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Abstract. This paper shows that ROC curves, as a method of visual-
izing classifier performance, are inadequate for the needs of Artificial
Intelligence researchers in several significant respects, and demon-
strates that a different way of visualizing performance – the cost
curves introduced by Drummond and Holte at KDD’2000 – over-
comes these deficiencies.

1 INTRODUCTION

In this paper, our focus is on the visualization of a classifier’s perfor-
mance. This is one of the attractive features of ROC analysis – the
tradeoff between false positive rate and true positive rate can been
seen directly. A good visualization of classifier performance would
allow an experimenter to immediately see how well a classifier per-
forms and to compare two classifiers – to see when, and by how
much, one classifier outperforms others.

We restrict the discussion to classification problems in which there
are only two classes. The main point of this paper is to show that,
even in this restricted case, ROC curves are not a good visualization
of classifier performance. In particular, they do not allow any of the
following important experimental questions to be answered visually:

� what is classifier C’s performance (expected cost) given specific
misclassification costs and class probabilities?

� for what misclassification costs and class probabilities does clas-
sifier C outperform the trivial classifiers?

� for what misclassification costs and class probabilities does clas-
sifier C1 outperform classifier C2?

� what is the difference in performance between classifier C1 and
classifier C2?

� what is the average of performance results from several indepen-
dent evaluations of classifier C (e.g. the results of 5-fold cross-
validation)?

� what is the 90% confidence interval for classifier C’s perfor-
mance?

� what is the significance (if any) of the difference between the per-
formance of classifier C1 and the performance of classifier C2?

The paper is organized around these questions. After a brief review
of essential background material, there is a section devoted to each
of these questions.

2 BACKGROUND

For 2-class classification problems ROC space is a 2-dimensional
plot with true positive rate (�� ) on the y-axis and false positive rate
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(�� ) on the x-axis. A single confusion matrix thus produces a sin-
gle point in ROC space. An ROC curve is formed from a sequence of
such points, including (0,0) and (1,1), connected by line segments.
The method used to generate the sequence of points for a given clas-
sifier (or learning algorithm) depends on the classifier. For example,
with Naive Bayes [2, 5] an ROC curve is produced by varying its
threshold parameter. In the absence of any method to generate a se-
quence of ROC points a single classifier can form the basis of an
ROC curve by connecting its ROC point to points (0,0) and (1,1).

An ROC curve implicitly conveys information about performance
across all possible combinations of misclassification costs and class
distributions 3. We use the term “operating point” to refer to a specific
combination of misclassification costs and class distributions.

One point in ROC space dominates another if it has a higher true
positive rate and a lower false positive rate. If point A dominates
point B, A will have a lower expected cost than B for all operating
points. One set of points A is dominated by another B when each
point in A is dominated by some point B and no point in B is domi-
nated by a point in A.

Cost curves were introduced in [1]. Performance (expected cost
normalized to be between 0 and 1) is plotted on the y-axis. Operating
points are plotted on the x-axis after being normalized to be between
0 and 1 by combining the parameters defining an operating point in
the following way:

��� ��� �
����������

���������� � ����������
(1)

where C(-|+)is the cost of misclassifying a positive example as
negative, C(+|-)is the cost of misclassifying a negative exam-
ple as positive, ���� is the probability of a positive example, and
���� � � � ����. The motivation for this PCF definition, and cost
curves more generally, originates in the simple situation when mis-
classification costs are equal. In this case ��� ��� � ���� and
the y-axis becomes error rate, so the cost curve plots how error rate
varies a function of the prevalence of positive examples. The PCF
definition generalizes this idea to the case when when misclassifica-
tion costs are not equal. The PCF formula is intimately tied to the
definition of the slope of a line in ROC space, which plays a key role
in ROC analysis. The x-axis of cost space is “slope in ROC space”
normalized to be between 0 and 1 instead of being between 0 and
infinity (historically this is how cost curves were invented).

There is a point/line duality between ROC space and cost space,
meaning that a point in ROC space is represented by a line in cost
space, a line in ROC space is represented by a point in cost space,

� “All” distributions and costs with certain standard restrictions.
For class distributions “all” means any prior probabilities for the
classes while keeping the class-conditional probabilities, or like-
lihoods, constant [11]. For costs “all” means all combinations of
costs such that a misclassification is more costly than a correct one.
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Figure 1. ROC curve
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Figure 2. Corresponding Cost Curve

and vice versa. A classifier represented by the point (FP,TP) in ROC
space is a line in cost space that has � � �� when � � � and
� � �� �� when � � �. The set of points defining an ROC curve
become a set of lines in cost space For example, the ROC curve in
Figure 1 consists of eight points (including (0,0) and (1,1)). Each
point becomes a line in cost space, the eight dotted lines in Figure 2.
Corresponding to the convex hull of the points in ROC space is the
lower envelope of the lines in cost space, indicated by the solid line
in Figure 2.

