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Abstract— QoS routing has been shown to be NP-hard. A
recent study of its hardness suggests that the “worst-case” may
not occur in practice and thus there may exist a fast exact
algorithm. In this paper, we deploy the idea of iterative deepening
search and look ahead to design an exact algorithm for finding
the shortest path subject to multiple constraints (the MCSP
problem). The accuracy of look-ahead information determines
the efficiency of a search algorithm. The higher the accuracy of
the look-ahead information, the more efficient the search process.
An empirical study on a wide range of topologies shows the
high accuracy of look-ahead information in the studied cases.
Experimental results also show that our algorithm IDA* MCSP
is fast and in general significantly outperforms A*Prune, an
algorithm designed for the MCSP problem. The characteristics of
iterative deepening search and the high accuracy of look-ahead
information make IDA* MCSP a fast exact algorithm for the
MCSP problem.

I. INTRODUCTION

Quality of Service (QoS) routing or Constraint-based rout-
ing is a fundamental issue in networking research. It is
critical for resource reservation in the IntServ and resource
allocation in the DiffServ architectures. MPLS also needs
QoS routing for path establishment. The Multi-Constraint
Path (MCP) problem is to find one or several feasible paths
subject to multiple constraints on a given network topology
with link weights, such as delay, delay jitter, administrative
cost, etc. The Multi-Constraint Shortest Path (MCSP) problem
is to find the shortest path with respect to hop count that
satisfies the constraints. The MCP and the MCSP problems are
instances of QoS routing. Their NP-hardness property [16] led
to the proposals of many heuristic algorithms or approximate
algorithms. See [2] and [8] for overviews. On the other hand,
Cheeseman et al. found that typical cases of many NP-hard
problems are tractable in practice [1]. Kuipers et al. studied
that the hardness of QoS routing occurs in topologies with
special characteristics, and the problem may be easy to solve in
realistic communication networks [9]. This suggests that there
may exist fast exact algorithms for the MCP and the MCSP
problem. Recently, there are research efforts on designing
exact algorithms for them. See [8] for an overview.

QoS routing has two components: QoS information col-
lection and QoS routing computation. We assume QoS in-
formation collection has been done by a mechanism such as
the OSPF extension in [19]. We concentrate on QoS routing
computation. The information gathered may be related to
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delay, loss rate or bandwidth. Link weights are defined by
these metrics. Link weights can be additive, multiplicative or
concave. By additive weight, we mean the weight of a path
is the sum of the weights of the links on the path. For a
multiplicative weight, the weight of a path is the product of the
weights of the links on the path. Multiplicative weights such
as loss rate can be transformed to additive weights by taking
the logarithm of the weight of the path. For a concave weight,
the weight of a path is the minimum of the weights of the links
on the path. Concave weights such as bandwidth can be dealt
with by using a preprocessing procedure to remove ineligible
links. Without loss of generality, we concentrate on additive
weights. The constraints may be specified by the Service Level
Agreements (SLAs). Given these link weights and constraints,
each node can compute the shortest path to a destination
subject to multiple constraints. This paper provides a fast exact
algorithm to do this. In a DiffServ architecture, paths may be
computed centrally at the Bandwidth Broker [18]. Once an
optimal path is computed, source routing or MPLS may be
used to forward packets on that route.

We give the notation used in the paper. A network is
represented by a graph
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When we say shortest path, we mean the shortest path with
respect to hop count, if not explicitly stated. The path length
is the number of hops of a path. The definitions of the MCP
and MCSP problems follow.

Definition 1: MCP problem: Given a network represented
by a graph

�
, � associated non-negative additive weights on

edges, the source node /�021 , the destination node 3#/�4 , and the� -dimensional constraint vector 5 , the MCP problem is to
find a path

9
such that � : � 9�
 L 5 : �EJ �PLQ�RL � .

Definition: MCSP problem: Given a network represented
by a graph

�
, � associated non-negative additive weights on

edges, the source node /�021 , the destination node 3#/�4 , and the� -dimensional constraint vector 5 , the MCSP problem is to
find the shortest path

9
such that ��: � 9�
 L 58: �KJ �SLT�7L � .

