds. If (t,t') € ITy, then
there is a state s’ € X" and an operator o € O such that

(i) ¥(s)=t,and
(ii) (s, s") matches o.

To prove this fact, let s = (01,...,04) € ™. Let t = (t1,...,Tn) € '™ with y(s) =t. Suppose t' = (t;,...,T,) € '™ is
an abstract state and (t,t') € ITy. By Lemma 6 there is some operator 0 = (y1,..., ¥n) = (¥,..., ¥n) € O such that (t,t")
matches ¥ ((y1,..., yn)) = ¥ (Y1, .., yp))-

Because i is precondition-preserving, together with the fact that t matches ¥ ({y1,..., yn)), we know that s matches
(y1,---,¥yn) and ¥ ((y1,...,¥yn)) = ¥ (¥}, ..., yy)) is an operator.
Since s matches the precondition (y1,...,ys) of o, there is a (unique) state s’ = (0},...,0,) € X" such that (s,s")

matches o. In particular, s" matches (y),...,y,) and [y;=y; = o/ =o;j] for all i, j € {1,...,n}. This implies that v (s")
matches ¥ ((y], ..., y;)). Note that " matches ¥ ((y], ..., y,)) as well.

Finally, we prove t' =y (s'). Let (z1, ..., Zm) = ¥ ((¥1,..., ¥n)) and (2}, ..., z)) =V (¥}, ..., yp). Let ¥ (s") = (&1, ..., &m)
and leti e {1,...,m}. If z; is a constant, because both t" and ¥ (s") match ¥ ((y], ..., yy)), it immediately follows that 7/ =&;

since both will be equal to z;. Now consider the case when z} is a variable. Because ¥ ((y1,...,¥n)) = ¥ ((¥}.....yp)) is
an operator, z; must occur in the pattern ¥ ({y1,...,yn)) = (z1,...,zm) and thus also in the pattern (y1,...,ys). Thus
there is a k € {1,...,n} such that z§ = ¥y and ¥ maps the component oj to ‘[{.5 Similarly, there is a ke {1,...,n} such
that z{ = ¥; and ¥ maps the component o}, to £.5 Since y, = z;= ¥; and s matches (y1,..., yn), we obtain o} = o} and
therefore 7/ = &;. Hence we see that 7/ =& whether z; is a constant or a variable. Since the choice of i was arbitrary, we
have t' = (s).

This proves the fact and thus the theorem. O

With these general definitions and results in place, it is now just a matter of working out what it means for each specific
type of abstraction to be precondition-preserving.

5.1. Projection

An example of a typical problem domain in which certain types of projections in typical encodings obviously yield DPP
abstractions is Rubik’s Cube [23]. In standard encodings of this problem domain either one of the following projections is
DPP.

e Ignore all variables that encode information about corner cubies.
e Ignore all variables that encode information about edge cubies.

The intuitive reason is that for every operator, even though it affects both corner cubies and edge cubies, the effects on
corner cubies only depend on the preconditions on corner cubies (and the effects of edge cubies only depend on precon-
ditions on edge cubies). Moreover, no operator checks for the exact values of variables—it is just a permutation of some
corner cubie variables and a permutation of some edge cubie variables.

Hence, if a projection ignores the whole set of corner cubies (or the whole set of edge cubies), it cannot cause spurious
states and thus has to be DPP.

In contrast, if one ignores only some of the variables encoding the corner cubies (or only some of the variables encoding
the edge cubies), there is a high risk of getting non-DPP abstractions.

Formally, this is an example of an easily testable general criterion that guarantees the existence of DPP projections, and,
more than that, even tells us how to achieve DPP projections.

5> This means ¥ (o}) = 7/ in the case of domain abstraction and oy = 7/ in the case of projection.
6 This means ¥ (o) =4 in the case of domain abstraction and o} =§; in the case of projection.
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Theorem 8. Let (X,n, 0) be a representation for a state space. Suppose there is an M C {1,...,n} such that, for all 0 =
(Y1,---» Yn) = (¥}, ..., yn) € O, the following three conditions are satisfied for all i, j € {1, ...,n}.

1 IfieMand y; ¢ X theny; € {yyx | ke M}.
2. Ify; € X thenie M.
3. Ifi#jand y; =y thenbothie M and j € M.

Then the projection defined by M is precondition-preserving and therefore DPP.

!

Proof. Let 0 = (y1,..., Yn) — (y],...,yg) €0 and s = (01,...,0,) € X". We have to prove that

LY (y1,....yn) = (Y], ..., yp)) is an operator.
2. If ¥(s) =t and t matches ¥ ({y1,..., yn)) then s matches (y1,..., ¥n).

The first property follows immediately from the first condition.

For the second property, assume that i (s) =t, t matches ¥ ({y1,..., yn)), but s does not match (y1,..., yn). Let M =
{i1,....im}. Then t = (0y,, ..., 0i,) and Y ((Y1,-.., ¥Yn)) = (Vi;»---. Vi,). Since s does not match (y1,..., yn), one of the
following two cases must occur.

Case (a). There is an i € {1,...,n} with y; € ¥ and o; # y;.
Case (b). There are i, j e {1,...,n} with i # j, y; =yj, and o; # 0j.

Assume Case (a) occurs. Since y; € X we have i € M by the second condition. o; # y; then implies that ¢ does not match
v (¥y1,-..-,¥Yn)), which is a contradiction.

So Case (b) occurs. Since i # j and y; = yj, both i and j belong to M (by the third condition). 0; # o then implies that
t does not match ¥ ({y1, ..., yn)). Again we obtain a contradiction.

Hence s matches (y1,..., yn), which proves the second property. 0O

For illustration, consider again Rubik’s Cube. Every variable in the standard state space encoding of this problem do-
main [23] encodes either a property of a corner cubie or a property of an edge cubie. Thus we have a disjoint partitioning
of our state components into two sets (one for corner cubie variables and one for edge cubie variables). Either one of these
sets can take the role of M in Theorem 8. Therefore we can project out either all corner cubie variables or all edge cubie
variables without violating the DPP property.

Note that a minor adaptation of the proof of Theorem 8 yields the following observation.