3 VISUALIZING CLASSIFIER
PERFORMANCE

ROC analysis does not directly commit to any particular measure of
performance. This is sometimes considered an advantageous feature
of ROC curves. For example, Van Rijsbergen [10] quotes Swets [8]
who argues that this is useful as it measures “discrimination power
independent of any ‘acceptable criterion’ employed”. Provost and
Fawcett substantiate this argument by showing that ROC dominance
implies superior performance for a variety of commonly-used perfor-
mance measures [6]. The ROC representation allows an experimenter
to see quickly if one classifier dominates another and therefore, us-
ing the convex hull, to identify potentially optimal classifiers visually
without committing to a specific performance measure.
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Figure 3. ROC Curve for Naive Bayes on the Sonar dataset

Being independent of any particular performance measure can be
a disadvantage when one has a particular performance measure in
mind. ROC curves do not visually depict the quantitative perfor-
mance of a classifier or the difference in performance between two
classifiers. For example, Figure 3 shows the ROC curve for Naive
Bayes using Gaussian probability estimators on the sonar data set
from the UCI collection. It can be seen immediately that the ROC
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Figure 4. Corresponding Cost Curve

curve is well above the chance line, the diagonal joining (0,0) to
(1,1). One might conclude that this classifier’s performance is good,
but there is no indication as to how good it is. For example, we cannot
tell from visual inspection what its error rate would be if misclassifi-
cation costs were equal and the two classes were equally likely.

By contrast, cost curves were defined to allow performance to be
read off directly for any given operating point. The cost curve corre-
sponding to the ROC curve in Figure 3 is the bold curve in Figure 4.
We can directly read off the performance for any specific operating
point and we can see how performance varies across the full range of
possible operating points. For example, performance when misclas-
sification costs are equal and the two classes are equally likely can
be read off the plot by looking at the cost curve’s value at � � ���.
It is roughly 0.3, an error rate which is adequate but not especially
“good”. We can also see that performance does not vary much across
the range of operating points: it is between 0.2 and 0.35 except when
��� ��� 	 ���.

4 COMPARING A CLASSIFIER TO THE
TRIVIAL CLASSIFIERS

In an ROC diagram points (0,0) and (1,1) represent the trivial classi-
fiers: (0,0) represents classifying all examples as negative, and (1,1)
represents classifying all points as positive. The cost curves for these
classifiers are the diagonal lines shown in Figure 4. The diagonal line
from (0,0) to (1,1) is the cost curve for the classifier that classifies all
examples as negative, and the diagonal line from (0,1) to (1,0) is the
cost curve for the classifier that classifies all examples as positive.

The operating range of a classifier is the set of operating points
where it outperforms the trivial classifiers. A classifier should not
be used outside its operating range, since one can obtain superior
performance by assigning all examples to a single class.

The operating range of a classifier cannot be seen readily in an
ROC curve. It is defined by the slopes of the lines tangent to the
ROC curve and passing through (0,0) and (1,1). By contrast, a classi-
fier’s operating range can be immediately read off of a cost curve: it
is defined by the PCF values where the cost curve intersects the diag-
onal lines representing the trivial classifiers. For example, in Figure
4 it can be seen immediately that Naive Bayes performs worse than
a trivial classifier when ��� 
 ��	� or ��� 	 ��
�.

5 CHOOSING BETWEEN CLASSIFIERS

If the ROC curves for two classifiers cross, each classifier is better
than the other for a certain range of operating points. Identifying this
range visually is not easy in an ROC diagram and perhaps surpris-
ingly the crossover point of the ROC curves has little to do with the
range. Consider the ROC curves for two classifiers, the dotted and
dashed curves of Figure 5. The solid line is the iso-performance line
tangent to both two ROC curves. Its slope represents the operating
point at which the two classifiers have equal performance. For oper-
ating points corresponding to steeper slopes, the classifier with the
dotted ROC curve performs better than the classifier with the dashed
ROC curve. The opposite is true for operating points corresponding
to shallower slopes.