Search techniques from the Artificial Intelligence commu-
nity such as A* [5] and IDA* [6] have shown their strength
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in solving some hard problems in practice [14]. A search
algorithm usually uses look-ahead information to speed up
the search process. When the look-ahead information always
underestimates the solution cost, the search algorithm is guar-
anteed to find the optimal solution. The accuracy of look-ahead
information determines the efficiency of a search algorithm.
The higher the accuracy of the look-ahead information, the
more efficient the search process. With the assistance of a
look-ahead function to predict solution length, A* and IDA*
may solve hard problems exactly in polynomial time [14], [7].

Two exact QoS routing algorithms, A*Prune [10] and
SAMCRA [12], have been proposed. A*Prune is designed for
the MCSP problem and SAMCRA is designed for the MCP
problem, although it can also be used for MCSP. They borrow
ideas from A* and conduct best first searches using a priority
queue. They use look-ahead information to cut off the part of
search space that won’t lead to a feasible solution.

In this paper, we extend IDA* to design an exact MCSP
algorithm. We design eligibility tests to make the search
more efficient. We study the optimality, completeness and
space complexity of IDA* MCSP. We study its search effi-
ciency empirically on a wide range of topologies including
inferred ISP topologies, Internet-like power-law topologies,
and Waxman random topologies. The empirical study on the
diverse topologies shows the high accuracy of look-ahead
information, which implies that our extension of IDA* is an
efficient algorithm for the MCSP problem. We also compare
its search efficiency with A*Prune. The experimental results
are encouraging. Our work is different from the work in QoS
routing that proposes a heuristic and looks for an approximate
solution. Our algorithm IDA* MCSP is guaranteed to find
the exact solution once it terminates. Its optimality makes it
different from the polynomial time approximation algorithms.

In the following, we first present an overview of iterative
deepening search and look-ahead, as well as their application
to the MCSP problem. We then present IDA* MCSP, our
extension of IDA* to the MCSP problem. After that, we
present the performance study and empirical results.

II. ITERATIVE DEEPENING SEARCH

An iterative deepening search algorithm [6] conducts a
series of depth-first searches. Different from depth-first search,
it has a depth bound for each iteration. That is, when the search
algorithm has traveled as far as the depth bound, or it predicts
that there wouldn’t be a solution within the search bound,
it stops searching from that node. An iterative deepening
search algorithm updates the depth bound after each iteration,
until the solution is found, or it determines that there is no
feasible solution. Bounding the search depth avoids searching
too deeply. Moreover, by updating the search bound properly,
the algorithm guarantees to find the shortest path. The cost
to pay is that part of the search space has to be searched
redundantly.

A search algorithm usually deploys some look-ahead func-
tion to predict the quality of a potential solution. A good
look-ahead function plays an important role in enhancing the
performance of a search algorithm, by facilitating decision
making of whether to further search a branch.

Algorithm 1 UWV �*X#�KY VZU �[]\ 3^U � [_Y 0 � 1 G 0 !`

1: for each weight � : � $ ��& � �)( �,� � ��� ��- .

do
2: V Y : = V \ ��UW0 Y'\aGb[ 3 [ � : ][ []\ 3#U ];
3: if 1 G 0 ! :dc��): �[]\ 3^U � [_Y 0 
 c�V Y :feg58: then
4: return hji�V*/�U ;
5: end if
6: end for
7: return 4E0 G U ;

In our extension of iterative deepening search to the MCSP
problem, look-ahead information for hop count helps check
whether the search bound will be violated. The algorithm
records the distance (hop count) traversed so far. It then uses
the look-ahead function to calculate the shortest distance from
the current node to the destination. If the total of the two
portions exceeds the search bound, there is no need to further
search this partial path, and the algorithm backtracks to try
another branch. For a multi-constraint problem, look-ahead
information can also be used for the eligibility test: a search
algorithm predicts whether the constraint will be violated
following a partial path, and it won’t further search for an
ineligible partial path that does not pass the test. The algorithm
records the path weight accumulated so far and calculates
the least weight from the current node to the destination. In
this way, the algorithm can predict the lower-bound of the
path weight following this partial path. If a constraint will be
violated, this partial path won’t be further searched. We give
a detailed description of our extension of IDA* to the MCSP
problem in the next section.