Corollary 9. Let (X, n, O) be a representation for a state space. Suppose thereisan M = {i1, ..., im} C {1, ..., n} such that, for each
0= (¥1,..., ¥Yn) = (¥}, ..., yn) € O, either (yi,, ..., yi,) = <y;1’ e, y;m) or the following three conditions are satisfied for all
i,je{l,...,n}.

1. Ifie Mand y; ¢ X theny; € {yx | k € M}.
2. Ify; € X thenie M.
3.Ifi#jand y; =y thenbothie Mand j € M.

Then the projection defined by M is DPP.

A situation in which Corollary 9 applies and Theorem 8 does not apply is a standard encoding of the Towers of Hanoi.
In this puzzle, one has d disks of strictly increasing size, which can be distributed and stacked onto p distinguishable pegs,
where the only condition is that no disk is placed on top of a smaller disk.

Assuming d =2 and p = 3, we can represent the puzzle with the state space (X,n, 0) with X ={1,2,3} and n = 2.
A state s = (a, b) indicates that the smaller disk is placed on peg a and the larger disk is placed on peg b, for a,b € X. The
set O would then contain the following operators.

(moving the smaller disk)

(
(1,x1) = (2,x1) (1,2) — (1, 3)
(1,x1) = (3,x1) (1,3) = (1,2)
(2,x1) = (1,x1) (2,1) = (2,3)
(2,x1) = (3,x1) (2,3) = (2,1)
(3,x1) = (1,x1) (3,1) = (3,2)
(3,x1) = (2,x1) (3,2) > (3, 1)
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1 412 B 1|2
3 715 3 4|5
B 6 | 8 6 718

Fig. 3. The 8-puzzle—scrambled state and typical goal state. B represents the blank.

Theorem 8 would not help to create DPP abstractions since the operators moving the larger disk contain constants in
every position, i.e., the second condition of Theorem 8 would require the constructed projection to keep both state variables.

However, if one projects out the second state variable, which represents the location of the larger disk, the operators
moving the larger disk all become identity operators, so they are harmless. For the operators moving the smaller disk the
original conditions of Theorem 8 still apply. Hence Corollary 9 says that ignoring the second state variable yields a DPP
projection.

5.2. Domain abstraction

A typical example in which the commonly used domain abstractions never violate the DPP property is the sliding-tile
puzzle, cf. [32].

This puzzle consists of n2 — 1 numbered tiles that can be moved in an n x n grid. Every state is characterized by the grid
positions of the tiles numbered 1,...,n?> — 1 and the remaining “blank” position, i.e., the only grid position that does not
contain a tile. Every operator moves a tile i adjacent to the blank position into the blank position, at the same time making
the previous position of tile i blank. See Fig. 3 for illustration of the case n =3, i.e, the 8-tile sliding-tile puzzle (8-puzzle
for short).

The commonly used domain abstractions here identify the names of some of the tiles. However, they always preserve
the information about the unique position of the blank. This is quite intuitive, since the blank obviously plays a special role.
It can swap positions with neighboring tiles. Since the names of the tiles are irrelevant for whether or not they can be
swapped with the blank, it seems very natural to define abstractions by ignoring the names of tiles while keeping track of
the unique blank position.

In contrast, it is not hard to see that abstractions which identify one or more of the actual tiles with the blank and thus
introduce several blank positions at the same time, in general are non-DPP.

To see how this example can be generalized to a criterion for DPP domain abstractions, let us look at how operators are
typically defined for this problem domain. For the 8-puzzle, for instance, one typically uses 9 variables. For each of the 9
puzzle positions, there is exactly one variable. Its value is B if the position is blank and its value is the name of the tile in
that position (ranging from 1 to 8) otherwise. Operators then always look as follows.

(X1,X2, B, X4, X5, X5, X7, X8, X9) —> (X1, X2, X6, X4, X5, B, X7, Xg, X9)

This operator says that the tile in the sixth position can be moved upward to the third position if the latter is blank—
independent of the name of the tile in the sixth position.

It is easy to see that for such a representation of the 8-puzzle (or any version of the sliding-tile puzzle in general), the
only constant value ever occurring in the preconditions of an operator is B. No operator is conditional on the name of any
tile and hence the names of tiles can be ignored without violating the DPP property.

Imagine that a version of the sliding-tile puzzle had only operators that are conditional on the position of the blank and
the position of the tile numbered 8. Then, by the same reasoning, still every domain abstraction that identifies some of the
names ranging from 1 to 7 with each other (but not with B or 8) would be DPP.

The following theorem generalizes these observations.

Theorem 10. Let (X', n, O) be a representation for a state space. Suppose there is a set Yo C X such that for all operators o =
(Y1,--s¥n) = (¥}, ..., yp) € 0 and alli, j € {1,...,n} the following two conditions are fulfilled.

1. If yj € X then y; € Xy.
2. Ifyi=yjandi# jthen y; € Xo.

Then every domain abstraction v with (o) = o forall o € Xy and ¥ (o) ¢ Xo forall 0 € X'\ Xy is precondition-preserving and
therefore DPP.

Proof. Let 0 = (y1,...,yn) = (¥},..., ¥y) € 0 and s = (01, ...,0y) € X". We have to prove that

L y((y1,...,¥n)) = v (¥}, ..., yp)) is an operator.
2. If ¥ (s) =t and t matches ¥ ({y1, ..., ¥n)) then s matches (y1,..., yn).

For the first property, we must show, for each i € {1,...,n}, that either ¥ (y)) € ¥(¥) or ¥(y}) = ¥ (y;) for some
jef{l,....n}. If y; € ¥ then y(y]) € ¥ (X). On the other hand, if y; ¢ ¥ then because o is an operator, y; = y; for some
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jef{l,....n}, and the required equality follows because domain abstractions map variables to themselves, i.e., ¥ (y}) = y;
and ¥ (yj) =yj.

For the second property, assume that v (s) =t, t matches ¥ ({y1,...,¥n)), but s does not match (yq,..., yn). Since
t=(Y(01),....,¥(on) and ¥y ((y1,...,¥n)) = (Y (Y1), ..., ¥ (yn)), we know that ¥ (y;) € X' implies ¥ (yi) = ¥ (i), where
ie{l,...,n}.

