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Abstract

The evaluation of classifier performance in a cost-sensitive
setting is straightforward if the operating conditions (misclas-
sification costs and class distributions) are fixed and known.
When this is not the case, evaluation requires a method of vi-
sualizing classifier performance across the full range of pos-
sible operating conditions. This talk outlines the most im-
portant requirements for cost-sensitive classifier evaluation
and introduces a technique for classifier performance visu-
alization – the cost curve – that meets all these requirements.
We also briefly describe some application areas in which the
usefulness of cost curves for classifier evaluation has been
demonstrated.

Introduction
Methods for creating accurate classifiers from data are of
central interest to the Artificial Intelligence community. The
focus of this talk is on binary classification, i.e., classifica-
tion tasks in which there are only two possible classes, which
we will call positive and negative. In binary classification,
there are just two types of error a classifier can make: a false
positive is a negative example that is incorrectly classified as
positive, and a false negative is a positive example that is in-
correctly classified as negative. In general, the cost of mak-
ing one type of misclassification will be different—possibly
very different—than the cost of making the other type.1

Methods for evaluating the performance of classifiers fall
into two broad categories: numerical and graphical. Nu-
merical evaluations produce a single number summarizing a
classifier’s performance whereas graphical methods depict
performance in a plot that typically has just two or three
dimensions so that it can be easily inspected by humans.
Examples of numerical performance measures are accuracy,
expected cost, precision, recall, and area under a perfor-
mance curve (AUC). Examples of graphical performance
evaluations are ROC curves (Provost and Fawcett 2001;
1997), precision-recall curves (Davis and Goadrich 2006),
DET curves (Liu and Shriberg 2007), regret graphs (Hilden
and Glasziou 1996), loss difference plots (Adams and Hand

1We assume the misclassification cost is the same for all in-
stances of a given class; see (Fawcett 2006) for a discussion of
performance evaluation when the cost can be different for each in-
stance.

1999), skill plots (Briggs and Zaretzki 2007), prevalence-
value-accuracy plots (Remaleya et al. 1999), and the method
presented in this talk, cost curves (Drummond and Holte
2000; 2006).

Graphical methods are especially useful when there is un-
certainty about the misclassification costs or the class dis-
tribution that will occur when the classifier is deployed. In
this setting, graphical measures can present a classifier’s ac-
tual performance for a wide variety of different operating
conditions (combinations of costs and class distributions),
whereas the best a numerical measure can do is to repre-
sent the average performance across a set of operating con-
ditions.

Cost curves are perhaps the ideal graphical method in this
setting because they directly show performance as a function
of the misclassification costs and class distribution. In par-
ticular, the x-axis and y-axis of a cost curve plot are defined
as follows.

The x-axis of a cost curve plot is defined by combining
the two misclassification costs and the class distribution—
represented by p(+), the probability that a given instance is
positive—into a single value, PC(+), using the following
formula:

PC(+) =
p(+)C(−|+)

p(+)C(−|+) + (1− p(+))C(+|−)
(1)

where C(-|+)is the cost of a false negative and C(+|-)is
the cost of a false positive. PC(+) ranges from 0 to 1.

Classifier performance, the y-axis of a cost curve plot, is
“normalized expected cost” (NEC), defined as follows:

NEC = FN ∗ PC(+) + FP ∗ (1− PC(+)) (2)

where FN is the classifier’s false negative rate, and FP is
its false positive rate. NEC ranges between 0 and 1.