III. IDA* MCSP

In the following, we present IDA* MCSP, our extension of
IDA* to the MCSP problem. The input to the algorithm is the
graph representation of the network topology, the weights on
each link, and the constraints. IDA* MCSP returns the optimal
path if there exists one. Otherwise, it reports a failure.

A 2-dimensional array V \ ��UW0 Y+\aGd[ 3bk �lc �,m k � m
is used to

store the lower bounds, i.e. the look-ahead values, for the �nc �
metrics

$aod\qp � ��& � ��( �,� � ��� ��- .
(hop count and � weights) for

each of the
�

nodes. As shown in the �Mi ��[r� 

function in

Algorithm 3, we set the lower bounds at the initialization stage
using the V \2\ �si o Uai�3 � 


function, which calls the Dijkstra’s
algorithm to calculate the shortest paths.

Algorithm 1 presents the function that conducts an eligibil-
ity test at node

[]\ 3#U for the neighbor
[_Y 0 according to the

current accumulated weight vector 1 G 0 !
. For each weight,� : , it predicts the path weight from /�021 to 3#/�4 via

[]\ 3#U and[_Y 0 by adding up the following three components: the
�
-th

element of 1 G 0 !
; the weight on the link from

[]\ 3^U to
[_Y 0 ,�): �[]\ 3^U � [_Y 0 


; and the look-ahead value for the predicted path
from

[_Y 0 to the destination, V Y : . If any constraint is violated,
the test fails.

Algorithm 2 presents one iteration of the IDA* MCSP
algorithm. The algorithm arrives at the current node

[]\ 3#U , with
distance

od\qp
from /�021 and accumulated path weight vector1 G 0 !

, and the search threshold 3^U p 4 o Y'\aGb[ 3 . If the predicted
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Algorithm 2 IDA* MCSP(
[]\ 3^U ,

od\qp
, 1 G 0 !

, 3#U p 4 o Y'\aGd[ 3 )
1:

out V \ ��UW0 Y'\aGb[ 3dk ov\qpvm k []\ 3#U m
;

2: if
o

is 0 then
3: return true;
4: end if
5:

p 02Ua3 � 1'4 3#U p 4 ontwo
+

od\qp
;

6: if
p 02Ua3 � 1'4 3#U p 4 o eg3^U p 4 o Y'\aGb[ 3 then

7: return false;
8: end if
9: for each neighbor

[_Y 0 of
[]\ 3^U do

10: if UaV �*X��KY VU �"[]\ 3#U � [_Y 0 � 1 G 0 !`

is 4E0 G U then

11:
G^p 3^i#4KU ! �"[]\ 3#U � [_Y 0 � 1 G 0 !`


;
12: 3 \a[ U t

IDA* MCSP(
[_Y 0 ,

od\qp
+1, 1 G 0 !

, 4 );
13: 02Ua/�4 \ 02U ! �"[]\ 3#U � [_Y 0 � 1 G 0 !`


;
14: if 3 \a[ U is 4E0 G U then
15: return 4E0 G U ;
16: end if
17: end if
18: end for

path length is greater than 3#U p 4 o Y'\aGb[ 3 , it stops searching
this partial path further. Otherwise, it considers each of the[]\ 3^U ’s neighbors. An eligibility test is conducted first for the
neighbor

[_Y 0 to see whether there is a potential solution via[_Y 0 . If the eligibility test succeeds, the algorithm updates the
hop count and the weight vector for the traversed partial path,
and searches further from

[_Y 0 . Otherwise, it considers the next
available neighbor. Functions

G^p 3^i#4KU ! �"[]\ 3#U � [_Y 0 � 1 G 0 !`

and 0aU2/�4 \ 02U ! �"[]\ 3#U � [_Y 0 � 1 G 0 !`


are called before and after
making a recursive call to IDA* MCSP() to properly record
the current accumulated weight.