Since s does not match (y1,..., yn), one of the following two cases must occur.

Case (a). There is an i e{1,...,n} with y; € ¥ and o; # y;.
Case (b). There are i, j e {1,...,n} with i # j, y; =yj, and o; #0j.

Assume Case (a) occurs. Since y; € X we have y; € Xy by the first condition. Then ¥ (y;) = y; because of the choice
of . y;j € X also implies ¥ (y;) = ¥ (o) by our reasoning above. Hence v (0j) = y; € Xo. As ¥ (0j) € X9, the choice of
implies that o; € Xy and hence o; = v/ (0;) = y;, which is a contradiction.

So Case (b) occurs. Since i # j and y; = y;, our second condition requires y; € Xo and hence ¥ (y;) =¥ (y;) =yi =Y.
We know that ¥ (y;) = (0y) and ¥ (y;) = ¥ (o) and thus ¥ (0;) = ¥ (0;). By the same reasoning as in Case (a) we obtain
Y (0i) =0 and ¥ (o) =o0; and therefore o; = o}, which is a contradiction.

Hence s matches (y1,..., yn), which proves the second property. O

For the standard representation of the 8-puzzle, this theorem would apply to Xy = {B}. The theorem then says that
every domain abstraction that maps the set of tile names to a smaller set of tile names (i.e., identifies some tile names) and
maps the blank symbol to itself will be DPP.

Similarly to the projection case, a minor adaptation of the proof of Theorem 10 yields a slightly stronger statement.

Corollary 11. Let (X, n, O) be a representation for a state space. Suppose there is a set XYy € X and a domain abstraction v with
V(o) =o0 forallo € Xoand (o) ¢ Xg forallo € X'\ Xy such that, for each operator o = (y1, ..., yn) = (¥}, ..., yy) € O, either
VY1, Yn) =¥ (¥, ... yp)) or the following two conditions are satisfied for all i, j € {1,...,n}.

1. Ify; € X then y; € X.
2. Ifyi=yjandi# jthen y; € Xo.

Then v is DPP.

6. Encoding matters

As Theorems 8 and 10 show, certain properties of state spaces immediately allow for DPP abstractions. To be precise,
these properties concern not the problem domain as such but its encoding as a state space. That means that, for a single
planning or search domain, there might be two isomorphic state spaces describing the problem domain such that one of
them has DPP projections (or DPP domain abstractions) while the other does not.

A straightforward question is whether every planning or search domain can be encoded in a way that DPP abstractions
can easily be designed. Even if this is possible for a certain problem domain, it is far from trivial to find such encodings, in
particular to find them automatically. Nevertheless there is a rich history of research on automatic problem reformulation
that addresses this issue (for example [1,6,22,24,33]).

We now give an example of a planning domain, the Blocks World with table positions that was introduced in Section 2,
illustrating that, if one deviates from standard STRIPS encodings, quite intuitive encodings that match Theorem 10 can be
found. The lesson is that a careful design of problem domain encodings may make the design of DPP abstractions easier.

The standard sTrIPS encoding of the Blocks World with table positions does not match the provably sufficient conditions
allowing for DPP abstractions as given in Theorems 8 and 10, and, indeed, as was seen in Section 2, projections on this
encoding do introduce spurious states.’

However, using the intuitive knowledge that for none of the actions are the names of blocks essential (comparable to
the names of tiles in the sliding-tile puzzle), one can encode the Blocks World with table positions in a very natural way
such that Theorem 10 becomes applicable, i.e., DPP domain abstractions can be easily defined.

The encoding for k blocks and g table positions looks as follows.

S = (X, n, IT) where
e X ={by,...,b}U{0,1,...,k},
en=qk+1),

7 Domain abstraction of a sTRips-encoded state space is the same as projection since all variables are binary-valued, so there is no known tractable way
to automatically get DPP abstractions in this problem domain—at least for the standard encoding.
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e I1 is defined by a set O of operators (described below).

Intuitively, a state has q sections of k+ 1 variables each. The pth section represents the stack of blocks in table position p,
where zeroes in the right part of the section represent “no block” when the stack in position p is not of full height k. The
first variable in a section has a value in {0, 1,...,k} indicating the number of blocks stacked up in this table position. The
remaining k variables in this section all have values in {bq,..., by} U {0} representing the names of blocks in the order in
which they are stacked on table position p. For instance, if on table position p there are three blocks stacked, namely block
b, on the table, block b1 on top of by, and block b4 on top of b1, then the pth section of variables would be

3,b2,b1,b4,0,0,...,0

with a total of k — 3 zeroes.

The set O has a total of q(q — 1)k(k + 1)/2 operators. There are q(q — 1) pairs of different table positions, and for each
pair there is one operator for every pair of numbers (h;, hj) with 0 <h; <k, 0 <hj <k, and h; + h; <k, where h; is the
number of blocks stacked on position i and h; is the number of blocks stacked on position j; the operator moves the
topmost block on the (non-empty) stack in position i to the top of the (non-full) stack in position j.

For instance, for h; =3 and hj =1, O contains one of the following operators, depending on whether i < j or j <.

<h17xlla"'7X1ka"'737xilvxi2’xi3707"'707"'317Xj1507"'703"'7hQ7qua"'aqu)
S— —_—
section 1 section i section j section q
g (hlﬂxllv"'7X1k7"'72’Xi17xi2705"‘507"'72’Xj]7xi3707""09"'7hQ7xq17"'7qu>’
section 1 section i section j section q
(h‘l,x‘l],...,X‘lk,...,1,Xj1,0,...,O,...,3,Xi1,xi2,xi3,0,...,O,...,hq,Xq],...,qu)
N—— ———— —_—
section 1 section j section i section q
= (h1,x11, .. X1k -, 2,%1, %3, 0, ..., 0, ..., 2, %41, %i2,0, ..., 0, ..., g, Xq1, . .., Xqk)-
section 1 section j section i section q

Note that the size of the encoding is polynomial in the number of blocks and table positions.
Now obviously the names of blocks do not occur in the precondition of any operator; moreover, no variable occurs twice
in the precondition of any operator. Hence Theorem 10 is applicable where

20:{0,1,...,](}.