Figure 6 shows the cost curves corresponding to the ROC curves
in Figure 5. It can immediately be seen that the dotted line has a
lower expected cost and therefore outperforms the dashed line when
��� 
 ��� and vice versa.
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Figure 5. ROC Space Crossover

6 COMPARING CLASSIFIER PERFORMANCE

Figures 7 and 8 illustrate how much more difficult it is to compare
classifiers with ROC curves than with cost curves. Although it is ob-
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Figure 6. Corresponding Cost Space Crossover
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Figure 7. Comparing ROC Curves
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Figure 8. Comparing Corresponding Cost Curves

vious in the ROC diagram that the dashed curve is better than the
solid one, it is not easy, visually, to determine by how much. One
might be tempted to take the Euclidean distance normal to the lower
curve to measure the difference. But this would be wrong on two
counts. Firstly, the difference in expected cost is the weighted Man-
hattan distance between two classifiers not the Euclidean distance.

Secondly, the performance difference should be measured be-
tween the appropriate classifiers on each ROC curve – the classifiers
out of the set of possibilities on each curve that would be used at each
given operating point. To illustrate how intricate this is, suppose the
two classes are equiprobable but that the ratio of the misclassification
costs might vary. In Figure 7 for a cost ratio of say 2.1 the classifier
marked A on the dashed curve should be compared to the one marked
B on the solid curve. But if the ratio was 2.3, A should be compared
to the trivial classifier marked C on the solid curve at the origin.

The dashed and solid cost curves in Figure 8 correspond to the
dashed and solid ROC curves in Figure 7. The horizontal line atop
the solid cost curve corresponds to classifier B4. The vertical dis-
tance between the cost curves for two classifiers directly indicates
the performance difference between them. The dashed classifier out-
performs the solid one – has a lower or equal expected cost – for all
values of ��� ���. The maximum difference is about 20% (0.25
compared to 0.3), which occurs when ��� ��� is about ��	 or ��
.
Their performance difference is negligible when ��� ��� is near
���, less than ��� or greater than ���.

7 AVERAGING MULTIPLE CURVES

The dashed lines in Figure 9 are two ROC curves. If these are the re-
sult of learning from different random samples, or some other cause
of random fluctuation in the performance of a single classifier, their

� It is horizontal because �� � � � �� for this classifier.



average can be used as an estimate of the classifier’s expected per-
formance. There is no universally agreed-upon method of averaging
ROC curves. Swets and Pickett [9] suggest two methods, pooling and
“averaging”, and Provost et al. [7] propose an alternative averaging
method.

The Provost et al. method is to regard �, here the true positive
rate, as a function �, here the false positive rate, and to compute the
average � value for each � value. This average is shown as a solid line
in Figure 9, with each vertex corresponding to a vertex from one or
other of the dashed curves. Figure 10 shows the equivalent two cost
curves represented by the dashed lines. The solid line is the result
of the same averaging procedure but � and � are now the cost space
axes. If the average curve in ROC space is transformed to cost space
the dotted line results. Similarly, the dotted line in Figure 9 is the
result of transforming the average cost curve into ROC space. The
curves are not the same.

The reason these averaging methods do not produce the same re-
sult is that they differ in how points on one curve are put into corre-
spondence with points on the other curve. For the ROC curves points
correspond, under the Provost et al. method of ROC averaging, if
they have the same �� value. Pooling, or other methods of averag-
ing ROC curves, will all produce different results because they put
the points on the two curves into correspondence in different ways.
For the cost curves points correspond if they have the same ��� ���
value. The cost curve average has a very clear meaning: at each op-
erating point it gives the average normalised expected cost for that
operating point.

It is illuminating to look at the dotted line in the top right hand
corner of Figure 9. The vertex labelled “A” is the result of averaging
a non-trivial classifier on the upper curve with a trivial classifier on
the lower curve. This average takes into account the operating ranges
of the classifiers and is significantly different from a simple average
of the curves.

8 CONFIDENCE INTERVALS ON COSTS

The measure of classifier performance is derived from a confusion
matrix produced from some sample of the data. As there is likely to
be variation between samples, the measure is, itself, a random vari-
able. So some estimate of its variance is useful, which usually takes
the form of a confidence interval. The most common approach to pro-
ducing a confidence interval is to assume that the distribution of the
estimate belongs to, or is closely approximated by, some paramet-
ric family such as Gaussian or Student-t. An alternative, data driven,
method has become popular in recent times which does not make any
parametric assumptions. Margineantu and Dietterich [4] described
how one such non-parametric approach called the bootstrap [3] can
be used to generate confidence intervals for predefined cost values.
We use a similar technique, but for the complete range of class dis-
tributions and misclassification costs.