Algorithm 3 presents the main function to use the
IDA* MCSP algorithm. At the initialization stage, the algo-
rithm calls V \2\ ��i o Uai�3 � 


to calculate the lower bounds for the
hop count and each link weight. Function V \2\ ��i o Uai#3 � �xUW4E0 � 1 

calculates the shortest paths for all the nodes to the destination,
with respect to �MUW4E0 � 1 , which can be the hop count or
one of the weights. The results are recorded in the arrayV \ ��UW0 Y'\aGb[ 3dk m k m . The destination has lookahead values of 0 for
each metric.

Dijkstra’s algorithm is used for calculating the respective
shortest path due to its efficiency. More importantly, Dijkstra’s
algorithm makes underestimates, which is a necessary property
for the look-ahead function in order to help IDA* MCSP
find the optimal solution. By an underestimate, we mean that
the least cost (length) path found by Dijkstra’s algorithm
won’t exceed the cost (length) of the shortest constrained
path. We assume the topology is symmetric, thus we can use
Dijkstra’s algorithm on the single-source shortest path problem
to compute the look-ahead values of all the nodes to the
destination. For an asymmetric topology, we may first compute
the transpose of the graph [3], and then apply Dijkstra’s
algorithm. We assume link weights are static, so we need to
calculate the lower bounds only once. If there are changes, an
efficient, incremental algorithm can be designed based on the
work in [13] to recalculate lowerbounds after changes.

The threshold 3^U p 4 o Y'\aGb[ 3 is initialized as the look-

Algorithm 3 main()
1: Global /�0a1 � 3�/,4 � 5 � �xi#ydzRU [jX 4 o
2: for each metric �xUW4E0 � 1 � $aod\qp � ��& � �)( ����� � � �)- .

do
3: V \ ��UW0 Y'\aGb[ 3dk �xU�4E0 � 1 m k mrt

lookahead
� �MUW4E0 � 1 


;
4: end for
5: 3#U p 4 o Y+\aGd[ 3 t V \ �PU�0 Y'\aGb[ 3bk od\qpsm k /�021 m ;
6: 3 \a[ U t

false;
7: while 3 \a[ U is hji�VZ/WU do
8: 1 G 0 ! t

0;
9: 3 \a[ U t

IDA* MCSP( /�021 , 0, 1 G 0 !
, 3#U p 4 o Y'\aGd[ 3 );

10: if 3 \a[ U is false then
11: update 3^U p 4 o Y'\aGb[ 3 ;
12: if reach stopping condition then
13: report failure;
14: end if
15: end if
16: end while
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Fig. 1. Example Graph

ahead value for hop count from /�021 to 3�/�4 . If the algo-
rithm fails to reach a solution within the 3#U p 4 o Y+\aGd[ 3 , it
increases 3^U p 4 o Y'\aGb[ 3 to search further. IDA* MCSP updates3#U p 4 o Y'\aGb[ 3 as the value of the least predicted distance
(
p 02Ua3 � 1'4 VU [jX 4 o in Line 5 in Algorithm 2) in the last iteration

to make a close estimate of the constrained path length.
The search process from Line 7 to Line 16 of Algorithm 3

finds the shortest constrained path. IDA* MCSP() is called
iteratively with updated (increased) 3#U p 4 o Y+\aGd[ 3 after each
iteration. It returns true when it reaches the shortest path. The
path can be constructed by backtracking the search stack. It
reports failure when the stopping condition is reached. 1

An Example: In Figure 1, we are to find the shortest
path from { to | subject to the constraint 5 �}$#��~ � � ��.

.
The vectors on the edges are edge weight vectors, such as! �� ����
 ���� � � 


. Call these two edge weights �S& � ��( , and
the two constraints, 1W& � 1+( .