Consequently, every domain abstraction identifying the names of (some of) the blocks is DPP when this encoding is used.

It is important to note that a DPP abstraction does not guarantee that the heuristic produced by the abstraction is
superior to the heuristic produced by a non-DPP abstraction of a different state-space representation. However, a DPP
abstraction does guarantee that the heuristic values are not artificially reduced by shortcuts and, if pattern databases are
being used, it guarantees that no preprocessing time or memory is wasted in generating and storing spurious states.

7. Related work

In the heuristic search literature, the problem of violating the DPP property has been addressed by Holte and Hernad-
volgyi [19] using the term “non-surjectivity”. Holte and Hernadvélgyi analyze different structural properties of state spaces
and abstractions that are likely to cause violation of the DPP property. Haslum et al. [13] report the problem of heuristic
values being too small because of spurious states and experimentally show that enforcing “mutex” constraints some-
times substantially speeds up A*. Most recently Haslum et al. [14]—dealing with the problem of how to define “good”
abstractions—report that PDB heuristics often turn out to be overly optimistic due to violation of exactly what we call the
DPP property.

Thus, the literature on heuristic planning and search has recognized the importance of the problem of spurious states and
has also recognized that mutex methods can be used to partially solve it, but it has not given a general characterization nor
studied the complexity of detecting or avoiding the problem. This paper is to our knowledge the first one to systematically
study the occurrence and the consequences of non-DPP abstractions in general and to treat this problem from a complexity-
theoretic point of view.

However, a property closely related to DPP—the downward refinement property (DRP)—was developed in the literature
on refinement-style planning [2,3]. The concern in that work was to identify a property that ensures that solution paths
(ie., plans) in an abstract space are guaranteed to be “monotonically refinable” into a solution in the original state space.
DRP requires both a start state and a goal state to be given, not just one of the two, and has a narrower focus than DPP’s
concern about all reachable states—there can be states that violate DPP but are not on any solution path and therefore
irrelevant for DRP. In this regard, DRP is a less stringent requirement than DPP. But from the following point of view DRP is
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Fig. 4. A state space and abstraction that is DPP but not DRP.

more demanding than DPP and actually entails DPP. Any abstract state a that is on any solution path is obviously reachable
from the abstract start state. DPP requires there to exist a path from the start state to some state in the pre-image of a;
DRP requires this too, but also requires that this path have certain additional properties.

Fig. 4 shows a state space (the dark circles are its states) and an abstraction (dotted boxes) that is DPP but not DRP.
There is an abstract solution that uses one operator to go directly from the abstract start state a; to the abstract goal state.
However, in the original state space this operator, when applied to the actual start state, produces a state that is in abstract
state ap, not the abstract goal state. The refinement of the abstract plan is therefore not “monotonic” as DRP requires.

Just as we did for DPP in Section 5, some studies of DRP look for easily tested properties of a state space that guarantee
DRP. The original DRP paper [2] identified two. The first is “complete independence”, which looks to partition the operators
according to the variables they test or change. This condition would also guarantee that certain projections satisfy the DPP
property. However, it requires that the given operators can be classified into mutually completely independent sets, such
that every problem instance can be solved by sequentially solving (in arbitrary order) for the variables affected by operators
in one of these sets. Practical problems are not expected to fulfill this condition.

The second is called “necessary connectivity”. A variation on this criterion called the “safe abstraction criterion” is de-
scribed in [12], which also points out, as we have done in Section 5, that the exact details of how a state space is represented
can affect key properties of the abstractions that standard abstraction techniques produce. The verification of this criterion
in general is intractable, so in its full form it does not qualify as an easily testable property.

8. Conclusions

We addressed the problem of state space abstractions with “spurious states”—a problem that has been mentioned in the
planning and search literature but has so far never been analyzed systematically.
We studied the problem of avoiding spurious states on a formal level, our main contributions being as follows.

e We introduced a formal criterion, called the downward path-preserving (DPP) property, that defines abstractions that
do not give rise to spurious states.

e We showed that for both standard types of abstraction (projection and domain abstraction) it is in general hard to
decide whether a given abstraction of a state space is DPP, or whether a given state space possesses a DPP abstraction
at all.

e We provided formal criteria on state space encodings under which the definition of DPP abstractions is straightforward,
thus allowing for simple abstraction methods that are guaranteed not to produce any spurious states at all. We showed
that some standard heuristic search domains meet those criteria, and the resulting suggested abstractions are intuitive.

e We illustrated the effect that problem domain encodings can have on the ease with which DPP abstractions can be
defined. The Blocks World variant with table positions turned out to allow for straightforward and intuitive DPP ab-
stractions, under the condition that one deviates from the standard encodings of this domain.

Our positive results in Theorems 8 and 10 yield very promising criteria for the design of problem domain encodings, yet
they have strong limitations. It unlikely that every typical benchmark domain can be encoded in a way that our theorems
apply, and, even if we knew that a given state space could be re-encoded to match our sufficient conditions, how would
we obtain the appropriate encoding? This problem in general seems at least as hard as finding DPP abstractions using the
given encoding.

Nevertheless, our results show that, when trying to model a problem domain as a state space, for a particular planning
application, it is worth considering whether the state space can be encoded in a way that DPP abstractions can be obtained
easily, e.g., by meeting the sufficient conditions provided by our theorems.

While DPP abstractions do not in general guarantee better search performance than non-DPP abstractions, they have the
desirable property that the resulting heuristic values are not artificially reduced by shortcuts and, in the case of memory-
based heuristics, do not waste time or memory in generating and storing spurious states.
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Appendix A. Proofs of the results in Section 4
Theorem 1.

1. REACHABLE is PSPACE-complete for the case of implicit state space representation.
2. REACHABLE is in P for the case of explicit state space representation.
3. REACHABLE is in P for the case of either type of state space representation if the dimension n is fixed a priori.

Proof. (1) To prove the first assertion, note that reachability for sas™—a subproblem of ours—is already PSPACE-complete [4].
Since transforming sas™ problems into our notation requires only polynomial space (we omit the details), our REACHABLE
problem is PSPACE-hard. That REACHABLE is actually contained in PSPACE follows by simply adopting the analogous proof
for sas™ from [5].