To draw the cost curve for a classifier we plot two points,
y = FP at x = 0 and y = FN at x = 1, and join them
by a straight line. The cost curve represents the normalized
expected cost of the classifier over the full range of possible
class distributions and misclassification costs. For example,
the dashed line in Figure 1 is the cost curve for the decision
stump produced by 1R (Holte 1993) for the Japanese credit
dataset from the UCI repository and the solid line is the cost
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Figure 1: Japanese credit - Cost curves for 1R (dashed line)
and C4.5 (solid line)

curve for the decision tree C4.5 (Quinlan 1986) learns from
the same training data. In this plot we can instantly see the
relation between 1R and C4.5’s performance across the full
range of operating conditions. The vertical difference be-
tween the two lines is the difference between their normal-
ized expected costs for a specific operating condition. The
intersection point of the two lines is the operating condition
for which 1R’s stump and C4.5’s tree perform identically.
This occurs at PC(+) = 0.445. For larger values of PC(+)
1R’s performance is better than C4.5’s, for smaller values of
PC(+) the opposite is true.

Mathematically, cost curves are intimately related to ROC
curves: they are “point-line duals” of one another. However,
cost curves have the following advantages over ROC curves
(see (Drummond and Holte 2006) for details):

• Cost curves directly show performance on their y-axis,
whereas ROC curves do not explicitly depict perfor-
mance. This means performance and performance dif-
ferences can be easily seen in cost curves but not in ROC
curves.

• When applied to a set of cost curves the natural way of
averaging two-dimensional curves produces a cost curve
that represents the average of the performances repre-
sented by the given curves. By contrast, there is no agreed
upon way to average ROC curves, and none of the pro-
posed averaging methods produces an ROC curve repre-
senting average performance.

• Cost curves allow confidence intervals to be estimated for
a classifier’s performance, and allow the statistical signifi-
cance of performance differences to be assessed. The con-
fidence interval and statistical significance testing meth-
ods for ROC curves do not relate directly to classifier per-
formance.

For these reasons, we have gained insights into classifier per-
formance using cost curves that would likely not have been
possible using other methods (Drummond and Holte 2003;
2005a; 2005b) and, as the following examples illustrate, re-
searchers in a wide range of application areas are finding
cost curves their analysis method of choice.

Illustrative Applications of Cost Curves
Frattini et al. (2010) compare numerous approaches, includ-
ing cost curves, for evaluating landslide susceptibility mod-
els, which are classifiers predicting whether a given locality
is, or is not, susceptible to landslides. The costs associated
with misclassification in this application are as follows. A
false negative is land that is incorrectly classified as being
susceptible to landslides. This leads to economic loss, since
land that could be developed will not be. A false positive
is a much more expensive type of error because land will
be developed—buildings built and occupied by people—in
an area susceptible to landslides that could cause destruc-
tion and death. In this application it is important to com-
pare classifiers’ performances across a wide range of oper-
ating conditions because it is difficult to determine the class
probabilities and misclassification costs for a given local-
ity, and they vary significantly from one locality to another.
The difficulty in obtaining these values is not unique to this
application and is, in our opinion, a key reason to use cost
curves because they allow one to easily see the operating re-
gions for which each classifier is the best choice. It is there-
fore only necessary to determine which operating region a
given locality falls into. Since the operating regions are of-
ten broad, selecting the best classifier for a locality does not
usually require highly accurate estimates of the misclassifi-
cation costs or class probabilities. For example, in Frattini
et al.’s Figure 8, which shows the cost curves for the set of
models they are comparing, one model dominates all oth-
ers when PC(+) < 0.8 and a different model dominates
when PC(+) > 0.8. Clearly, all that needs to be deter-
mined to choose the best model is whether PC(+) is less
than 0.8. Frattini et al. conclude that the use of cost curves,
as opposed to ROC curves and the other evaluation methods
they considered, “is advisable for evaluation and compari-
son of susceptibility models when a practical application of
the model in land management is expected” (p. 71).

Garcia-Jimenez et al. (2010) explore the use of machine
learning methods to create a binary classifier to predict if
there exists a functional relationship between a given pair
of proteins. There is extreme class imbalance in this appli-
cation domain, with over 96% of the protein pairs being in
the negative class (no functional relationship).2 The perfor-
mances of eight different machine learning methods were
compared. Cost curves were used for this comparison, in
preference to ROC curves, because “they are easier to inter-
pret in meaningful units and they facilitate the selection of
the best classifier by simple visualization” (p. 8).