The search is efficient with the assistance of look-ahead
information. It starts with depth bound 3, since the shortest
path from { to | has length 3. At iteration 1, after reaching

1One stopping condition could be that the threshold is greater than�P�,���d���#�+�"� , a predefined number. �S�+���b�I�#�+�"� can be regarded as an extra
constraint on path hop count. This says that in practice, we won’t consider a
too long path, even if it satisfies all the constraints. We can set �P�,���d���#�+�"� as
15, which is the default maximal TTL in IP networks for the hop number. This
guarantees the optimality of the networking MCSP problem. In our studied
cases, the actual path length does not exceed 12. IDA* MCSP can also reach
a stopping condition when there is no potentially feasible path. A simple way
to test this is to check if no eligibility test can be passed at this iteration. We
deploy the above two conditions, namely, �S�+���b�I�#�+�"���n�I� or no potentially
feasible path, as the stopping condition.
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node
�

, the algorithm won’t further search node
�

, since using
the look-ahead information on � & , it predicts that 1 & �`�W~

will
be violated. That is, the least weight path for � & from

�
to |

is
� � | , having weight 10 for � & . The weight for � & for the

partial path { �
plus the look-ahead weight,

� c ��~
, exceeds the

constraint 1 & �l�W~
. Furthermore, after reaching node 5 , the

algorithm won’t search further from 5 , since with the look-
ahead information on hop count, the shortest path from 5 to| has length 4, and

� c�� ���
exceeds the depth bound 3 for

this iteration. An iteration with depth bound 4 won’t find the
solution either. In the iteration with depth bound 5, again, the
algorithm won’t further search

�
after reaching

�
for the same

reason as above. It won’t further search
�

, since the depth
bound will be exceeded. The shortest path

9 � {r5�� 	�� |
will be found, with the weight vector

! � 9�
 ��$a� � ��~ .
.

Updating the depth bound properly can make the search
more efficient. In the example, depth bound can be set as 5
for the second iteration, since a potential solution via node 5
has at least

� c�� ���
hops, where

�
is the distance traversed

so far, and � is the length of shortest path from 5 to | , the
look-ahead information on hop count.

IV. PERFORMANCE STUDY

We study the optimality, completeness, space efficiency and
time efficiency of IDA* MCSP.

IDA* MCSP is optimal and complete. Optimality concerns
whether an algorithm can find the optimal solution. When
the look-ahead information always underestimates the solution
cost, IDA* is guaranteed to find the optimal solution [6].
In IDA* MCSP, Dijkstra’s shortest path algorithm is used to
set the look-ahead information. Thus the look-ahead informa-
tion always underestimates the solution length. IDA* MCSP
searches for the optimal solution following an approach similar
to the depth-first search, with a depth bound to restrict the
path length in each search iteration. Each time the depth
bound is updated as the least predicted path length from the
source to the destination in the last iteration. IDA* MCSP
searches a node after all eligible nodes closer to the source are
searched. A node is eligible if there is potentially a feasible
path via the node, judging by the weight of a partial path to
the node together with the look-ahead information. Therefore,
IDA* MCSP, an extension of IDA*, is guaranteed to find the
optimal solution. An algorithm is complete if it can find the
optimal solution if it exists; otherwise it can report a failure.
IDA* MCSP is complete, because it can find the optimal
solution when the depth bound is equal to the length of the
shortest constrained path, if there is a feasible path. Otherwise,
it can report a failure after a large enough depth bound is
reached, or it is determined that no feasible path is possible
with the assistance of look-ahead information.

IDA* MCSP conducts depth-first searches, so that it only
saves visited nodes in a stack. It terminates when it finds
the optimal solution at search depth 3 (the length of the
feasible shortest path). The space for the search process of
IDA* MCSP is thus only � � 3 


. The worst case for an acyclic
path is that all nodes are in the searched path, i.e. 3 L �

. A
space of size in order of

� ��c � 
K�
is needed for storing the

look-ahead values, where � is the number of link weights. The
space complexity is � � 3�c � ��c � 
I�n
 � � � � �u


. Therefore,
IDA* MCSP has linear space complexity in the product of the
number of weights and the number of nodes.