(2) The second assertion is a trivial and well-known fact—reachability can be tested in time linear in the number of
edges.

(3) Assertion 3 finally follows from the fact that for fixed n the number of states in the state space is polynomial in the
size of the alphabet X, so an exhaustive check is tractable. O

Theorem 2.

1. REACHABLE is polynomially reducible to IS-DPP for the case of domain abstraction.
2. REACHABLE is polynomially reducible to IS-DPP for the case of projection.

Proof. (1) We consider implicit state space representation only; the explicit case works analogously.
A reduction mapping from REACHABLE instances to IS-DPP instances for domain abstraction is defined as follows.
Input. S=(¥,n,0),s=(s1,...,sn) € ", s’ =(s],...,sp) € T".

Output. (3, ) with the following properties.

«S= (¥ Ula,b},n+1, 0) where a and b are two distinct symbols not contained in X' and O contains all operators

) I r r
(0}, ..., 0p,a) > (0], ..., 0, q)
for (0’1,...,051) — (0},...,0p) € O and additionally the two operators
0°=($1,...,Sn,b) = (s1,...,sp,0),
0° =(s1,....5n,b) > (s}, ....s0.q).

e ¢/ is the mapping that maps both a and b to a and leaves all characters in X unchanged.

This is obviously a polynomial mapping from REACHABLE instances to IS-DPP instances.

It remains to show that it maps positive instances to positive instances and negative ones to negative ones; we do
that informally. For that purpose note that the subspace of states in S that have the value a only in their last variable
form a “copy” of the state space S. The only additional edges in S go (i) from (s1,..., S, b) to (s1,...,Sn,a) and (ii) from
(S1,...,5n,b) to (s},...,s;,a) (as given by 6° and o5 ). So mapping a and b to a yields a state space component in which
the only edges are “copies” of those in S—with just one exception—an edge from the “copy” of s to the “copy” of s'.

Positive instances of REACHABLE are mapped to positive instances of IS-DPP. If s" € A(s, S) this exceptional edge does not yield
any new pairs of reachable states, hence the abstraction y» of S has the DPP property.

Negative instances of REACHABLE are mapped to negative instances of IS-DPP. If s’ ¢ A(s, S) the exceptional edge introduces a
connection (path) from the “copy” of s to the “copy” of s’. Consequently, the state (s},...,s,,a)

e belongs to the set A(W((sl,...,sn,a>),3¢) of all states reachable from the abstract version of (si,...,sp,a) in the
abstract space Sy, but
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e does not belong to the set ¥ (A((s1,...,sn,a), S‘)) of all abstract images of states reachable from (s1,...,sp,a) in the
original space S.

Hence the abstraction i of S is not DPP for (s1,...,Sn,a), in the sense of Definition 6.

This completes the proof of Assertion 1.

(2) We consider implicit state space representation only; the explicit case works analogously.

The proof proceeds similarly to that of Assertion 1. The only difference is that now a and b are two different symbols
belonging to X' and the projection is defined to ignore the last one of n + 1 given variables.

Note here that REACHABLE is still PSPACE-hard when restricted to instances where the alphabet over which the state
space is defined has at least 2 symbols. The reduction mapping is then defined by the following input/output behavior.

Input. S=(¥,n,0),s=(s1,...,sn) € X", s’ =(s],...,s;) € ", where a and b are two distinct symbols contained in ¥.

Output. (S’, ) with the following properties.

«S= (X,n+1, (5) and O contains all operators

(oll,...,oil,a)—>(oq,...,oz,a)
for (o!,...,0L) — (o,...,0}) € O and additionally the two operators
6S:<5],~-,Sn’b>_)(5],”-,Sn’a>,
6S/=(s1,...,sn,b)—>(s’],...,s,’1,a).
e 1 is the projection defined via the subset M ={1,...,n} by ¥ (o1,...,0n41) =(01,...,0y) forall o1,...,0n41 € 2.

This is obviously a polynomial mapping from REACHABLE instances to IS-DPP instances.

It remains to show that it maps positive instances to positive instances and negative ones to negative ones. This is done
in the same way as for the domain abstraction case. Intuitively, projecting out the last variable here has the same effect as
identifying a with b in the domain abstraction above.

This completes the proof of Assertion 2. 0O

Corollary 3.

1. IS-DPP is PSPACE-complete for the case of implicit state space representation and either type of abstraction.

2. IS-DPPis in P for the case of explicit state space representation and either type of abstraction.

3. IS-DPP is in P for the case of either type of state space representation and either type of abstraction if the dimension n is fixed
a priori.

Proof. (1) PSPACE-hardness follows from Theorem 2 and Theorem 1.1. To see that IS-DPP is in PSPACE, it suffices to show
that the complement of IS-DPP is in NPSPACE, since NPSPACE = PSPACE and PSPACE is closed under complementation.

A non-deterministic Turing machine for the complement of IS-DPP works as follows, given a state space S in PSVN
notation and an abstraction mapping ¢ of type domain abstraction or of type projection.

1. The machine non-deterministically generates two states s* and s in S.

2. The machine tests with a polynomial space algorithm whether or not v (s) is reachable from  (s*). (Such an algorithm
exists, because potential witnessing paths (¥ (sp), ¥ (51),...,¥(Sz)) can be constructed stepwise in polynomial space
by always just memorizing the current path index j and the current state v (s;) on the path and non-deterministically
generating the next state v (sj1+1).) If ¥(s) is not reachable from 1 (s*) then the machine returns ‘no’ and stops. If ¥ (s)
is reachable from v (s*) then the machine goes to stage 3.

3. The machine uses a polynomial space algorithm in order to decide whether or not there is an s’ such that both ¥ (s') =
¥(s) and s’ is reachable from s*. (Such an algorithm exists by a straightforward application of by Theorem 1.1.) If such
an s’ exists then the machine returns ‘no’ and stops. If no such s’ exists then the machine returns ‘yes’ and stops.