Juntu et al. (2010) use ROC curves and cost curves to
evaluate three machine learning methods to distinguish be-
tween benign and malignant soft-tissue tumours. They re-
mark that cost curves are “much better for comparison be-
tween classifiers, especially when the ROC curves cross”
(p. 685). In analyzing the cost curves of the three meth-
ods they observe that one of them is flat across a wide range
of operating conditions (0.2 ≤ PC(+) ≤ 0.75). They cor-
rectly interpret this as indicating that the performance of that

2However, Garcia-Jimenez et al. artificially modified their
training and the test sets to reduce the imbalance to only 4:1.



classifier is “insensitive to the distribution of the benign and
malignant tumors ... or to change of the cost of misclassifi-
cation” (p. 687) and note that the other two classifiers do not
exhibit the same degree of insensitivity to operating condi-
tions. This is a conclusion that is not at all apparent in the
ROC curves for the classifiers.

Chen et al. (2009) use both ROC curves and cost curves
to compare the performances of several machine learning
methods for an application called hidden signal detection
(‘to detect an embedded signal in a data sample”). In this
application it is important to have an extremely low false
positive rate while still achieving a true positive rate of at
least 50%. ROC curves are the appropriate visualization
method to assess this criterion since they directly plot these
two rates. However, misclassification costs are also impor-
tant; the cost of a false positive is said to be at least 100
times larger than the cost of a false negative in this applica-
tion. Cost curves are the appropriate visualization method to
assess this criterion. This paper is therefore an example of
a situation in which the complementary strengths of the two
visualization techniques are both needed.

Hoshino et al. (2009) explore the use of a simple classi-
fier to determine whether it is necessary to test a container
for fumigants before a customs officer inspects it. The ex-
isting policy of the Canadian Border Security Agency is to
apply an expensive and time-consuming chemical test to all
containers selected for inspection (the trivial “always nega-
tive” classifier). For the purpose of visualizing the cost re-
duction that would be realized by using a specific alterna-
tive policy defined by a classifier, Hoshino et al. introduce
a variant of cost curves called “improvement curves”. Im-
provement curves have the same x-axis as cost curves but
have a y-axis defined by y = 1 − NEC(x)

x . The authors con-
clude that this variation on cost curves provides “any easy
way for decision-makers to estimate the potential improve-
ment of introducing a predictive model to the overall risk
assessment process, without having to determine the exact
number of positive and negative containers, or knowing the
exact costs of a ventilation or chemical test” (p. 24).

Sacanamboy and Cukic (2009) investigate the use of cost
curves to evaluate and compare biometric systems, moti-
vated by the fact that it is essential, in high security appli-
cations, to fully take into account the costs of misclassifica-
tion. Their study looks at both face recognition and finger-
print recognition. They observe that “cost curves have the
ability to reveal the differences between the biometric al-
gorithms that are not obvious in the corresponding ROC or
DET curves” (p. 6) and suggest that cost curves be included
“in the evaluation of recognition performance of biometric
algorithms in order to guide the selection of the most ade-
quate algorithm based on the system requirements” (p. 6).

Jiang, Cukic, and Menzies (2008) use cost curves to eval-
uate methods for predicting whether a software module con-
tains a fault. This seems to be the first time the costs of
misclassification have been taken into account in this appli-
cation area. Software quality professionals did not find it
difficult to give approximate values for the misclassification
costs. As Jiang et al.’s investigation with cost curves un-
folded, it became clear to them that “in many cases these

[fault prediction] algorithms barely outperform trivial clas-
sifiers, especially in extreme high and low risk situations”
(p. 202). They proceeded to use the statistical significance
test on cost curves to determine operating conditions under
which the best fault prediction models performed better than
the trivial classifiers. The paper concludes: ”we strongly
recommend [cost curves’] inclusion in the evaluation of soft-
ware quality models” (p. 205).
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