A. Study of Search Efficiency

In the following, we study the efficiency of IDA* MCSP.
The efficiency of a search algorithm is determined by the
accuracy of the look-ahead information. Accurate look-ahead
information greatly speeds up IDA*[14], [7]. The higher the
accuracy of the look-ahead information, the more efficient the
search process. In the following we study the accuracy of look-
ahead information.

We call the measure of look-ahead accuracy length differ-
ence, which is the difference of the hop count between the
shortest constrained path and the shortest unconstrained path
with respect to hop count. Each source-destination pair has a
length difference, for each given constraint vector. A length
difference is always positive, since the shortest constrained
path is at least as long as the shortest path with respect to
hop count. Having most length differences as 0 or close to 0,
we expect a search algorithm to have high efficiency, since
it can reach the solution quickly with accurate look-ahead
information. We illustrate the measure of length difference
by the example in Section II. The length of the shortest
constrained path ( {r5�� 	�� | ) is 5. The length of the shortest
path with respect to hop count ( { � � | ) is 3. The length
difference for the source-destination pair { to | is thus�S� �¡� �

.
It would be desirable to study network problems on realis-

tic Internet topologies. However, ISP topologies are usually
regarded as proprietary information. Fortunately, the Rock-
etfuel project [15] deployed new techniques to measure ISP
topologies and made them publicly available. The OSPF/IS-
IS weights on the links (inferred weight and latency) are
also provided [11]. For the inferred ISP topologies, we study
each possible source-destination pair. Due to the symmetry,
we only study one direction of each pair on the inferred
ISP topologies. We also use synthetic topologies, including
Internet-like topologies following power-laws [4], [20] and
random graphs based on the Waxman model [17]. For power-
law topologies, we use sizes of 3037, 5000, 7500 and 10000.
For Waxman topologies, we use network sizes of 250, 500,
1000, 2500 and 5000. On these topologies, link weights are
set uniformly in the range of

�~ � � 

or

�K�W~ � ��~A~ 

. In each

synthetic topology, we choose 100 destinations randomly, and
100 random sources for each destination. There are two link
weights, i.e. � � �

. We use a tightness factor, ¢ , to set the
constraint vector for each search. For each source-destination
pair, each constraint is set as the tightness factor ¢ times the
weight of the least weight path of the source-destination pair
with respect to that weight. ¢ is set as 1.1, 1.2 or 1.5. As
a consequence, the constraints may be different for different
source-destination pairs.

We study the percentage (%) of length difference, that is,
the number of instances having length differences V divided
by the number of all the instances, for a tightness factor and
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£ ¤
0 1 2 3 4 5

108 1.1 97.61 2.39
(AS1221) 1.2 99.47 0.53

1.5 100.00
315 1.1 90.29 9.09 0.60 0.02

(AS1239) 1.2 95.19 4.71 0.10
1.5 98.59 1.34 0.07

87 1.1 91.52 8.03 0.45
(AS1755) 1.2 95.24 4.53 0.23

1.5 96.83 2.98 0.19
161 1.1 82.65 12.94 3.75 0.32 0.34

(AS3257) 1.2 86.60 10.74 2.31 0.35
1.5 92.69 6.17 1.13 0.01

79 1.1 90.69 6.07 2.99 0.25
(AS3967) 1.2 94.89 3.62 1.31 0.18

1.5 96.98 2.17 0.71 0.14
141 1.1 73.48 19.31 5.20 1.44 0.49 0.06

(AS6461) 1.2 82.39 14.75 2.32 0.45 0.07 0.02
1.5 95.05 4.82 0.10 0.03

TABLE I
% OF LENGTH DIFFERENCE FOR ROCKETFUEL TOPOLOGIES

a topology. Table I presents the results for the inferred ISP
topologies for all possible source-destination pairs 2. A blank
cell in the table indicates that there is no instance (

~#¥
) of the

corresponding length difference. Table II and III present the
representative results for power-law topologies and Waxman
topologies with weights uniformly on (0,1).