Hence the machine returns ‘yes’ if and only if the states s and s* that it generates non-deterministically witness that
(i) ¥ (s) is reachable from v (s*) and (ii) no pre-image s’ of ¥ (s) under v is reachable from s*; in other words, they witness
that v is not DPP. Obviously, it requires only a polynomial amount of space.

(2) For each state that has an out-going edge (and is thus explicitly given) one can list all reachable states in both spaces
and thus compare ¥ (A(s, S)) to A(y(s), Sy) for every s € S, where S and  form the input instance.

(3) This follows from the fact that for fixed n the number of states in the original space is polynomial in the size of X
and the number of states in the abstract space is polynomial in the size of I (where X = I in case of projection). For each
of the polynomially many states one can exhaustively check the polynomially many reachable states in both spaces and thus
compare ¥ (A(s, S)) to A(Y(s), Sy) for every s € S, where S and  are the input instance. O

Theorem 4.

1. EXIST-DPP is PSPACE-complete for the case of projection and implicit state space representation.
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2. EXIST-DPPis in P for the case of projection and either type of state space representation if the dimension n is fixed a priori.
3. EXIST-DPP is NP-complete for the case of domain abstraction and either type of state space representation if the dimension n is
fixed withn > 2 a priori.

Proof of (1) and (2). (1) We first prove that EXIST-DPP for the case of projection and implicit state space representation is
in PSPACE. It suffices to show containment in NPSPACE. A non-deterministic Turing machine given a state space S simply
generates a projection mapping v (i.e., a subset of the given state variables) as a potential witness. It then passes both S
and i on to a polynomial space algorithm A for IS-DPP, which exists because of Corollary 3. The non-deterministic Turing
machine simply returns the answer that A returns. Obviously, this Turing machine non-deterministically decides EXIST-DPP
(for projection) using only a polynomial amount of space.

Next we prove PSPACE-hardness. Note that the proof of Theorem 2 actually shows that the problem IS-DPP-n of deciding,
given a state space (X, n, O), whether or not projecting out only the nth variable generates a DPP abstraction, is already
PSPACE-hard. We reduce IS-DPP-n in polynomial space to EXIST-DPP for the projection case as follows.

Input. S = (¥, n, 0).

Output. (S X U{a, b}, m), where m=n—1 and S= (X U{a,b},n, 0). Here a and b are two distinct symbols not contained
in X. O is a set of operators that contains O and additionally, for every j € {1, — 1}, a new operator

(0,...,0,a,0,...,0)—{(b,...,b)

where o € X is a fixed symbol and a appears in the jth position in the precondition. This is a positive problem instance of
EXIST-DPP if and only if there exists a DPP projection of S on an abstract space defined over m =n — 1 variables.

Note that (i) a never appears in the nth position in the precondition of any operator, and (ii) neither a nor b ever
appear in the postcondition of any operator in O. In particular, all operators in O with b in their postcondition must have
a occurring in their precondition.

It is not hard to prove that projections ignoring any of the first n — 1 variables will always be non-DPP with respect
to S. To see this, let s° =(07,...,0j-1,4,0j41,...,0q) for some je{1,...,n—1}, where all the o; are elements of X. Let
s*={(01,...,0j-1,0,0j41,...,0n) for some oj € X. If Y ignores the jth state variable then v (s*) = v (s°). Moreover, in
the abstract space defined by v, the state v ({b, b)) is reachable from v (s*), since (b,...,b) is reachable from s° and
¥ (s*) =¥ (s°). However, (b,...,b) is not reachable from s* in the original state space S, because all operators in 0 with b
in their postcondition must have a occurring in their precondition. Hence the abstract state ¥ ((b, ..., b)) is spurious for s*.

In particular, if there is a DPP projection of S that ignores just one variable then this one variable must be the nth
variable. . .

With this property and the construction of S we can show that S is a positive instance of IS-DPP-n iff (S,n—1) is a
positive instance of EXIST-DPP, which then immediately implies Theorem 4.1.

Positive instances of IS-DPP-n are mapped to positive instances of EXIST-DPP. Let S = (X', n, O) be a positive instance of IS-
DPP-n. Then projecting out only the nth variable in S results in a DPP abstraction. Since the additional operators introduced
in 0 all require the symbol a (which is not contained in X') in one of the first n —1 variables in the precondition, projecting
out only the nth variable in S = (¥ U{a, b}, n, 0) is also a DPP abstraction. Hence S = (¥ U{a, b},n, 0)isa positive instance
of EXIST-DPP.

Negative instances of IS-DPP-n are mapped to negative instances of EXIST-DPP. Let S = (¥, n, O) be a negative instance of
IS-DPP-n. Then projecting out only the nth variable in S results in a non-DPP abstraction. Obviously projecting out only the
nth variable in S then also causes a non-DPP abstraction. Moreover, by the remark above, every projection of S that i ignores
any of the first n — 1 variables must be non-DPP as well. Hence S= (X U{a, b}, n, O) has no DPP projection, i.e., it is a
negative instance of EXIST-DPP (in the case of projection).

(2) In general, if the states have n components, there are 2" — 2 possible sets of components that could be chosen for a
non-trivial projection. If n is fixed there is a constant number of possible non-trivial projections. For each of them, IS-DPP
can be tested in polynomial time in the size of X, I7, and v, cf. Corollary 3. O

In order to prove Theorem 4.3, we need some additional definitions and propositions. These concern decision problems
known to be NP-hard, as well as parts of the corresponding proofs, since we will need to exploit the constructions therein.
The following definition specifies two decision problems related to EXIST-DPP.

Definition 8 (Schaefer, 1978; Shimozono and Miyano, 1995).

1. The decision problem NOT-ALL-EQUAL-3SAT is defined as follows. Given a formula H in propositional logic, H in CNF,
such that each clause in H contains exactly 3 literals, decide whether or not there is an assignment p that satisfies H,
such that every clause in H contains at least one literal that is not satisfied by p.3

8 Note that for any positive instance of NOT-ALL-EQUAL-3SAT any witnessing assignment o satisfies at least one literal per clause in H and does not
satisfy at least one literal per clause in H.
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2. The decision problem SHI-MIY95 is defined as follows. Given two finite alphabets X', I with |X| > |I"|, given two sets
A1, Ay € X* with A1 N Ay =0, decide whether or not there is a homomorphism ¢ : ¥* — I'* with p(A1)N@(Ay) = 3.2

Remark. Furthermore notice in the definition of SHI-MIY95 that we can assume I C X for every two sets X and I" that
are part of an instance of SHI-MIY95, without changing the complexity of SHI-MIY95 or any other relevant properties of the
problem.