The bootstrap method is based on the idea that new samples gen-
erated from the available data are related to that data in the same
way that the available data relates to the original population. Thus
the variance of an estimate based on the new samples should be a
good approximation to its true variance. Confidence limits are pro-
duced by resampling from the original matrix to create numerous
new confusion matrices of the same size. The exact way bootstrap-
ping is carried out depends on the sampling scheme. We propose a
resampling method analogous to stratified cross validation, in which
the class frequency is guaranteed to be identical in every sample.

For example, consider the confusion matrix of Figure 11. There

0 0.5 1
0

0.5

1

False Positive Rate

T
ru

e 
Po

si
tiv

e 
R

at
e

A

Figure 9. Average ROC Curves
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Figure 10. Average Cost Curves
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Figure 12. 90% Confidence Interval on a Cost Curve

are 30 instances, 20 of which are positive and 10 negative. The clas-
sifier correctly labels 16 out of 20 of the positive class, but only 6 out
of 10 of the negative class. We fix the row totals at 20 and 10, and
treat the two rows as independent binomial distributions with proba-
bilities �� � ���� � ��� and �� � ���� � ���, respectively, of
assigning a positive label to an example.

A new matrix is produced by randomly sampling according to
these two binomial distributions until the number of positive and neg-
ative instances equal the corresponding row totals. For each new con-
fusion matrix, a dotted line is plotted in Figure 12 representing the
new estimate of classifier performance. For ease of exposition, we

generated 100 new confusion matrices (typically at least 500 are used
for an accurate estimate of variance). To find the 90% confidence lim-
its, if we had values just for one specific x-value, the fifth lowest and
fifth highest value could be found. This process is repeated for each
small increment in the PCF(+) value. The centre bold line in Figure
12 represents the performance of the classifier based on the original
confusion matrix. The other two bold lines are the upper and lower
confidence limits for this classifier.

9 TESTING IF PERFORMANCE
DIFFERENCES ARE SIGNIFICANT

The difference in performance of two classifiers is statistically signif-
icant if the confidence interval around the difference does not contain
zero. The method presented in the previous section can be extended
to do this, by resampling the confusion matrices of the two classi-
fiers simultaneously, taking into account the correlation between the
two classifiers. A single resampling thus produces a pair of confu-
sion matrices, one for each classifier, and therefore two lines in cost
space. However, instead of plotting the two lines, we plot the dif-
ference between the two lines (which is itself a line). We can repeat
this process a large number of times to get a large number of lines
and then, as above, extract a 90% confidence interval from this set of
lines. This is the confidence interval around the difference between
the classifiers’ performances.
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Figure 13. Confidence Interval for the Difference, High Correlation

The thick continuous line at the bottom of Figure 13 represents the
mean difference between performance of the two classifiers (which
are shown in the figure as bold dashed lines). The shaded area rep-
resents the confidence interval of the difference, calculated as just
described. As the difference can range from �� to �� the y-axis
has been extended. Here we see that the confidence interval does
not contain zero, so the difference between the classifiers is statisti-
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Figure 14. Confidence Interval for the Difference, Low Correlation

cally significant. Figure 14 shows the same two classifiers but with
their classifications less correlated. Notably, the confidence interval
is much wider and includes zero, so the difference is not statistically
significant. Thus cost curves give a nice visual representation of the
difference in expected cost between two classifiers across the full
range of misclassification costs and class frequencies. The cost curve
representation also makes it clear that performance differences might
be significant for some range of operating points but not others. An
example of this is shown in 15, where the difference is significant
only if ��� 	 ��
.

10 CONCLUSIONS

This paper has demonstrated shortcomings of ROC curves for vi-
sualizing classifier performance, and showed that cost curves over-
come these problems. We do not, however, contend that cost curves
are always better than ROC curves. For example, for visualizing the
workforce utilization measure of performance[6], ROC curves are
distinctly superior to cost curves. But for many common visualiza-
tion requirements, cost curves are by far the best alternative and we
recommend their routine use instead of ROC curves for these pur-
poses.
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