The results for the “realistic” inferred ISP topologies are
encouraging, as shown in Table I:

�A¦ � �#¥
or more cases fall

into the difference of 0, 1 or 2. On power-law and Waxman
topologies, the majority (

�^�#¥
or more) of length differences

fall into the difference of 0, 1 or 2. It also shows that with
the loosening of the tightness factor, from 1.1 to 1.2 to 1.5,
the percentage of small length differences (0, 1 or 2) becomes
larger and larger.

£ ¤
0 1 2 3 4 5

3,037 1.1 64.17 28.69 6.40 0.72
1.2 80.68 17.26 1.96 0.10
1.5 96.67 3.20 0.13

5,000 1.1 57.68 31.94 9.26 1.04 0.08
1.2 71.72 23.70 4.35 0.23
1.5 93.19 6.48 0.31 0.02

7,500 1.1 49.88 40.26 8.64 1.15 0.07
1.2 64.24 31.36 3.99 0.40 0.01
1.5 91.21 8.49 0.30

10,000 1.1 46.67 41.26 10.61 1.36 0.10
1.2 61.51 33.74 4.36 0.37 0.02
1.5 89.43 10.24 0.33

TABLE II
% OF LENGTH DIFFERENCE FOR POWER-LAW TOPOLOGIES

We have consistent results on the study of various com-
binations of tightness factors for the two constraints, and on
the study of the weights uniformly on (10,100) for synthetic
topologies. The above study supports that, in the studied

2To save space, two cases with length differerence 6 are not reported in
Table I, which account for §W¨ §'©+ª , for AS6461 with

¤ �u� ¨ � . One case with
length difference 6 is not reported in Table III, which accounts for §W¨ § � ª ,
for Waxman topology of size 500 with

¤ �u� ¨ � .

£ ¤
0 1 2 3 4 5

250 1.1 65.63 23.15 8.36 2.53 0.26 0.07
1.2 76.26 18.40 4.39 0.82 0.06 0.07
1.5 93.45 5.78 0.64 0.13

500 1.1 45.19 32.75 16.79 4.38 0.81 0.07
1.2 55.38 31.92 10.78 1.69 0.22 0.01
1.5 79.05 18.78 2.06 0.11

1,000 1.1 89.30 9.64 0.98 0.08
1.2 89.63 9.45 0.84 0.08
1.5 92.58 7.03 0.38 0.01

2,500 1.1 33.57 41.62 22.38 2.40 0.03
1.2 42.70 42.09 14.64 0.56 0.01
1.5 63.43 33.79 2.77 0.01

5,000 1.1 25.76 52.63 21.30 0.31
1.2 32.19 56.91 10.80 0.10
1.5 48.25 50.94 0.81

TABLE III
% OF LENGTH DIFFERENCE FOR WAXMAN TOPOLOGIES

cases on diverse topologies, IDA* MCSP is a very efficient
algorithm for the MCSP problem.

B. Comparison with A*Prune

The high accuracy of look-ahead information is sufficient
to imply the high efficiency of IDA* MCSP. We will further
confirm its efficiency by comparison with A*Prune, an exact
algorithm designed for the MCSP problem. 3

Both IDA* MCSP and A*Prune do the identical preprocess-
ing to calculate the lower bounds, thus we concentrate on the
comparison of the computation time for the search process
(Line 7 to Line 16 of Algorithm 3). For the inferred ISP
topologies, we study each possible source-destination pair. In
each synthetic topology, we choose 10 destinations randomly,
and 100 random sources for each destination. The experiments
are conducted on a Linux machine with 1533 MHz CPU
and 256MB memory. For each source-destination pair, we run
1000 repetitions and take the average for precision.

Fig. 2 to 4 present the complete results for inferred ISP
topologies. Fig. 5 to 10 present the results for synthetic
topologies with weights uniformly chosen from (0,1). The
results on (10, 100) are similar. In these figures, the y - and « -
axis are the search process time for A*Prune and IDA* MCSP
respectively. The line « � y is also drawn. Thus a point under« � y means IDA* MCSP searches faster than A*Prune.
The closer the points to the y -axis, the better IDA* MCSP
performs. Because of the different orders of magnitude, the
scales are not identical in the figures. These figures show that
IDA* MCSP significantly outperforms A*Prune, with only
a few exceptions. Note that on the “realistic” inferred ISP
topologies, IDA* MCSP consistently outperforms A*Prune.