Schaefer [30] showed the following lemma.
Lemma A.1 (Schaefer, 1978). NOT-ALL-EQUAL-3SAT is NP-complete.

This was exploited by Shimozono and Miyano [31] to show that the problem SHI-MIY95 is NP-complete, too.
Lemma A.2 (Shimozono and Miyano, 1995). SHI-MIY95 is NP-complete.

The reduction used by Shimozono and Miyano to prove Lemma A.2 is essential for our proof of Theorem 4.3; hence we
give their proof here in some detail.

Proof of Lemma A.2. The proof is done by polynomial reduction from NOT-ALL-EQUAL-3SAT. This is sufficient because of
Lemma A.l.

The required reduction mapping instances of NOT-ALL-EQUAL-3SAT to SHI-MIY95 is defined as follows.

Input. A formula H in propositional logic, given as a CNF

H=ciA---AC

where, for i e {1,...,1},

¢i = (i1 Vi Vi)

is a clause of three literals ;1, li2, lj3 over the variables xq, ..., x;.
Output. (X, T, A1, Ay) with

S (e UR.FGI1<i<)
r ={0,1},

At ={eEe} U lxjix; | 1< 5 <) U llnlialis [ 1<i <),
Ay ={ttt,£££}.

This is obviously a polynomial mapping from NOT-ALL-EQUAL-3SAT instances to SHI-MIY95 instances. It remains to show
that it maps positive instances to positive instances and negative ones to negative ones.!?

Positive instances of NOT-ALL-EQUAL-3SAT are mapped to positive instances of SHI-MIY95. Let H be a positive instance of
NOT-ALL-EQUAL-3SAT. Let p = (p(x1),...,0(x;)) € {0,1}/ be an assignment of the variables x1,...,x,;, such that H is
satisfied by p with at least one satisfied and at least one unsatisfied literal per clause. Let ¢(t) =1, ¢(£) =0, and
pxj) =pKj), k) =1—pK;) for 1< j < . Now it is not hard to prove that ¢ is a homomorphism from X* to I'*
with (A1) Np(A2) =0.

Negative instances of NOT-ALL-EQUAL-3SAT are mapped to negative instances of SHI-MIY95. The details of this part of the proof
are omitted. O

The following variations of SHI-MIY95 will turn out to be useful for our proof of Theorem 4.3 (and for the proof of
Corollary 5.3). The details in which these differ from SHI-MIY95 are highlighted in bold.

Definition 9.

1. The decision problem ALPH-INDEX is defined as follows. Given two finite alphabets ¥, I" with |X| > |I"|, given n € N,
n > 2, given Ay, A2 C X" with A; N Ay =0, decide whether or not there is a surjective homomorphism ¢ : ¥* — "
with

p(A1)N@(A2) =0 or @(A1)=¢(Az).

9 This problem has a learning theoretic motivation. Imagine A; is a set of positive training data, A, a set of negative training data disjoint with Aj,
both represented over X'. Can you then “index” the letters in X using the smaller alphabet I" and still have disjoint training sets after rewriting all data
using I"?

10 We omit the details that are not relevant for our proof of Theorem 4.3.
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2. The decision problem ALPH-INDEX' is defined as follows. Given two finite alphabets X, I with |¥| > |I'|, ne N, n > 2,
given A1, A2 C X" with A1 N A, =@, decide whether or not there is a surjective homomorphism ¢ : ™ — ' with

(A N@E(A) =0 or @(Ar) S @(Aa).

Remark. Notice in the definition of both ALPH-INDEX and ALPH-INDEX’ that we can assume I" C X for every two sets X
and I" that are part of a problem instance, without changing the complexity of the problem or any other relevant properties
of the problem.

We use the proof of Lemma A.2 to show the following main lemma for the proof of Theorem 4.3 (and for the proof of
Corollary 5.3).

Lemma A.3.

1. ALPH-INDEX is NP-complete, even for fixed n > 2.
2. ALPH-INDEX' is NP-complete, even for fixed n > 2.

Proof. (1) Containment in NP is easily verified by observing that a mapping ¢ : ¥ — I can be generated non-
deterministically; it can then be checked in polynomial time whether ¢ is a solution for the given problem instance. It
remains to prove NP-hardness.

The essence of the NP-hardness proof is the observation (from the proof of Lemma A.2) that every problem instance
(X, T, Aq, Ay) of SHI-MIY95 that ever appears as the image of the reduction from NOT-ALL-EQUAL-3SAT fulfills the following
three properties:

(a) all strings in the sets A1 and A; always have the same length n (n = 3);
(b) if (X, I', A1, Ap) is a positive instance of SHI-MIY95 then every homomorphism ¢ witnessing this must be surjective;
(c) if ¢ : ¥* — I'* is a surjective function then ¢ (A1) # @(A3).

Based on this observation, we prove Assertion 1 by showing that

o If (X, T, A1, Ay) is a positive instance of SHI-MIY95 then we can assume without loss of generality that there is a
surjective homomorphism ¢ : X" — I'" with ¢(A1) N@(Az) =@ or (A1) = @(A2).

e If there is a surjective homomorphism ¢ : X" — I'" with ¢(A1) N@(Az) =0 or ¢(A1) = ¢(Az) then we can without
loss of generality assume that (X, I", A1, Ay) is a positive instance of SHI-MIY95.

This immediately implies Assertion 1 via the proof of Lemma A.2.

First, let (X, I, A1, A2) be a positive instance of SHI-MIY95. Then there is a homomorphism ¢ : ¥* — ' with ¢(A1) N
¢(Az) = @. By properties (a) and (b) above, we can assume without loss of generality that A1, Ay C X" for some fixed n > 2,
and that ¢ is surjective. Hence there is a surjective homomorphism ¢ : X" — I'" with ¢(A1) N@(A2) = @. In particular,
there is a surjective homomorphism ¢ : X" — I'" with @(A1) N@(A3) =% or @(A1) = @(A).1!