A*Prune is not as fast as IDA* MCSP in most cases.4 Both
3It might be interesting to compare the efficiency of our exact algorithm

IDA* MCSP with approximate algorithms. This is left as a future work.
4We have an efficient implementation of A*Prune. The heap approach for

the list maintenance in the original A*Prune implementation has a complexity
of ¬8 ��®¯�,��° [10], where � is the number of partial paths. Instead, we use a
2-dimensional bucket to store the partial paths, which locates a proper bucket
directly when storing a partial path. We maintain an array and a variable to
facilitate querying the partial path that is most likely to lead to a solution.
This has linear complexity.
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Fig. 2. Search Process Time (msec) on Rocketfuel Topologies with
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IDA* MCSP and A*Prune benefit from the high accuracy
of look-ahead information. IDA* MCSP does not need to
maintain partial paths. It only searches on the stack. A*Prune
wastes time maintaining partial paths in a situation where
the maintenance is unnecessary. For almost all the studied
cases, IDA* MCSP takes less than 1 msec to find the so-
lution. IDA* MCSP searches very fast on the inferred ISP
topologies. In the studied cases, the look-ahead information is
very accurate. The high accuracy of look-ahead information
and the characteristic of iterative deepening search account
for IDA* MCSP finding paths faster than A*Prune in most
cases. The results also show that the larger the tightness factor
(the looser the constraints), the harder the search problem
might be (the longer the search time is). The reason is that
with looser constraints, there may be more potentially feasible
partial paths. In contrast, with tighter constraints, more partial
paths can be cut off due to the eligibility test.

Several extreme cases, e.g. those at the far bottom right
in Figure 7, show that IDA* MCSP can be much faster than
A*Prune. In these cases, we find that IDA* MCSP searches
much fewer nodes and conducts much fewer eligibility tests
than A*Prune. This accounts for their performances. In con-
trast, there are few cases where A*Prune is faster in Figure 6.
We find that in these cases, a) the look-ahead information
is not accurate for the source nodes (the length differences
of the source nodes are 2); b) IDA* MCSP conducts much
more eligibility tests than A*Prune. Inaccuracy of look-ahead
information causes redundancy for IDA* MCSP. The number
of eligibility tests depends on the number of neighbors. Since
only in rare cases is IDA* MCSP not as fast as A*Prune, we
recommend IDA* MCSP for the MCSP problem.

V. CONCLUSIONS

A recent study of the hardness of QoS routing suggests that
the “worst-case” may not occur in practice and thus there may
exist a fast exact algorithm. In this paper, we extend IDA*
algorithm to the MCSP problem by deploying the ideas of
iterative deepening search and look ahead.

The accuracy of look-ahead information determines the
efficiency of a search algorithm. The higher the accuracy of the
look-ahead information, the more efficient the search process.
We study the accuracy of look-ahead information on various
topologies including inferred Internet ISP topologies, power-
law topologies, and Waxman topologies. The empirical study
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on the diverse topologies shows that the look-ahead informa-
tion has high accuracy. That is, the path length differences
between the shortest constrained path and the shortest path are
small in all the studied cases: more than

�^¦ � �^¥
on inferred

Internet ISP topologies and more than
�#�^¥

on power-law and
Waxman topologies of length differences fall into 0, 1 or 2.
The high accuracy of look-ahead information implies the high
efficiency of our algorithm IDA* MCSP. Thus IDA* MCSP
is very efficient in the studied cases. This is further confirmed
by the comparison with A*Prune, another exact algorithm de-
signed for the MCSP problem. Experimental results show that
IDA* MCSP in general significantly outperforms A*Prune.

We plan to study the time complexity of IDA* MCSP. We
have a conjecture that, on realistic topologies like inferred
Internet ISP topologies and power-law topologies, and ran-
dom topologies like those generated following the Waxman
model, the look-ahead accuracy is high and the algorithm
IDA* MCSP behaves in a polynomial manner in practice.
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