Second, let ¢ : X" — I'" be a surjective homomorphism with ¢ (A1) N@(A2) =0 or p(A1) = @(A3). @ is also a surjective
homomorphism mapping X* onto I"*. Property (c) then allows us to assume ¢ (A1) # ¢(Az), and hence ¢(A1) Np(A2) =0
by our premise. Thus (X, I', A1, Ay) is a positive instance of SHI-MIY95.

(2) Containment in NP is easily verified by observing that a mapping ¢ : ¥ — I" can be generated non-deterministically;
it can then be checked in polynomial time whether ¢ is a solution for the given problem instance. It remains to prove
NP-hardness.

Modifying ALPH-INDEX to ALPH-INDEX’, the problem remains NP-hard, since in the proof of Assertion 1 we can replace
property (c) of the constructed instances by

(c) if ¢ : ¥* — I'* is a surjective function then ¢ (A1) Z ¢(A2).
Hence, in the reduction given by Shimozono and Miyano (see the proof of Lemma A.2), a constructed instance (X, I'", A1, Ay)

is a positive instance of SHI-MIY95 iff there is a surjective homomorphism ¢ : X" — I'" with @ (A1) N@(Az) =@ or p(Aq) C
@(A2). Assertion (2) follows. O

This now prepares us for the proof of Theorem 4.3.

1 Note that the or-clause here is a part of the statement that will never be fulfilled, due to property (c). Hence it does not do any harm to add it. For the
proof of Theorem 4.3 though it is essential that this clause is contained in the definition of ALPH-INDEX.
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Proof of Theorem 4.3. Containment in NP is verified by observing that a mapping ¥ (as a potential witness) can be con-
structed non-deterministically; then, according to Corollary 3.3, it can be checked in polynomial time whether  is a DPP
abstraction. It remains to prove NP-hardness.

We prove this by showing that ALPH-INDEX (for fixed n > 2) is polynomially reducible to EXIST-DPP (with the same
value of n) for the case of either type of state space representation and domain abstraction.

The reduction is straightforward. The desired polynomial-time reduction function is defined to have the following in-
put/output behavior.

Input. Two finite alphabets X, I' with |X| > |I'|, ne€ N, n > 2, and two sets A, Ay € X" with A{N Ay =0, A =
{sg,...,s;'q} for i e {1,2}.

Again we may assume without loss of generality that I" C X.

Output. S = (X,n, IT) and I', where IT is represented explicitly by

1= ({5}, DY U {(shsh) [ 1< < ki) UL ) UL ) [1< < o).

Here the states are represented by strings of fixed length n; the value of a state variable is just a single character. Note
that in S, every state corresponding to a string in Aq is reachable from any other state corresponding to a string in A; but
not from any state corresponding to a string in A;. The same holds with A; and A, swapped.

It is not hard to verify that the input is a positive instance of ALPH-INDEX iff the output is a positive instance of EXIST-
DPP for domain abstraction:

First, assume the input is a positive instance of ALPH-INDEX. Then there is a surjective homomorphism ¢ : X" — I'"
with @(A1) N@(A) =0 or (A1) = ¢(Az). Use ¢ as a domain abstraction on the output instance S. If @ (A1) N@(A2) =0
then the abstraction induced by ¢ identifies states corresponding to strings in A1 only with states corresponding to strings
in A1 (and analogously for A;). Therefore no spurious states are introduced by the abstraction. If ¢ (A1) = ¢(A3) then ¢
induces the trivial DPP domain abstraction. The surjectivity of ¢ guarantees that the domain abstraction is non-trivial if
I'" is non-trivial. Consequently, S has a non-trivial DPP domain abstraction and thus the output is a positive instance for
EXIST-DPP.

Second, assume the output is a positive instance for EXIST-DPP for the case of domain abstraction. Then there exists a
surjective string homomorphism ¢ : ¥™ — I'" that induces a DPP domain abstraction for S. Assume @(A1) N @(A2) # ¢
and @(A1) # @(A2), where we again identify states with strings. Without loss of generality say ¢(A1) \ ¢(Az) # @. Let
t e (A1) NP(Az) and @(s') € p(A1) \ ¢(A3z). Let s € Ay with @(s) =t. This implies that ¢(s') is reachable from t = @(s)
in the abstract space induced by ¢, although no pre-image of ¢(s’) is reachable from s in S. Hence ¢ does not induce a
DPP abstraction for S—a contradiction. Therefore ¢ (A1) N@(Az) =@ or p(A1) = @(A3). Since ¢ : X" — I'" is surjective, this
implies that the input instance is a positive instance of ALPH-INDEX. O

Corollary 5.

1. IS-DPPg+ is PSPACE-complete for the case of implicit state space representation and either type of abstraction.

2. EXIST-DPPs« is PSPACE-complete for the case of projection and implicit state space representation.

3. EXIST-DPPg« is NP-complete for the case of domain abstraction and either type of state space representation if the dimension n is
fixed with n > 2 a priori.

Proof. The proofs showing containment in PSPACE or NP can be adapted from the corresponding proofs for the s*-free
versions of these decision problems. In what follows, we only prove hardness.

(1) PSPACE-hardness follows from the proof of Theorem 2; we only have to add a suitable state s* to the instance of IS-
DPP constructed therein. Obviously, the state (sq, ..., Sy, a) in the proof of Theorem 2 can take the role of s* in the desired
instance of IS-DPPgs.

(2) PSPACE-hardness follows from the proof of Theorem 4.1 by adding a suitable state s* (here s* = (o,...,0)) to the
instance of EXIST-DPP constructed there.

(3) To prove NP-hardness, we polynomially reduce the problem ALPH-INDEX' (for fixed n > 2) to EXIST-DPPs« (with the
same value of n) for the case of either type of state space representation and domain abstraction.

The proof then is in analogy with the proof of Theorem 4.3, where in the reduction the state s* is chosen arbitrarily
from the set {s%,...,sﬁz}. O
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